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Abstract 

      (4-Ferrocenylbutyl)dimethylsilane is prepared by a Grignard reaction from                           

4-chlorobutylferrocene and chlorodimethylsilane in THF. The Si-H group reacts with primary 

and secondary alcohols at room temperature to give good yields of (4-

ferrocenylbutyl)dimethylsilyl ethers with Karstedt catalyst in THF. Ferrocenyl groups in 

pendant side chain are attchaed to cellulose acetate butyrate via alcoholysis at room 

temperature with Karstedt catalyst.  

 

Keywords: Ferrocene, Silane, Silyl Ether, Alcoholysis, Dehydrocondensation, Cellulose 

acetate butyrate 

 

 

1-Introduction 

      Derivatives of ferrocene continue to attract attention 60 years after its discovery [1-3]. 

The sustained interest is in part due to the rich chemistry of the iron (II) center and the variety 

of synthetic methods available for functionalizing the cyclopentadienyl-ligands [4-5]. The 

role of the ferrocene gropus as a three-dimensional metal-containing equivalent of benzene 

has prompted the synthesis of novel air-stable compounds. 

      Derivatives of ferrocene are widely used in catalysis and materials science [6]. They are 

starting materials in both organic and organometallic chemistry [7-8]. They have shown a 

broad variety of applications in materials [9-10], medicine [11-13], organic synthesis [14-15], 

organometallic polymers [16], dendritic macromolecules [17-18] and liquid crystals [19-20]. 

Ferrocene derivatives are a well-known class of one-electron donors which exhibit well 

established reversible redox couples. As a consequence, ferrocene derivatives, particularly 
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those possessing functionalized tethers, have emerged as strong candidates for molecular 

electronic devices, electro-optical materials, multielectron redox catalysts and electrode 

surface modifiers [21-22]. Numerous ferrocene derivatives are used as catalyst for 

asymmetric synthesis of a large number of optically active organic compounds [3, 23].   
      Organosilicon reagents and compounds are valuable in organic synthesis, so methods to 

synthesize them have become of considerable importance. Examples are silyl ethers and silyl 

ketals [24]. A special feature of hydrosilanes is their ability to undergo alcoholysis leading to 

alkoxysilanes and gaseous hydrogen (dehydrocondensation). The rate of 

dehydrocondensation significantly depends on the extent of Si-H bond polarization in the 

silane, and the reaction occurrs in the presence of either nucleophilic or electrophilic catalysts 

[25-26].  

      Over the years, there have been significant developments in silyl ether synthesis and their 

applications to organic chemistry. Silyl ethers are important in organic synthesis due to their 

versatility, compatibility with a wide range of reaction conditions, safety, and the ease of 

usage. They are used in the areas of tethering reactants for stereospecific intramolecular 

reactions [27-28], protecting agents for many functional groups [29], anchoring reagents, 

substrates for solid support synthesis, organic synthesis [30] and multistep synthesis [31-32]. 

They have an important role in inorganic synthesis as precursor in the preparation of sol gel 

and other condensed siloxane materials [33] and in the preparation of prodrugs for drug 

delivery [34]. 

      We recently reported formation of functionalized polymers with dehydrocoupling 

reactions with Karstedt catalyst [35]. The development of environmentally friendly polymers 

based on renewable materials is of great interest. Indeed, requirements for ecological safety 

constantly increase and renewable polymers show considerable economic promise for 

manufacture of industrially advanced polymers. The attraction of easily available functional 

cellulose derivatives provides strong motivation to validate synthetic methods with respect to 

their potential for the preparation of new polymers based on renewable raw materials. In 

particular, cellulose derivatives bearing ionic, electro- or photochromic, redox- or 

catalytically active side groups are of interest.  

      Among cellulose derivatives, ester-modified celluloses such as cellulose acetate butyrate 

are known as good film-forming materials with high scratch resistance, and are commercially 

available in different grades, at reasonable prices. Polymers using ferrocene in pendant side 

chains have been emphasized and their special properties have been illustrated. 

Functionalization of celluloses backbone with ferrocene derivatives has been recently 
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reported in the literature [36-37]. The reported methods usually require severe conditions and 

multistep reactions. Here we report a very simple and one-pot reaction for the modification of 

cellulose acetate butyrate with ferrocenyl groups and formation of ferrocenyl silyl ethers with 

various alcohols under mild conditions by the use of the Karstedt catalyst at room 

temperature. 

 

2-Results and discussion 

      We have recently reported the synthesis of silyl ether derivatives of Calixarenes and 

tris(alkoxydimethylsilyl)methanes via the reaction of tris(dimethylsilyl)methane and 

Calixarenes having Si-H group with various alcohols in the presence of the Karstedt catalyst 

under mild conditions [38-39]. In continues of our work on silyl ethers we extended the 

procedure to include coupling of alcohols with Si-H groups functionalized with ferrocenyl 

groups. A few articles reporting the synthesis of (4-ferrocenylbutyl)dimethylsilane are found 

in the literature [40-42]. Due to interesting properties of ferrocene derivatives we decided to 

use our methodology to attach the (4-ferrocenylbutyl)dimethylsilyl side chain to a polymer 

backbone. 

      (4-Ferrocenylbutyl)dimethylsilane is synthesized from 4-chlorobutylferrocene via a 

Grignard reaction in THF [40-42]. 4-Chlorobutyroylferrocene was prepared by Friedel-Crafts 

acylation of ferrocene with 4-chlorobutyroyl chloride in dichloromethane in the presence of 

AlCl 3 as catalyst (Scheme 1) [43-44]. 4-Chlorobutyroylferrocene was reduced to 4-

chlorobutylferrocene by NaBH4 in diglyme [44]. We examined several ether solvents such as 

THF, 1, 4-dioxane, diethyl ether and diglyme for this reduction. The best result (85%) 

obtained in diglyme at 0oC.  

 

 

 

Scheme 1. Synthesis of (4-ferrocenylbutyl)dimethylsilane 
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      As reported in literature [24], (4-ferrocenylbutyl)dimethylsilane is an air sensitive and 

unstable compound that decomposes on exposure to air, but we found that this compound is 

stable to air and moisture and does not decompose at room temperature.  

      For dehydrocoupling reaction of alcohols with Si-H group, we started with the reaction of 

compound 3 with a primary alcohol, methanol, at room temperature and THF as a solvent 

under Karstedt catalyst (Scheme 2).  
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Scheme 2. Reaction of ferrocene compound 3 with various alcohols 

 

    The reaction was tracked by FT-IR spectroscopy and stopped when the Si-H stretching 

bond frequency is disappeared in FT-IR spectrum after 2 h (Entry 1, Table 1). 

 

[Table 1] 

 

     Refluxing of the reaction decreased the yield of the desired silyl ether products and (4-

ferrocenylbutyl)dimethylsiloxane 5 was formed as the main product. 

      Long chain primary alcohols show lower reactivity than methanol. As shown in Table 1 

(4e and 4f) the yields decreased respectively to about 82% and 80% with increasing alcohol 

chain length. Secondary alcohols reacting with compound 3 to give desired silyl ethers in 

good yield (Table 1, 4g, 4h). Aromatic alcohols such as benzyl alcohol produced the desired 

silyl ether in high yields (4j, 93%) and showed higher reactivity than the aliphatic alcohols, 

but the phenolic silyl ether could not be obtained from the reaction of phenol with compound 

3 (4k, Table 1). 
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      Cellulose derivatives such as cellulose acetate butyrate (CAB) are commercially available 

in different grades. The hydroxyl groups on the cellulose acetate butyrate backbone are good 

candidates for dehydrocoupling reactions. 

       Our synthetic procedure was applied to cellulose acetate butyrate containing freely 

accessible hydroxyl functional side groups, statistically distributed along and among the 

individual cellulose acetate butyrate chains. The solubility of cellulose acetate butyrate in 

organic solvents such as THF is the main factor in the selection of this polymer for the 

current reaction (Scheme 3). CAB was reacted with compound 3 in THF in the presence of 

Karstedt catalyst at room temperature giving CAB 6 functionalized with ferrocene groups. 

The cellulose acetate butyrate that was used for this reaction had 36-40% butyryl and 12-15% 

acetyl groups (Scheme 3). 

 

 

 

Scheme 3. Synthesis of cellulose acetate butyrate with ferrocenyl groups  

 

      The comparison of NMR spectra of cellulose acetate butyrate bearing ferrocenyl units 

(Fig 1, a) with pure cellulose acetate butyrate (Fig 1, b) indicates that ferrocenyl groups are 

attached to the polymer backbone via silyl ether bands. The singlet SiMe2 peak at 0.13 ppm 

in the NMR spectra of the modified polymer confirmed the presence of the (4-

ferrocenylbuyl)dimethylsilyl side chain in compound 6. Also ferrocene peaks assigned to C-

H bonds appeared at 4.03-4.08 ppm as sharp doublets. 

 

[Fig. 1] 
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      FT-IR spectra of polymer 6 (Fig. 2, b) in comparison with the FT-IR spectra of pure 

cellulose acetate butyrate (Fig. 2, a) showed the appearance of Si-C peak at 883 cm−1 and also 

Cp-H peak at 3094 cm−1. Absence of Si-H peak at 2010 cm−1 showed the attachment of 

ferrocene groups to the polymer is via Si-O bonds. 

 

[Fig. 2] 

 

     Other properties of cellulose acetate butyrate modified with ferrocene groups and 

electrochemical behavior of the obtained polymer and ferrocenyl silyl ethers are under 

investigation. 

 

3-Conclusion 

      In summary, we report the synthesis of some silyl ethers containing ferrocenyl groups by 

reaction of (4-Ferrocenylbutyl)dimethylsilane with various primary and secondary alcohols, 

in the presence of the Karstedt catalyst at room temperature, in high yields (76-93%). In 

addition a simple method for attachment of ferrocenyl groups to cellulose acetate butyrate via 

dehydrocoupling under the same conditions was developed. 

 

4-Experimental 

 

4.1. Solvents and reagents 

      Chemicals were either prepared in our laboratory or purchased from Merck, Fluka, 

Aldrich and Yantai Suny Chem. International Co., Ltd. Commercial products were used 

without purification 

4.2. Spectra 

      The 1H and 13C NMR spectra were recorded with a Bruker FT-400 MHz spectrometer at 

room temperature and with CDCl3 as solvent. The FT-IR spectra were recorded on a Bruker-

Tensor 270 spectrometer. The mass spectra were obtained with a GC-Mass Agilent 

quadrupole mode 5973N instrument, operating at 70 eV. Elemental analyses were carried out 

with an Elementar vario EL III instrument. 
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4.3. General procedure for the synthesis of ferrocenyl silyl ether 

      A 25 ml round-bottomed two-neck flask with magnetic stirrer was charged with 0.20 g 

(0.66 mmol) silane 3, 1 ml ROH, and 5 ml dry THF as a solvent. 20 µl of Karstedt catalyst 

([Pt]/[Si–H] = 3.1 × 10-6) was added. To follow the reaction progress, several samples were 

taken at different times and were analyzed by FT-IR spectroscopy. The reaction mixture was 

stirred at room temperature until the complete disappearance of Si–H bond in FT-IR spectra. 

The alcohols and THF were evaporated under reduced pressure and the residue purified by 

column chromatography (n-hexane-ethylacetate, 10:1) to give the corresponding products. 

 

4.3.1. 4-(Methoxydimethylsilyl)butylferrocene (4a) 

      A yellowish oil: FT-IR (KBr, cm−1): 3092 (Cp-H), 2925 (C-H), 1634, 1459 (Cp), 1253, 

831 (Si-C), 1094, 1005 (Cp), 1029 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.15 (s, 6H, 

SiMe2), 0.63-0.68 (t, 2H, CH2-SiMe2), 1.37-1.45 (m, 2H, CH2-CH2-SiMe2), 1.52-1.59 (m, 

2H, Cp-CH2CH2), 2.33-2.36 (t, 2H, Cp-CH2), 3.46 (s, 3H, OMe,), 4.06-4.08 (d, 4H, Cp), 4.1 

(s, 5H, Cp); 13C NMR (100MHz, CDCl3, ppm): -3.6 (SiMe2), 16.6 (CH2-SiMe2), 22.0 (Cp-

CH2),  28.17 (CH2-CH2-SiMe2), 33.69 (Cp-CH2CH2), 49.2 (OMe), 65.9, 66.9, 67.3 (Cp), 88.2 

(C1 Cp); m/z (EI): 330 (100%[M]+), 199 (17% [Fc-CH2]
+), 121 (11% [Cp-Fe]+). Anal. Calc. 

for C17H26FeOSi: C, 61.81; H, 7.93. Found: 61.72, 7.85%. 

4.3.2. 4-(Ethoxydimethylsilyl)butylferrocene (4b)  

      A yellowish oil: FT-IR (KBr, cm−1): 3093 (Cp-H), 2924 (C-H), 1628, 1449 (Cp), 1253, 

821 (Si-C), 1107 (Cp), 1022 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.10 (s, SiMe2, 6H), 

0.60-0.64 (t, 2H, CH2-SiMe2), 1.18-1.21 (t, 3H, CH3), 1.34-1.42 (m, 2H, CH2-CH2-SiMe2), 

1.50-1.57 (m, 2H, Cp-CH2CH2), 2.30-2.34 (t, 2H, Cp-CH2), 3.64-3.69 (q, 2H, OCH2), 4.03-

4.04 (d, 4H, Cp), 4.09 (s, 5H, Cp); 13C NMR (100MHz, CDCl3, ppm): -3.05 (SiMe2), 15.2 

(CH3), 17.5 (CH2-SiMe2), 22.2  (Cp-CH2), 28.2 (CH2-CH2-SiMe2), 33.7 (Cp-CH2CH2), 57.2 

(OCH2), 65.9, 67.0, 67.4 (Cp), 88.4 (C1 Cp), m/z (EI): 344 [M]+, 199 ( [Fc-CH2]
+), 121  ([Cp-

Fe]+). Anal. Calc. for: C18H28FeOSi: C, 62.78; H, 8.20. Found: 62.63, 8.06%. 

4.3.3. 4-(Propoxydimethylsilyl)butylferrocene (4c) 

      A yellowish oil: FT-IR (KBr, cm−1): 3092 (Cp-H), 2925 (C-H), 1623, 1460 (C=C), 1252, 

835 (Si-C), 1094 (Cp), 1007 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.11 (s, 6H, SiMe2), 
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0.60-0.65 (t, 2H, CH2-SiMe2), 0.89-0.92 (t, 3H, CH3), 1.35-1.43 (m, 2H, CH2-CH2-SiMe2), 

1.5- 1.60 (m, 4H, -CH2-), 2.31-2.35 (t, 2H, Cp-CH2), 3.53-3.57 (t, 2H, OCH2), 4.04-4.05 (d, 

4H, Cp), 4.10 (s, 5H, Cp); 13C NMR (100MHz, CDCl3, ppm): −3.08 (SiMe2), 9.28 (CH3), 

15.2 (CH2-CH2-SiMe2), 22.1(CH2-SiMe2), 24.85 (CH2-CH3), 28.1 (Cp-CH2), 33.7 (Cp-

CH2CH2), 63.3 (OCH2), 65.9, 66.9, 67.3 (Cp), 88.3 (C1 Cp), m/z (EI): 358 (100% [M]+), 199 

(20% [Fc-CH2]
+), 121 (11% [Cp-Fe]+). Anal. Calc. for: C19H30FeOSi: C, 63.68; H, 8.44. 

Found: 63.54, 8.37%. 

4.3.4. 4-(Butoxydimethylsilyl)butylferrocene (4d) 

      A yellowish oil: FT-IR (KBr, cm−1): 3092 (Cp-H), 2954 (C-H), 1632, 1461 (C=C), 1253, 

830 (Si-C), 1095 (Cp), 1006 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.11(s, 6H, SiMe2), 

0.60-0.65 (t, 2H, CH2-SiMe2), 0.91-0.95 (t, 3H, CH3), 1.35-1.43 (m, 4H, -CH2-), 1.49-1.58 

(m, 4H, -CH2-) , 2.31-2.35 (t, 2H, Cp-CH2), 3.58-3.61 (t, 2H, OCH2), 4.04-4.06 (d, 4H, Cp), 

4.10 (s, 5 H, Cp); 13C NMR (100MHz, CDCl3, ppm) −3.11 (SiMe2), 12.9 (CH3), 15.1 (CH2-

CH3), 17.9, 18.1 (-CH2-), 22.1(CH2-SiMe2), 33.7 (Cp-CH2CH2), 33.8 (-CH2-) , 61.4 (OCH2), 

65.9, 66.9, 67.3 (Cp), 88.3 (C1 Cp), m/z (EI): 372(100% [M]+), 199 (13% [Fc-CH2]
+), 121 

(6% [Cp-Fe]+). Anal. Calc. for: C20H32FeOSi: C, 64.50; H, 8.66. Found: 64.41, 8.59%. 

4.3.5. 4-(Pentoxydimethylsily)butylferrocene (4e)  

      A yellowish oil: FT-IR (KBr, cm−1): 3092 (Cp-H), 2927 (C-H), 1632, 1461 (Cp), 1252, 

833 (Si-C), 1096 (Cp), 1009 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.01(s, 6H, SiMe2), 

0.60-0.64 (t, 2H, CH2-SiMe2), 0.89-0.93 (t, 3H, CH3), 1.28-1.42 (m, 6H, -CH2-), 1.50-1.65 

(m, 4H, -CH2-), 2.30-2.34 (t, 2H, Cp-CH2) 3.56-3.59 (t, 2H, OCH2), 4.03-4.05 (d, 4H, Cp), 

4.09 (s, 5H, Cp); 13C NMR (100MHz, CDCl3, ppm): -3.09 (SiMe2), 13.10 (CH3), 15.18 

(CH2CH3), 21.4, 22.1, 26.97, 28.18 (-CH2-), 28.67 (Cp-CH2), 31.4 (-CH2-), 33.7 (Cp-

CH2CH2), 61.77 (OMe2), 65.9, 66.9, 67.3 (Cp), 88.3 (C1 Cp), m/z (EI): 386 (100% [M]+), 199 

(12% [Fc-CH2]
+), 121 (8% [Cp-Fe]+). Anal. Calc. for: C21H34FeOSi: C, 65.27; H, 8.87. 

Found: 65.19, 8.82%. 

4.3.6. 4-(Hexoxydimethylsilyl)butylferrocene (4f)  

      A yellowish oil: FT-IR (KBr, cm−1): 3092 (Cp-H), 2926 (C-H), 1633, 1461 (C=C), 1253, 

835 (Si-C) 1096 (Cp), 1007 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.09 (s, 6H, SiMe2), 

0.59-0.63 (t, 2H, CH2-SiMe2), 0.88-0.91 (t, 3H, CH3), 1.26-1.49 (m, 8H, -CH2-), 1.49-1.57 
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(m, 4H, -CH2-), 2.30-2.33 (t, 2H, Cp-CH2), 3.55-3.59 (t, 2H, OCH2), 4.03-4.09 (d, 4H, Cp), 

4.14 (s, 5H, Cp); 13C NMR (100MHz, CDCl3, ppm): -3.0 (SiMe2), 13.08 (CH3), 15.1, 21.6, 

22.2, 24.4, 28.1 (-CH2-), 28.6 (Cp-CH2), 30.6, 31.7 (-CH2-), 33.7 (Cp-CH2CH2), 61.8 

(OCH2), 65.93, 66.96, 67.38 (Cp), 88.3 (C1 Cp); m/z (EI): 400 (100% [M]+), 199(10% [Fc-

CH2]
+), 121 (6% [Cp-Fe]+). Anal. Calc. for: C22H36FeOSi: C, 65.98; H, 9.06. Found: 65.88, 

8.98%. 

4.3.7. 4-(iso-Propoxydimethylsilyl)butylferrocene (4g) 

      A yellowish oil: FT-IR (KBr, cm−1): 3095 (Cp-H), 2960 (C-H), 1631, 1460 (C=C), 1252, 

879 (Si-C) 1096 (Cp), 1025 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.10 (s, 6H, SiMe2), 

0.59-0.63 (t, 2H, CH2- SiMe2), 1.15-1.16 (t, 6H, CH(CH3)2), 1.33-1.1.41 (m, 2H, CH2-CH2-

SiMe2), 1.50-1.57 (m, 2H, Cp-CH2CH2), 2.30-2.34 (t, 2H, Cp-CH2), 3.95-4.01(m, 1H, OCH), 

4.03-4.04 (m, 4H, Cp), 4.09 (s, 5H, Cp); 13C NMR (100MHz, CDCl3, ppm): -2.52 (SiMe2), 

15.6 (CH2-CH2- SiMe2), 22.2 (CH2- SiMe2), 24.8 (CH(CH3)2), 28.1 (Cp-CH2), 33.8 (Cp-

CH2CH2), 63.7 (OCH), 65.9, 66.97, 67.4 (Cp), 88.4 (C1 Cp), m/z (EI): 358 (100% [M]+), 

199(14% [Fc-CH2]
+), 121 (7% [Cp-Fe]+). Anal. Calc. for C19H30FeOSi: C, 63.68; H, 8.44  

Found: 63.57, 8.39%. 

4.3.8. 4-(sec-Butoxydimethylsilyl)butylferrocene (4h) 

       A yellowish oil: FT-IR (KBr, cm−1): 3092 (Cp-H), 2926 (C-H), 1634, 1457 (Cp), 1252, 

828 (Si-C), 1049 (Cp), 1009 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.10(s, 6H, SiMe2), 

0.59-0.63 (t, 2H, CH2- SiMe2), 0.86-0.90 (t, 3H, CH2CH3), 1.12-1.14 (d, 3H, CHCH3), 1.36-

1.55 (m, 6H, -CH2-), 2.30-2.34 (t, 2H, Cp-CH2), 3.67-3.71 (m, 1H, OCH), 4.03-4.05 (d, 4H, 

Cp), 4.09 (s, 5H, Cp); 13C NMR (100MHz, CDCl3, ppm): -2.3 ( SiMe2), 9.3 (CH2CH3), 15.81 

(CH2-SiMe2), 22.2 (CH2- SiMe2), 22.4, 28.1, 22.6, 31.3 (-CH2-), 33.87 (Cp-CH2CH2), 65.9, 

66.9, 67.3 (Cp), 68.8 (OCH), 88.4 (C1 Cp), m/z (EI): 372(100% [M]+), 199 (12% [Fc-CH2]
+), 

121 (7% [Cp-Fe]+). Anal. Calc. for C20H32FeOSi: C, 64.50; H, 8.66. Found: 64.36, 8.59%. 

4.3.9. 4-(iso Pentoxydimethylsily) butylferrocene (4i) 

      A yellowish oil: FT-IR (KBr, cm−1): 3091 (Cp), 2955 (C-H), 1631, 1462 (Cp), 1252, 818 

(Si-C) 1093 (Cp), 1026 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.99 (s, 6H, SiMe2), 0.60-

0.64 (t, 2H, CH2-SiMe2), 0.90-0.91 (d, 6H, CH(CH3)2), 1.35-1.46 (m, 4H), 1.51-1.58 (m, 2H), 

1.66-1.73 (m, 1H, CH(CH3)2), 2.31-2.359 (t, 2H, CH2-Cp), 3.60- 3.63 (t, 2H, OCH2), 4.04-
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4.05 (d, 4H, Cp), 4.10 (s, 5H, Cp); 13C NMR (100MHz, CDCl3, ppm): -3.09 (SiMe2),  15.2 

21.6, 22.1, 23.5, 28.1, 33.7, 40.6, 60.0 (OCH2), 65.9, 66.7, 66.9, 67.3 (Cp), 88.3 (C1 Cp), m/z 

(EI): 358 (100% [M]+), 199(16% [Fc-CH2]
+), 121 (14% [Cp-Fe]+). Anal. Calc. for 

C21H34FeOSi: C, 65.27; H, 8.87. Found: 65.02, 8.85%. 

4.3.10. 4-(Benzyloxydimethylsilyl)butylferrocene (4j) 

      A yellowish oil: FT-IR (KBr, cm−1): 3090, 3031 (C-H), 2924 (C-H), 1634, 1493 (C=C), 

1255, 838 (Si-C), 1099 (Cp), 1027 (Si-O); 1H NMR (400MHz, CDCl3, ppm): 0.07(s, 6H, 

SiMe2), 0.56-0.61 (t, 2H, CH2-SiMe2), 1.30-1.36 (m, 2H, CH2-CH2-SiMe2), 1.42-1.48 (m, 

2H, CH2-CH2-SiMe2), 2.21-2.25 (t, 2H, CH2-Cp), 3.9 (d, 4H, Cp), 4.02 (s, 5H, Cp), 4.6 (s, 

2H, OCH2Ar), 7.18-7.27 (s, 5H, Ar); 13C NMR (100MHz, CDCl3, ppm): -3.0 (SiMe2), 15.2 

(CH2-CH2-SiMe2), 22.1 (CH2-SiMe2), 28.1(CH2-Cp), 33.6 (CH2-CH2-Cp),  63.63 (OCH2-Ar), 

65.9, 66.9, 67.3 (Cp), 88.3 (C1 Cp), 125.4, 126.0, 127.2 (Ar), 140 (C1 Ar); m/z (EI): 406 

(100% [M]+), 199(9% [Fc-CH2]
+), 121 (6% [Cp-Fe]+). Anal. Calc. for C23H30FeOSi: C, 

67.97, H, 7.44. Found: C, 68.29, H, 7.40%. 

4.4. Synthesis of ferrocenyl cellulose acetate butyrate (6) 

      A 25 ml round-bottomed two-neck flask with magnetic stirrer was charged with 0.20g 

cellulose acetate butyrate and silane 3 (0.6g) and 10 ml dry THF as a solvent. Then 40 µl of 

Karstedt catalyst ([Pt]/[Si–H] = 3.1 × 10-6) was added. The mixture was stirred at room 

temperature for 6h. After completion of the reaction, the mixture was poured into water (50 

ml) and was extracted three times with dichloromethane. The combined organic layers were 

dried (Na2SO4) and filtered. The solvent was evaporated and the residue washed with n-

hexane several times until all unreacted silane was removed, and the cellulose acetate 

butyrate appeared as a thin film. 
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Scheme 1. Synthesis of (4-ferrocenylbutyl)dimethylsilane 
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Scheme 2. Reaction of ferrocene compound 3 with various alcohols 
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Scheme 3. Synthesis of cellulose acetate butyrate with ferrocene group  
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Table 1 Synthesis of ferrocenyl silyl ethers with various alcohols in the presence of Karstedt  

Catalyst 

 

Entry Alcohol  product Yield (%) 

1 CH3OH 4a 89 

2 CH3CH2OH 4b 86 

3 CH3CH2CH2OH 4c 85 

4 CH3CH2CH2CH2OH 4d 82 

5 CH3CH2CH2CH2CH2OH 4e 82 

6 CH3CH2CH2CH2CH2CH2OH 4f 80 

7 (CH3)2CHOH 4g 78 

8 (CH3)CHOHCH2CH3 4h 76 

9 (CH3)2CHCH2CH2OH 4i 84 

10 PhCH2OH 4j 93 

11 PhOH 4k - 
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Fig 1. NMR spectra of a) cellulose acetate butyrate attached ferrocene groups b) pure 

cellulose acetate butyrate 
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Fig 2. Comparing the FT-IR spectra of the a) pure cellulose acetate butyrate b) cellulose 

acetate butyrate attached ferrocene groups  
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