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A developing therapy of cystic fibrosis caused by the DF508 mutation in CFTR employs correction of
defective CFTR chloride channel gating by a ‘potentiator’ and of defective CFTR protein folding by a ‘cor-
rector’. Based on SAR data for phenylglycine-type potentiators and bithiazole correctors, we designed a
hybrid molecule incorporating an enzymatic hydrolysable linker to deliver the potentiator (PG01) frag-
ment 2 and the corrector (Corr-4a) fragment 13. The hybrid molecule 14 contained PG01-OH and
Corr-4a–linker–CO2H moieties, linked with an ethylene glycol spacer through an ester bond. The poten-
tiator 2 and corrector 13 fragments (after cleavage) had low micromolar potency for restoration of
DF508-CFTR channel gating and cellular processing, respectively. Cleavage of hybrid molecule 14 by
intestinal enzymes under physiological conditions produced the active potentiator 2 and corrector frag-
ments 13, providing proof-of-concept for small-molecule potentiator–corrector hybrids as a single drug
therapy for CF caused by the DF508 mutation.

� 2009 Elsevier Ltd. All rights reserved.
Introduction: The genetic disease cystic fibrosis (CF) is caused by
mutations in the cystic fibrosis transmembrane conductance regu-
lator (CFTR) gene (CFTR), which encodes a cAMP-regulated chlo-
ride channel.1–3 Mutations in DF508-CFTR lead to distinct defects
in channel gating and cellular processing.1 Cystic fibrosis results
in chronic lung infection, deterioration of lung function, and death.
DF508-CFTR is misfolded, retained at the endoplasmic reticulum
(ER), and rapidly degraded.4 Small-molecule therapy will likely re-
quire compounds that correct the two major underlying problems
in CF: (a) CFTR misfolding and ER retention, and (b) defective chan-
nel gating.5–7 Herein, we report proof-of-principle data toward the
design, synthesis, and component conjugation-site tolerance of a
potentiator–corrector linked hybrid. This cleavable conjugate ap-
proach requires significant SAR data to determine tolerant sites
for individual ligand conjugation and is a key first step in the mul-
tiple ligand approach.8

Previously, we identified several chemical classes of small-mol-
ecules that correct each of these two defects.5–7 One class of acti-
vators, phenylglycines (Fig. 1, PG01), are believed to bind to
DF508-CFTR at the cell surface and increase chloride channel gat-
ing; these activators are referred to as ‘potentiators’. Another class
ll rights reserved.
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.

of activators, bithiazoles (Fig. 1, Corr-4a), are believed to bind to
DF508-CFTR at the endoplasmic reticulum and facilitate its folding
and plasma membrane targeting; these activators are referred to as
‘correctors’. These compounds (phenylglycines and bithiazoles)
were identified from screening a diverse, small-molecule collection
of 150,000 compounds.6,7

Because both a potentiator and corrector are likely required to
treat cystic fibrosis9 caused by the DF508 mutation, cystic fibrosis
is an attractive target for the development of a multi-ligand drug.
This approach to the treatment of complex diseases with single
compounds containing multiple drug ligands is an emerging para-
digm in drug discovery.9 Multi-ligand ‘hybrid’ drugs have advanta-
ges and disadvantages. One advantage is that the synthetic
chemistry development takes place in the less expensive, early
stages of drug development. Another advantage is that the multi-
ligand approach can avoid complex pharmacokinetic/pharmacody-
namic relationships, which require extensive clinical studies to
clarify drug–drug interactions in cocktail/multicomponent drugs.8

Disadvantages with this strategy involve issues in variable poten-
cies of the individual moieties as well as differences in their bio-
availability and in vivo processing.10

Results and discussion: To synthesize a molecule containing
potentiator and corrector fragments, possible linker connection
strategies were considered (Fig. 1). A review of recent work and
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Figure 1. (A) DF508-CFTR corrector Corr-4a and potentiator PG01. (B) Strategy for a potentiator–corrector hybrid molecule.
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SAR data for bithiazole correctors9 suggested that connection of
the linker through the 2-methoxy group may be a suitable position
for installation of the linker to the corrector. Reviewing SAR data
for the phenylglycine potentiators pointed toward incorporation
of a benzyl alcohol functionality on the aniline ring in place of
the 4-isopropyl group.

Chemistry: The synthesis of the hybrid complex began with the
synthesis of the potentiator fragment 2 (Scheme 1). Starting from
commercially available 4-aminobenzyl alcohol and coupling with
N-methyl-Boc-phenylglycine under EDC coupling conditions gave
the Boc protected 2� amine 1. TFA mediated Boc deprotection
and EDC coupling of the resulting 2� amine with 3-indole acetic
acid gave the potentiator fragment 2 in 75% yield together with a
small amount of ester 3 (11%).

The synthesis of the corrector fragment began with the
synthesis of the linker (Scheme 2). Diethylene glycol was reacted
with t-butylbromoacetate to give ethylene glycol t-butyl ester 4.
Mitsunobu coupling11 with 2-nitro-4-chlorophenol gave 5 in excel-
lent yield. Reduction of the nitro group using stannous chloride
followed by treatment with thiophosgene gave isothiocyanate 7.

Subsequent treatment of isothiocyanate 7 with ammonia gas in
DCM afforded the thiourea 8. Commercially available benzoylis-
othiocyanate was reacted with ammonia gas to afford thiourea 9,
OH
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which was reacted with 3-chloro-2,4-pentanedione to yield thia-
zole 10. Bromination of 10 with pyridinium tribromide in HBr gave
a-bromoketone 11 in excellent yield. Thiazole cyclization of thio-
urea 8 and a-bromoketone 11 gave Corr–linker-t-butylester 12,
which was deprotected with TFA affording Corr-4a–CO2H 13. The
hybrid molecule 14 (Scheme 3) was constructed via an EDC cou-
pling reaction of PG01-OH fragment 2 and Corr-4a–CO2H fragment
13 which gave the hybrid in 11% yield.

Activity measurements: The DF508-CFTR potentiator and correc-
tor activities of fragment 2, fragment 13, and hybrid 14, were
measured, and compared with reference compounds PG01 and
Corr-4a. Activities were assayed by established methodology
utilizing FRT epithelial cells stably coexpressing human DF508-
CFTR and the high-sensitivity halide-sensing green fluorescent
protein YFP-H148Q/I152L as described previously.5–7 For measure-
ment of potentiator activity, cells were grown at 27 �C for 24 h to
allow DF508-CFTR trafficking to the cell plasma membrane.
DF508-CFTR channel function was measured from the kinetics of
halide (iodide) influx after incubation with test compound for
10 min in the presence of the cAMP agonist forskolin. For measure-
ment of corrector activity, cells were incubated at 37 �C for 20 h in
the presence of test compound, washed with PBS, and assayed for
iodide influx in the presence of forskolin and the reference
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Scheme 2. Synthesis of Corr–CO2H fragment 13.
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potentiator genistein (50 lM). Measurements were made on a
fluorescence plate reader with an automated syringe pump, incor-
porating appropriate positive and negative controls in all measure-
ments, each of which was made in quadruplicate. The first graph
(Fig. 2) summarizes concentration-activity data (iodide influx
rates) for potentiator PG01, PG01-OH 2, and hybrid 14 in the
potentiator assay. In the second panel of Figure 2, Corr-4a is com-
pared with corrector fragment 13 and potentiator–corrector hybrid
14 in the corrector assay. Both the potentiator (2) and corrector
(13) fragments exhibit strong activity in their corresponding as-
says. This retained activity validates that the structural modifica-
tions necessary to synthesize hybrid 14. The lack of activity of
hybrid 14 is likely due to its low penetration into the cell interior.

LC/MS: An LC method to identify the potentiator, corrector, and
hybrid peaks was developed using a Waters 2695 LC and a Waters
PDA 996 detector coupled to an Alliance mass spectrometer,
ionization mode; electrospray (+), mass range 200–1200 Da, 23-V
cone voltage, column; XTerra MS C18 (Waters, 2.1 mm �
50 mm � 3.5 lm). Reversed-phase HPLC separations were carried
out using a C18 column connected to a solvent delivery system
(model 2690; Waters, Milford, MA). The solvent system consisted
of a linear gradient from 0% CH3CN/100% H2O, to 100% CH3CN/0%
H2O, over 28 min, followed by 4 min at 100% CH3CN/0% H2O, and
3 min at 0% CH3CN/100% H2O to equilibrate the column for the next
run (0.2 ml/min flow rate). The retention times for PG01-OH (2),
Corr-4a–CO2H (13), and hybrid 14 were: 17 min, 20 min, and
23 min, respectively, detected at 256 nm. Mass spectra were used
to confirm compound identity. Mass spectrometer specifications
are as follows: Waters Alliance (HT 2790 + ZQ) mass spectrometer
utilizing positive ion detection mode, scanning from 200 to 1200 Da.

Hydrolysis of the hybrid: The hybrid was first treated with car-
bonic anhydrase, a major enzyme present on the intestinal mucosa,
incubating for 10 min at rt (Fig. 3).12 Methanol was added to the
solution, cooled in an ice bath at 0 �C, and centrifuged at 16,000g
for 10 min. The supernate was analyzed by LC/MS. The hybrid
was completely hydrolyzed to the corresponding potentiator and
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Figure 2. Dose–response data for potentiator assay of compounds PG01, 2, and 14
(top panel SEM; n = 4) and for corrector assay of compounds 13, Corr-4a, and 14
(bottom panel, SEM; n = 4).
corrector fragments as identified by LC/MS (Fig. 3A). Hydrolysis
of the hybrid 14 was performed in parallel by incubation with
the intestinal contents from mice at 37 �C (90% humidity, 5%
CO2) for 4 h. Methanol was added to the solution, cooled to 0 �C,
and centrifuged at 16,000g for 10 min. The supernate was analyzed
by LC/MS. The hybrid was completely hydrolyzed to the corre-
sponding potentiator and corrector fragments identified by LC/
MS (Fig. 3B). Peaks were correlated to spectra of purified com-
pounds run under identical conditions. Disappearance of the hy-
brid 14 peak (retention time, 23 min) in both HPLC experiments
(A and B) and the appearance of the two corresponding active frag-
ments PG-OH 2 (retention time, 17 min), Corr–CO2H 13 (retention
time, 20 min) illustrate that the hybrid is being hydrolyzed to the
active fragments.

Conclusion: This work provides proof-of-concept for the design,
synthesis, and component conjugation-site tolerance of an ester-
linked DF508-CFTR potentiator–corrector hybrid molecule. Fur-
ther, this study provides insight into the structural requirements/
tolerances of a multiple ligand approach for CF treatment. The
resultant potentiator and corrector fragments following hydrolysis,
as would occur in the gastrointestinal tract, were active in the cor-
rection of defective DF508-CFTR cellular processing and chloride
channel gating, respectively. Thus, a single compound can be engi-
neered to confer the distinct activities required to restore chloride
channel function in cystic fibrosis caused by the DF508 mutation.
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