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Abstract: Controlling the chemo- and regioselectivity of
transition-metal-catalyzed C�C activation remains a great
challenge. The transformations of benzocyclobutenones
(BCBs) usually involve the cleavage of C1�C2 bond. In this
work, an unprecedented highly selective cleavage of C1�C8
bond with the insertion of alkynes is achieved by using
blocking strategy via Ni catalysis, providing an efficient
method for synthesis of 1,8-disubstituted naphthalenes. Nota-
bly, the blocking group could be readily removed after the
transformation.

Not only can C�C single bond cleavage and functionaliza-
tion streamline the synthetic route to complex compounds,
but also provide unique opportunities to prepare traditionally
inaccessible organic compounds through the tailoring of
molecular skeletons.[1] In this context, pioneering studies of
Murakami, A ssa, Liebeskind, and others have demonstrated
that the ring expansion of four-membered rings such as
cyclobutanones,[2] cyclobutenones,[3] 3-azetidinones[4] and 3-
oxetanones[5] driven by releasing strain is particularly useful
in constructing polycyclic compounds. Recently, structurally
related benzocyclobutenones (BCBs) have shown great
potential in the synthesis of aromatic systems.[6] Dong and
co-workers developed a series of elegant transition-metal-
catalyzed intramolecular reactions of BCBs with 2p compo-
nents to produce various complex benzo-fused rings (Sche-
me 1a).[7] In contrast, the intermolecular reaction of BCBs is
lagged. Recently, several beautiful examples have been
described to tear the hole in the field. In 2015, Martin and
co-workers realized the first Ni-catalyzed intermolecular
reaction of BCBs with 1,3-dienes to afford eight-membered
rings with excellent chemo- and regioselectivities (Sche-
me 1b).[8] In this development, a few examples of the reaction
of BCBs with diphenylacetylene were also reported. Other
representative intermolecular transformations of BCBs

included the Pd-catalyzed intermolecular cross-metathesis
reaction of BCBs with silacyclobutanes,[9] the Ru-catalyzed
cycloaddition of BCBs with diols and ketols,[10] and the cross
coupling of BCBs with indoles.[11] In most cases, the activation
of C(sp2)�C(CO) (C1�C2) bond was observed, which was
distinct from the reaction of cyclobutenones that usually
cleaved the C(sp3)�C(CO) bond via a vinylketene intermedi-
ate.[3] Among the sporadic examples that involved the C1�C8
bond cleavage of BCBs,[10–12] factors that controlled the site
selectivity were not investigated. Undoubtedly, it is highly
valuable to develop novel strategy to realize the functional-
ization of BCBs based on C1�C8 bond activation and to get
more information about the reaction mechanism.

DFT calculations suggested that the Rh-catalyzed selec-
tive C1�C2 bond activation of BCBs was realized through
oxidative addition of the kinetically reactive C1�C8 bond,
decarbonylation of the resulting rhodacycle and re-insertion
of CO, which was driven by the formation of the thermody-
namically more stable C(aryl)-M intermediate IM1 (Sche-
me 1a).[13] It was also found that the substituent at C8 position

Scheme 1. The catalytic reactions of BCBs with 2p components via C�
C bond activation and the bioactive representatives of 1,8-naphthalene-
diol derivatives.
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may increase the C1�C2 selectivity.[14] These results indicated
that, besides thermodynamic reasons, the steric effect may
also play an important role in controlling the regioselectivity.
Following our continuous interests in the selective function-
alizations of inert C�C s-bonds,[15] we envisioned that the
introduction of a substituent at C3 position of BCBs may
block the adjacent C1�C2 bond and enforce the cleavage of
the distal, less hindered C1�C8 bond (Scheme 1c). To prove
our concept, the intermolecular reaction of BCBs bearing a 3-
alkoxy group with alkynes was investigated for the following
reasons: 1) the alkoxy group may be readily removed and
functionalized after the transformation;[16] 2) the reaction
would lead to the formation of 1,8-naphthalenediol deriva-
tives, making the designed chemistry more valuable. As
shown in Scheme 1d, 1,8-naphthalenediol is a key structural
motif found in various natural products,[17] bioactive com-
pounds,[18] ligands,[19] and organic functional materials.[20] The
thermally induced or base-promoted [4+2]-type ring expan-
sions of benzocyclobutenols with the cleavage of C1�C8 bond
has been well developed by Murakami and others.[21] The
methodology described herein represents an alternative
approach with the advantages of pH-neutral conditions,
lower reaction temperature, and high step economy that
avoids the preactivation of carbonyl group to alcohols.

First of all, the reaction of 3-MeO substituted BCB 1a
with diphenylacetylene 2a was tested. As illustrated in
Table 1, the use of NiII complexes as precatalysts either
delivered no product or afforded a mixture of naphthalenes
3a and 3a’, resulting from the C1�C8 and C1�C2 bond
cleavage, respectively (Table 1, entries 2 and 3). The struc-
tures of 3a and 3a’ were unambiguously confirmed by single

crystal X-ray analysis.[22] Pleasantly, the yield of the desired
naphthalene 3a was improved by using Ni(cod)2 as a catalyst
and phosphines as ligands (Table 1, entries 5–10). After
extensive screening of various parameters (see Table S1 in
the supporting information), the optimal conditions were
found to be 5 mol% Ni(cod)2 as the catalyst, 5 mol % (p-
MeOC6H4)3P as the ligand, and toluene as the solvent at 80 8C
for 16 h (Table 1, entry 10). Under these conditions, 3a was
obtained in 94% NMR yield and only 3% of 3a’ was detected
in the crude reaction mixture. Although a few examples of the
C1�C8 bond cleavage of BCBs has been reported by heating
at high temperature through retro-4p cyclization,[23] the [4+2]
cycloaddition of BCBs with unactivated alkynes has not been
realized. Indeed, control experiments showed that no desired
reaction occurred in the absence of nickel catalyst, precluding
the possibility of thermal cycloaddition pathway (Table 1,
entry 1).

With the optimized conditions in hand, the scope of BCBs
was further investigated (Table 2). A variety of protecting
groups on hydroxyl group of BCBs, including alkyl, benzyl,
silyl, and methoxymethyl groups, were well compatible under
current conditions (Table 2, 3 a–3e). BCBs bearing electron-
donating or withdrawing groups on the 4, 5, or 6 positions
smoothly underwent the annulation reaction (Table 2, 3 f–3 i).
It was worth noting that the 6-chloro group was also tolerated
for further orthogonal transformations (Table 2, 3 i). To our
delight, BCB bearing a 3-amino group was also engaged in the
reaction and useful 8-hydroxy-1-naphthylamines 3j was
produced in 78% yield.[22] Unfortunately, BCBs with free
hydroxy or chloro group at the 3-position failed to participate
in the reaction.

Next, we explored the scope of alkynes (Table 3).
Symmetric diaryl alkynes with electron-withdrawing substitu-

Table 1: Selected optimization of BCB 1a with diphenylacetylene 2a.[a]

Entry Ni source Ligand T
[8C]

Yield of 3a[b] Yield of
3a’[b]

1 none PPh3 100 – –
2[c] Ni(acac)2 PPh3 100 – –
3[c] Ni(dppp)Cl2 PPh3 100 10 % 8%
4 Ni(cod)2 none 50 – –
5 Ni(cod)2 PCy3 50 68 % 5%
6 Ni(cod)2 PPh3 50 57 % 2%
7 Ni(cod)2 (p-CF3C6H4)3P 50 40 % 6%
8 Ni(cod)2 (p-

MeOC6H4)3P
50 76 % 5%

9 Ni(cod)2 (p-
MeOC6H4)3P

80 95 % 3%

10[d] Ni(cod)2 (p-
MeOC6H4)3P

80 94 %
(97 %)[e]

3%

[a] Reaction conditions: 1a (0.2 mmol, 1.0 equiv), 2a (1.5 equiv), Ni
catalyst (10 mol%), ligand (10 mol%) at the indicated temperature for
16 h. [b] Determined by 1H NMR spectroscopy using 1,1,2,2-tetra-
chloroethane as the internal standard. [c] 50 mol% Zn was added.
[d] 5 mol% Ni(cod)2 and 5 mol% (p-MeOC6H4)3P were used. [e] Isolated
yield is given in the parenthesis. acac =acetylacetonate; dppp = 1,1-
bis(diphenylphosphino)propane; cod = 1,5-cyclooctadiene.

Table 2: Scope with respect to BCBs.[a,b]

[a] The reaction was run on a 0.2 mmol scale. [b] Isolated yields.
[c] 20 mol% Ni(cod)2 and 20 mol% (p-MeOC6H4)3P were used. TIP-
S = triisopropylsilyl; TBS= tert-butyldimethylsilyl ; MOM= methoxy-
methyl.
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ents, such as acetyl, fluoro, and trifluoromethyl groups, at
ortho, meta, or para positions all smoothly underwent the
annulation reaction (Table 3, 3k–3o). Diheteroaryl and
dialkyl alkynes also successfully delivered the products in
acceptable yields (Table 3, 3p and 3q). To our interest, only
a trace amount of 3r was obtained when 1,2-bis(4-methox-
yphenyl)ethyne was subjected to the standard conditions.
Considering that coordination of Lewis acid with alkynes or
BCBs might increase the reactivity,[7a,c] we then screened
a variety of Lewis acids (see Table S2 in the Supporting
Information) and found that 20 mol % Mg(OTf)2 substan-
tially enhanced the efficiency to afford naphthalene 3r in
excellent yield (Table 3). Similar results were obtained with
other electron-rich diarylalkynes. For example, the reaction of
1,2-bis(4-methylphenyl)acetylene was unsuccessful under the
standard conditions. However, the desired 3 s was obtained in
72% yield by using 20 mol % Mg(OTf)2 as additive (Table 3).

As shown in Table 4, distinct results were obtained with
respect to unsymmetric alkynes. The reaction of 1-aryl

alkynes delivered the corresponding products 3t and 3u[22]

with excellent regioselectivities. In these cases, only naph-
thalenes with the alkyl group next to the hydroxy group were
separated. This regioselectivity was consistent with those
observed in the Ni-catalyzed annulation reaction of cyclo-
butanones,[2i] cyclobutenones,[3g] and 3-azetidinones[4] with
alkynes. The reaction of unsymmetric diaryl alkynes with
acetyl, methoxy, or nitrile groups afforded two inseparable
regioisomers (Table 4, 3v and 3w). In these cases, the
structure of the major isomer was not confirmed. Other
unsymmetric alkynes such as phenylacetylene, 1-phenyl-2-
(trimethylsilyl)acetylene and 1-phenyl-1-hexyne were not
suitable partners that were either unreactive or polymerized
under standard conditions.

Next, the removal of the blocking group was attempted
(Table 5). It was found that the methoxy group could be
conveniently removed by Co(acac)2 and LAH.[16d] Aryl,
heteroaryl, and alkyl-substituted naphthalenes 3 were all
converted to the corresponding demethoxylated products 4 in
good to excellent yields. Notably, other ether group such as
methoxymethoxy group was also removable (Table 5, 4a).
Consequently, this methodology realized a formal switch of
selectivity compared with Martin�s work by using a removable
blocking group.[8]

To understand the origination of the regioselectivity,
BCBs with different substituents at 3-position were studied.
Replacement of 3-methoxy group with aliphatic (Et) or aryl
(Ph) group did not affect regioselectivity (Scheme 2 a),[22]

suggesting that the oxygen-containing group was not neces-
sary in controlling site selectivity. C3-unsubstituted BCB 9
underwent the [4+2] annulation via selective C1�C2 bond
cleavage (Scheme 2b). These results clearly demonstrated
that the C1�C8 selectivity of BCBs resulted from the steric
hindrance by blocking 3-position rather than the coordination
of nickel catalyst with alkoxy and carbonyl groups. Moreover,
the reaction of BCB 11 bearing a methyl group at 8-position
afforded the desired product 12 in a much lower yield
(Scheme 2c). Sterically more demanding BCB 13 bearing two
methyl groups at 8-position failed to participate in the
reaction (Scheme 2d). In contrast, the corresponding C3-
unsubstituted BCB 14, which was investigated in Martin�s
work, smoothly underwent the annulation reaction under our
standard conditions with the same regioselectivity as reported

Table 3: Scope with symmetric alkynes.[a,b]

[a] The reaction was run on a 0.2 mmol scale. [b] Isolated yields.
[c] 10 mol% Ni(cod)2 and 10 mol% (p-MeOC6H4)3P were used. [d] At
120 8C. [e] 20 mol% Ni(cod)2 and 20 mol% (p-MeOC6H4)3P were used.
[f ] 20 mol% Mg(OTf)2 was added.

Table 4: Scope with respect to unsymmetric alkynes.[a,b]

[a] The reaction was run on a 0.2 mmol scale. [b] Isolated yields.
[c] 10 mol% Ni(cod)2 and 10 mol% (p-MeOC6H4)3P were used. [d] Iso-
lated yields of the two inseparable isomers.

Table 5: Removal of the ether groups.[a,b]

[a] The reaction was run on a 0.2 mmol scale. [b] Isolated yields.
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by Martin�s group.[8] The product resulting from C1�C8 bond
cleavage was not observed. These results clearly demon-
strated the steric sensitivity of the reaction.

To get more insights into the mechanism, several stoi-
chiometric reactions were conducted. TLC, and in situ 1H and
13C NMR analysis indicated that BCB 1a quickly (within
20 min) decomposed to some unidentified compounds in the
presence of 1.0 equiv of Ni(cod)2 and 1.0 equiv of (p-
MeOC6H4)3P at room temperature. Further addition of
1.0 equiv of diphenylacetylene to this decomposed mixture
could not deliver any desired product 3a. These data implied
that the reaction may not start from direct oxidative addition
of Ni0 with BCBs. HRMS analysis of the reaction systems
containing 2 a/Ni(cod)2/(p-MeOC6H4)3P and 1a/2 a/Ni(cod)2/
(p-MeOC6H4)3P gave some useful information. In the former
system, a peak at m/z = 767.2222 (ESI) was observed, which
was assigned to the protonated form of the Ni0 species 16
(Figure 1a). Addition of 1.0 equiv of BCB 1a to this system
resulted in the formation of naphthalene 3a, which gave
additional support for the formation of intermediate 16. In
the latter system, two signals at m/z = 759.1781 and 1127.2742
were detected, which were assigned to the five-membered
nickelacycle 17 ([M + Na]+) and the seven-membered nick-
elacycle 18 ([M + K]+) at first, respectively (Figure 1b). The
latter system was also monitored by ReactIR. As shown in
Figures S1 and S2, the peak of 1 a at 1774 cm�1 was gradually
consumed within 2 h. At the same time, a peak at 1918 cm�1

was accumulated, suggesting the formation of a species with
CO bonded to nickel.[24] Consequently, we speculated that the
peak at m/z = 1127.2742 on HRMS spectrum might mainly be
assigned to intermediate 19 rather than the originally
proposed 18. Small amounts of 17 and 18 were also formed
in the reaction system because two signals at 1624 and

1629 cm�1, which were the characteristic n(CO) bands of
acylnickel complexes,[25] were slightly enriched.

Based on these results and previous reports,[26] a tentative
mechanism was proposed in Scheme 3. The reaction initiates
from the coordination of alkynes with Ni0. Oxidative addition
of the resulting species IM2 with BCBs 1 affords the five-
membered complex IM3. In this step, the steric demanding at
3-position favors the activation of the less hindered C1�C8
bond rather than the C1�C2 bond. Subsequent migratory
insertion of alkynes to the C(CO)�Ni bond of IM3 delivers
the seven-membered nickelacycle IM4, which is in equilibri-
um with the more stable six-membered complex IM5.
Complex IM4 then undergoes reductive elimination to deliver
the final product 3 and regenerate Ni0.

Owing to the synthetic importance of 1,8-naphthalene-
diols, the synthetic applications of this methodology were
further explored. First, naphthalene 3a could be prepared in

Scheme 2. Mechanistic studies.

Figure 1. HRMS analysis of the reaction systems. a) diphenylacetylene
2a (0.1 mmol, 1.0 equiv), Ni(cod)2 (1.0 equiv) and (p-MeOC6H4)3P
(1.0 equiv) at r.t. for 3 h. b) BCB 1a (0.1 mmol, 1.0 equiv), diphenylace-
tylene 2a (1.0 equiv), Ni(cod)2 (1.0 equiv) and (p-MeOC6H4)3P
(1.0 equiv) at 50 8C for 2 h.

Scheme 3. The tentative mechanism.
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a gram scale (Scheme 4a). Subsequently, 3a underwent
a variety of transformations, including bromination, methyl-
ation, demethylation, and oxidation to afford many syntheti-
cally useful intermediates (Scheme 4b). The formation of
compound 23 is especially attractive due to the occurrence of
highly oxygenated polycycles in various natural products.[27]

In conclusion, a highly selective C1�C8 bond cleavage of
BCBs with the insertion of alkynes was achieved by using
a blocking strategy via Ni catalysis, which provided a straight-
forward method for the synthesis of structurally important
1,8-disubstituted naphthalenes, including 1,8-naphthalene-
diols. Importantly, the blocking group was conveniently
removed after the transformation. Further studies to extend
potential application in materials science and to prepare other
valuable compounds based on the C1�C8 bond activation are
currently underway in our lab.
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Site-Selective C–C Cleavage of
Benzocyclobutenones Enabled by
a Blocking Strategy Using Nickel Catalysis

A Ni-catalyzed highly selective C1�C8
bond cleavage of BCBs with the insertion
of alkynes was achieved by the assistance
of a removable blocking group. This
method provided an atom- and step-

economical approach to structurally
important 1,8-naphthalenediols under
pH-neutral conditions.
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