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ABSTRACT  

Insertion reactions of diazo carbonyls to azlactones in basic conditions have been 

performed. The developed method allows the preparation of a wide range of oxazole 

derivatives in yields ranging from 74 to 98%. Different substituents on both azlactone 

rings and diazo carbonyls do not compromise the methodology, even those containing 

stereogenic centers. Isotopic labelling experiments revealed the mechanism may 

proceed through a rare diazo carbonyl activation by an ammonium salt derivative. 

Keywords: diazo carbonyls; insertion reactions; azlactones; tertiary amines. 

 

Since the synthesis of the first diazo compound by Theodor Curtius in 1883
1
, the 

chemistry involving substances containing a diazo group has been investigated and 

explored extensively
2–7

. They are a remarkable class of compounds due to the range of 

different transformations they can perform. Moreover, they are a powerful tool in bond-

forming reactions
8–10

. Typically, the reactivity of diazo compounds is associated with metal 

catalysis
11–14

 and, among others, great advances in insertion reactions have been reported 

with rhodium and copper complexes catalysts
15–20

. 
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Recently, some studies brought new approaches in insertion reactions of diazo carbonyl 

compounds in the absence of metal catalysts. To this end, different types of hydrogen 

bonding donor derivatives were explored to the diazo compound protonation step
21,22

, 

including the use of strong Brønsted acid catalysts
23

.  

In the present study, an innovative metal-free methodology for insertion reaction in 

basic conditions is described. In addition, the use of azlactones
24-26 

 lead us to oxazole 

derivatives, which can present biological activity. It is important to mention that this 

heterocycle moiety has been observed in different classes of pharmaceutical agents
27–29

 

(Figure 1). 
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Figure 1. Selective examples of diazo carbonyls insertion reactions. 

 

The studies began using CSA as a Brønsted acid catalyst in diazo insertion reactions. 

However, this catalyst afforded traces of the desired product. Phenol has also been tried, but 

failed. Notably, the use of triethylamine (1 equiv) in toluene, at room temperature, 24 h 

reaction, led to the desired product in good yield (Table 1, entry 2). Nevertheless, to achieve 

higher yields, several attempts varying the tertiary amine, solvents, reaction time, 

temperature, concentration were carried out (Table 1). Further improvement was observed 

when the reaction was carried out using 1 equiv of DIPEA in fluorobenzene (Table 1, entry 

11). Longer reaction time gives lower yield (Table 1, entry 12). Perhaps, after 24 h, the 

product is unstable in the crude reaction mixture or becomes a little bit more soluble. It is 

important to mention, the product is filtered off from the crude reaction mixture. 

Concentration at 0.3 mol L
-1 

gave the best yield (Table 1, entry 18). Note that the reaction 

does not occur in the absence of the base. 
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Table 1. Optimization of the insertion reaction conditions
a
.
 

N

O
O

Ph

O

N2

O

N

OPh
Ph

O

Additive
+

 

Entry additive (equiv) Solvent conc (mol L
-1

) temp (◦C) time (hour) yield (%) 

1 CSA (10 mol%) Toluene 0.2 r.t. 24 Traces 

2 TEA (1.0) Toluene 0.2 r.t. 24 79 

3 DABCO (1.0) Toluene 0.2 r.t. 24 48 

4 - Toluene 0.2 r.t. 24 - 

5 DMOA (1.0) Toluene 0.2 r.t. 24 71 

6 DMAP (1.0) Toluene 0.2 r.t. 24 66 

7 Pyridine (1.0) Toluene 0.2 r.t. 24 17 

8 DIPEA (1.0) Toluene 0.2 r.t. 24 82 

9 DIPEA (1.0) Benzene 0.2 r.t. 24 53 

10 DIPEA (1.0) Nitromethane 0.2 r.t. 24 37 

11 DIPEA (1.0) Fluorobenzene 0.2 r.t. 24 87 

12 DIPEA (1.0) Fluorobenzene 0.2 r.t. 48 73 

13 DIPEA (1.0) Fluorobenzene 0.2 r.t. 8 49 

14 DIPEA (1.0) Fluorobenzene 0.2 0 8 73 

15 DIPEA (1.0) Fluorobenzene 0.2 0 24 77 

16 DIPEA (0.5) Fluorobenzene 0.2 r.t. 24 69 

17 DIPEA (0.75) Fluorobenzene 0.2 r.t. 24 71 

18 DIPEA (1.0) Fluorobenzene 0.3 r.t. 24 97 

19 DIPEA (1.0) Fluorobenzene 0.4 r.t. 24 87 

a Reactions were carried out using 1 equiv. of azlactone and 1.1 equiv. of diazo carbonyl 

derivative. 

 

In order to study the substrate scope of the methodology, a series of functionalized 

azlactones were tested (Table 2). The reaction was found to tolerate different azlactones, for 

example, the sterically bulky azlactones 1b and 1d provided the desired products 3b and 3d 

in 95% and 84% yield. Besides, substitution on the aromatic ring does not adversely 

influence the reaction outcome, e.g., products 3g and 3h. Unfortunately, the use of alkyl 

group at C2-position on azlactone ring gave no product. Instead, basically azlactone 

decomposition was observed.  
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Table 2. Scope of insertion reactions of azlactones
a
. 

 

 

a Reactions were carried out using a 0.3 mol L−1 solution of 1a−i in fluorobenzene, 1.1 equiv of 2 and 1 

equiv of DIPEA. 
b
 Concentration of 0.2 mol L

−1
. 

 

The power of this method could be also demonstrated concerning different diazo 

compounds (Table 3). Electron-withdrawing functionalities on the aromatic rings in both 

the para and ortho positions gave the corresponding products 3n, 3o and 3p in high yields. 

Electron-donating group well tolerated the reaction conditions, affording products 3l and 

3m with 87% and 76% yield, respectively. Diazo carbonyls bearing both aliphatic and 

unsaturated groups were used to obtain the corresponding products in high yields. Although 

the isolated yield was low, the current method was also applied to a secondary diazo 

compound, leading to the corresponding product 3t with 21% yield.  

It is important to mention that carbamate derivatives 3r and 3s were obtained in good 

yields. Moreover, these compounds were submitted for enantiopurity determination, where 

chiral HPLC analyses revealed the methodology preserved the chirality (see Supporting 

Information). No racemization was observed up to 8 h of reaction. 
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Table 3. Scope of insertion reactions in the presence of diazo carbonyls
a
. 

 

 

a Reactions were carried out using a 0.3 mol L−1 solution of 1a−i in fluorobenzene, 1.1 equiv of 2 and 1 equiv 

of DIPEA. 
b
 Reaction time was 8 h. [Caution: after this period, significant racemization process]. 

c 
Measured 

by HPLC with enantiodiscriminating stationary phase. 
d 

Reaction in toluene at 90 °C. 

 

A plausible mechanism is also proposed. The presence of an acidic hydrogen (pKa ≈ 9) 

in azlactone ring suggests that DIPEA initially deprotonates it, leading to its conjugated 

acid and the enolate form of the azlactone
30

 (Scheme 1, Chart A). Next, the forming 

Brønsted acid (ammonium salt of DIPEA) protonates the diazo carbonyl derivative to give a 

diazonium ion. Finally, nucleophilic displacement by the enolate leads to the product and 

releases molecular nitrogen. To confirm if the ammonium salt of DIPEA could, in fact, 

protonate the diazo carbonyl compound and activate it, deuterium studies were carried-out. 

First, an ammonium salt of DIPEA, prepared by the reaction between DIPEA and DCl, was 

stirred in the presence of diazo compound 2a in fluorobenzene. The analysis of the product 

revealed a 35% incorporation of deuterium on diazo 2a (Scheme 1, Chart B). This indicates 

that, even being a weak Brønsted acid, the ammonium salt of DIPEA can in fact protonate 

the diazo compound. It is worth-mentioning that stirring the deuterated azlactone of 1a 

(60% deuterium) with diazo 2a did not furnished any of the desired product 3a nor 

deuterated 2a, showing that the presence of the base DIPEA is crucial for the reaction to 

proceed. Finally, performing the reaction with the same best condition depicted in Table 1 
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(entry 18), using deuterated 1a (60% deuterium), led to the product 3a with 5% of 

deuterium incorporation (of a maximum of 30%) (Scheme 1, Chart C). 

Scheme 1. Mechanistical investigations 

 

 

In summary, an insertion reaction of diazo carbonyls to widely available azlactones has 

been described. The metal-free methodology was optimized and led to oxazole derivatives 

in good to excellent yields. It is worth highlighting the great substrate scope, even diazo 

carbonyls bearing stereogenic centers could be used (99% e.e. preserved). To the best of our 

knowledge, for the first time, the use of basic conditions in an insertion reaction involving 

diazo compounds and azlactones was demonstrated. Finally, isotopic labelling experiments 

suggested a mechanism trough a rare DIPEA’s conjugated acid as responsible for the diazo 

carbonyl protonation step, following by nucleophilic displacement. 
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EXPERIMENTAL SECTION 

 

1. General Information. Unless otherwise noted, all reagents were obtained 

commercially and used without further purification. Unless otherwise noted, all reaction 

mixtures were carried out in a flame-dried vial under a positive pressure of dry nitrogen. 

Analytical thin-layer chromatography (TLC) was performed on precoated glass-backed 

TLC plates (silica gel 60 F254) and visualized by a UV lamp (254 nm). Yields refer to 

chromatographically purified and spectroscopically pure compounds, unless stated 

otherwise. 
1
H and 

13
C spectra were recorded on a 300 MHz, 400 MHz and 500 MHz 

spectrometer. Chemical shifts are reported in ppm. 
1
H NMR spectra are referenced to 

CDCl3 (7.26 ppm), and 
13

C NMR spectra are referenced to CDCl3 (77.0 ppm). All 
13

C 

spectra were measured with complete proton decoupling. Peak multiplicities are 

designated by the following abbreviations: s, singlet; d, doublet; dd, doublet of doublets; 

ddd, doublet of doublet of doublets; dq, doublet of quartets; ddt, doublet of doublet of 

triplets; q, quartet; t, triplet; sex, sextet; sept, septet; m, multiplet; br, broad; and J, 

coupling constants in hertz. High resolution mass spectra were acquired in the positive-

ion mode using a mass spectrometer equipped with an electrospray ionization source 

HRMS (ESI-QTOF). Chiral HPLC analysis was carried out using instrument fitted with a 

plate autosampler and a Chiralpak IA column.  

2. General Procedure and Characterization Data for azlactones. Azlactones 1a-j 

were prepared according to the literature method
31,32

. To a suspension of N-benzoyl 

amino acid (1 equiv) in dry CH2Cl2 (0.1 mol L
-1

) under N2 at 0 °C was added EDC.HCl 

(1.3 equiv). The crude was stirred for 1 h. The reaction mixture was diluted with an equal 

volume of CH2Cl2, and washed successively with cold water (6x, 5 mL), then dried over 

anhydrous Na2SO4 and concentrated under reduced pressure. In all cases, corresponding 

products were obtained in a pure form and use without further purification. 

4-methyl-2-phenyloxazol-5(4H)-one. The product 1a was obtained as a white solid (226.2 

mg, 82%). 
1
H NMR (500 MHz, CDCl3) δ 7.99 (d, J = 7.4 Hz, 2H), 7.58 (t, J = 7.4 Hz, 

1H), 7.49 (t, J = 7.6 Hz, 2H), 4.45 (q, J = 7.6 Hz, 1H), 1.59 (d, J = 7.6 Hz, 3H). 
13

C{1H} 

NMR (125 MHz, CDCl3) δ 179.0, 161.5, 132.7, 128.7, 127.8, 125.8, 61.0, 16.8. 

 

4-isobutyl-2-phenyloxazol-5(4H)-one. The product 1b was obtained as a white solid (82.1 

mg, 90%). 
1
H NMR (300 MHz, CDCl3) δ 8.00 (d, J = 7.5 Hz, 2H), 7.60 – 7.46 (m, 3H), 

4.42 (dd, J = 9.0, 5.7 Hz, 1H), 2.13 – 2.02 (m, 1H), 1.89 – 1.80 (m, 1H), 1.73 - 1.64 (m, 

1H), 1.05 – 1.03 (m, 6H). 
13

C{1H} NMR (75 MHz, CDCl3) δ 179.1, 161.7, 133.0, 129.0, 

128.8, 128.2, 127.3, 126.2, 64.1, 41.0, 25.4, 23.0, 22.3. 

 

4-isopropyl-2-phenyloxazol-5(4H)-one. The product 1c was obtained as a white solid 

(86.3 mg, 85%). 
1
H NMR (500 MHz, CDCl3) δ 8.01-7.99 (m, 2H), 7.56 (dt, 1H, J = 

6.7 Hz, J = 1.2 Hz), 7.48-7.45 (m, 2H), 4.27 (d, 1H, J = 4.6 Hz), 2.37 (sept, 1H, J = 6.9 

Hz, J = 4.6 Hz), 1.14 (d, 3H, J = 6.9 Hz), 1.01 (d, 3H, J = 6.9 Hz). 
13

C{1H} NMR (125 

MHz, CDCl3) δ 177.9, 161.7, 132.7, 128.8, 128.0, 126.0, 70.8, 31.3, 18.8, 17.6. 

 

4-(sec-butyl)-2-phenyloxazol-5(4H)-one. The product 1d was obtained as a yellow oil 

(186.0 mg, 84%). 
1
H NMR (500 MHz, CDCl3) δ (appeared as a mixture of diastereomers) 
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8.02 - 7.99 (m, 2H), 7.58 – 7.55 (m, 1H), 7.50 – 7.46 (m, 2H), 4.39 (d, J = 4.5 Hz, 1H), 

2.17 – 2.12 (m, 1H), 1.73 - 1.53 (m, 1H), 1.49 - 1.36 (m, 1H), 1.07 – 0.90 (m, 6H). 
13

C{1H} NMR (125 MHz, CDCl3) δ (appeared as a mixture of diastereomers) 178.7, 

177.9, 161.8, 161.7, 132.8, 130.7, 129.0, 128.9, 128.0, 126.1, 69.9, 69.3, 37.9, 26.4, 25.1, 

15.6, 14.6, 11.9, 11.8. 

 

4-benzyl-2-phenyloxazol-5(4H)-one. The product 1e was obtained as a white solid (89.4 

mg, 89%). 
1
H NMR (300 MHz, CDCl3) δ 7.89 (d, J = 4.0 Hz, 2H), 7.55 – 7.50 (m, 1H), 

7.49 – 7.40 (m, 2H), 7.28 – 7.19 (m, 5H), 4.67 (dd, J = 6.6, 5.0 Hz, 1H), 3.36 (dd, J = 

14.0, 4.8, 1H), 3.17 (dd, J = 14.0, 6.6 Hz, 1H). 
13

C{1H} NMR (75 MHz, CDCl3) δ 177.7, 

161.9, 135.5, 132.6, 129.7, 128.9, 128.6, 128.0, 127.3, 126.0, 66.7, 37.5. 

 

4-allyl-2-phenyloxazol-5(4H)-one. The product 1f was obtained as a yellow oil (67.3 mg, 

93%). 
1
H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 7.1 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H) 

7.51 (t, J = 7.7 Hz, 2H), 5.82 (ddt, J = 17.4, 10.2, 6.9 Hz, 1H), 5.27 (dq, J = 17.1, 1.4 Hz, 

1H), 5.19 (dd,  J = 10.2, 1.4 Hz, 1H), 4.52 (dd, J = 7.5, 5.5 Hz, 1H), 2.84 (ddd, J = 14.1, 

6.7, 5.5 Hz, 1H), 2.67 (ddd, J = 14.2, 7.5, 6.5 Hz, 1H). 
13

C{1H} NMR (125 MHz, CDCl3) 

δ 177.7, 161.9, 132.8, 132.6, 131.4, 128.8, 128.0, 119.8, 65.4, 35.4. 

 

4-methyl-2-(p-tolyl)oxazol-5(4H)-one. The product 1g was obtained as a white solid (74.0 

mg, 98%). 
1
H NMR (500 MHz, CDCl3) δ 7.90 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.0 Hz, 

2H),  4.46 (q, J = 7.5 Hz, 1H), 2.45 (s, 3H), 1.61 (d, J = 7.6 Hz, 3H). 
13

C{1H} NMR (125 

MHz, CDCl3) δ 179.1, 161.6, 143.5, 129.6, 127.9, 123.1, 61.0, 21.7, 17.0. 

 

2-(4-bromophenyl)-4-methyloxazol-5(4H)-one. The product 1h was obtained as a white 

solid (70.9 mg, 93%). 
1
H NMR (500 MHz, CDCl3) δ 7.86 (d, J = 8.5 Hz, 2H), 7.64 (d, J 

= 8.5 Hz, 2H),  4.44 (q, J = 7.6 Hz, 1H), 1.59 (d, J = 7.6 Hz, 3H). 
13

C{1H} NMR (125 

MHz, CDCl3) δ 178.6, 160.9, 132.2, 129.3, 127.7, 124.8, 61.2, 16.8. 

 

4-(2-(methylthio)ethyl)-2-phenyloxazol-5(4H)-one. The product 1f was obtained as a 

colorless oil (77.2 mg, 82%). 
1
H NMR (500 MHz, CDCl3) δ 7.99 (d, J = 7.5 Hz, 2H), 

7.57 (t, J = 7.4 Hz, 1H) 7.48 (t, J = 7.6 Hz, 2H), 4.60 (t, J = 6.5 Hz, 1H), 2.73 (t, J = 7.1 

Hz, 2H), 2.34 – 2.27 (m, 1H), 2.18 – 2.09 (m, 4H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 

178.6, 160.9, 132.2, 129.3, 127.7, 124.8, 61.2, 16.8. 

 

3. General Procedure and Characterization Data for α-diazoketones. α-diazoketones 

were prepared according to the literature method
33-42

. The corresponding acyl halides (8 

mmol, 1 equiv) were added dropwise to ethereal solution of diazomethane (0.4 M, 20 

mmol, 2.5 equiv, 50 mL) at 0 °C and the crude reaction mixture was warmed to room 

temperature and stirred for 2 h. After that, the solvent was removed under vacuum and 

the residue purified by flash column chromatography (hexane/EtOAC 9:1) to afford 

diazoketones 2a-h. Diazoketones 2j and 2k were prepared via mixed anhydrides. To that, 

N-Cbz phenylalanine (10 mmol, 3.2 g) in dry Et2O (22 mL) and THF (22 mL) was stirred 

at -20 °C under argon atmosphere. Then, triethylamine (10 mmol, 1 equiv, 1.4 mL) was 

added followed by isobutyl chloroformate (10 mmol, 1 equiv, 1.3 mL). The solution was 

stirred for 30 min and subsequently warmed to -10 °C. Then, an ethereal solution of 
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diazomethane (0.4 M, 23 mmol, 2.3 equiv, 58 mL) was added via syringe pump for 30 

min and the reactional mixture was stirred for 3 h while it was warmed to room 

temperature. The solvent was removed under reduced pressure and the crude product was 

diluted with Et2O (25 mL) and washed with H2O (25 mL), saturated aqueous NaHCO3 

(25 ml), and brine (25 ml). The organic phase was dried with Na2SO4 and the volatiles 

were removed under reduced pressure. The crude product was purified by flash column 

chromatography (EtOAc–hexane 2:8–1:1).  

2-diazo-1-phenylethan-1-one. The product 2a was obtained as a yellow solid (1.0 g, 

90%). 
1
H NMR (500 MHz, CDCl3) δ 7.79 – 7.73 (m, 2H), 7.58 – 7.51 (m, 1H), 7.45 (m, 

2H), 5.91 (s, 1H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 186.3, 136.7, 132.7, 128.7, 126.7, 

126.7, 54.2. 

1-diazopentan-2-one. The product 2b was obtained as a yellow oil (0.69 g, 77%). 
1
H 

NMR (400 MHz, Benzene-d6) δ 4.41 (s, 1H), 1.85 (t, J = 7.3 Hz, 2H), 1.53 – 1.41 (m, 

2H), 0.75 (t, J = 7.4 Hz, 3H). 
13

C{
1
H} NMR (126 MHz, Benzene-d6) δ 193.3, 52.8, 42.7, 

18.6, 13.8.  

1-diazo-3,3-dimethylbutan-2-one. The product 2c was obtained as a yellow oil (0.87 g, 

86%). 
1
H NMR (500 MHz, CDCl3) δ 5.45 (s, 1H), 1.15 (s, 9H). 

13
C{

1
H} NMR (101 

MHz, CDCl3) δ 201.3, 42.6, 27.1. 

1-diazo-4-(3-methoxyphenyl)butan-2-one. The product 2d was obtained as a yellow oil 

(1.4 g, 85%). 
1
H NMR (500 MHz, CDCl3) δ 7.21 – 7.16 (m, 1H), 6.80 – 6.70 (m, 3H), 

5.22 (s, 1H), 3.76 (s, 3H), 2.94 – 2.87 (m, 2H), 2.67-2.53 (m, 2H). 
13

C{
1
H} NMR (125 

MHz, CDCl3) δ 193.9, 159.7, 142.2, 129.5, 120.6, 114.1, 111.5, 55.1, 54.6, 42.2, 30.9. 

2-diazo-1-(4-methoxyphenyl)ethenone. The product 2e was obtained as a yellow solid 

(0.82 g, 58%). 
1
H NMR (500 MHz, CDCl3) δ 7.77 – 7.71 (m, 2H), 6.95 – 6.90 (m, 2H), 

5.85 (s, 1H), 3.86 (s, 3H). 
13

C{1H} NMR (101 MHz, CDCl3) δ 185.2, 163.2, 132.2, 

129.5, 128.7, 113.8, 55.4, 53.4. 

1-(4-chlorophenyl)-2-diazoethanone. The product 2f was obtained as a yellow solid (1.1 

g, 75%). 
1
H NMR (400 MHz, CDCl3) δ 7.73 – 7.67 (m, 2H), 7.45 – 7.39 (m, 2H), 5.87 (s, 

1H). 
13

C{1H} NMR (101 MHz, CDCl3) δ 184.9, 139.0, 135.0, 129.0, 128.1, 54.4. 

2-diazo-1-(4-nitrophenyl)ethanone. The product 2g was obtained as a yellow solid (1.0 g, 

68%). 
1
H NMR (500 MHz, CDCl3) δ 8.33 – 8.28 (m, 2H), 7.95 – 7.91 (m, 2H), 5.99 (s, 

1H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 184.0, 150.2, 141.4, 127.8, 123.9, 55.7. 

1-(2-chlorophenyl)-2-diazoethanone. The product 2h was obtained as a yellow solid (1.4 

g, 95%). 
1
H NMR (400 MHz, CDCl3) δ 7.60-7.48 (m, 1H), 7.44 – 7.30 (m, 3H), 5.81 (s, 

1H). 
13

C{1H} NMR (101 MHz, CDCl3) δ 186.6, 137.4, 131.8, 131.1, 130.5, 129.3, 127.0, 

57.8. 

Benzyl (S)-(4-diazo-3-oxo-1-phenylbutan-2-yl)carbamate. The product 2j was obtained as 

a pale yellow solid (1.8 g, 68%). 
1
H NMR (500 MHz, CDCl3) δ 7.40 – 7.09 (m, 10H), 

5.39 (br s, 1H), 5.20 (s, 1H), 5.08 (s, 2H), 4.55 – 4.41 (m, 1H), 3.04 (d, J = 6.8 Hz, 2H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 192.7, 155.7, 136.2, 136.0, 129.3, 128.7, 128.5, 

128.2, 128.1, 127.1, 67.0, 58.9, 54.6, 38.5. 
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Benzyl (R)-(4-diazo-3-oxo-1-phenylbutan-2-yl)carbamate. The product 2k was obtained 

as a pale yellow solid (1.6 g, 63%). 
1
H NMR (500 MHz, CDCl3) δ 7.42 – 7.05 (m, 10H), 

5.48 – 5.38 (m, 1H), 5.21 (s, 1H), 5.07 (s, 2H), 4.54 – 4.42 (m, 1H), 3.03 (d, J = 6.7 Hz, 

2H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 192.7, 155.7, 136.1, 136.0, 129.3, 128.7, 128.5, 

128.2, 128.0, 127.1, 67.0, 58.9, 54.6, 38.5. 

4. General Procedure and Characterization Data for (E)-1-diazo-4-phenylbut-3-en-

2-one. (E)-1-diazo-4-phenylbut-3-en-2-one was prepared according to the literature 

method
43

. To a solution of diethyl 3-diazo-2-oxopropylphosphonate (400 mg, 1.81 mmol, 

1 equiv.) and benzaldehyde (185 µL, 1.81 mmol, 1 equiv.) in EtOH (5 mL) at room 

temperature was added 3.6 mL of 0.5 mol L
-1

 of NaOH solution (water:EtOH, 1:1) via 

syringe pump during a period of 1 h. The mixture was stirred for further 30 min and then 

the reaction was quenched by the addition of saturated NaCl (20 mL). The mixture was 

extracted with CH2Cl2 (3 x 20 mL) and dried over MgSO4. The crude product was 

purified by flash column chromatography (EtOAc/hexane 1:9) to afford unsaturated 

diazoketone 2i (233.7 mg, 75%) as yellow solid. 
1
H NMR (500 MHz, CDCl3) δ 7.59 (d, J 

= 15.8 Hz, 1H), 7.55-7.51 (m, 2H), 7.39-7.37 (m, 3H), 6.60 (d, J = 15.8 Hz, 1H), 5.45 (s, 

1H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 184.3, 140.7, 134.4, 130.3,128.9, 128.2, 123.7, 

56.2. 

5. General Procedure and Characterization Data for Preparation of methyl 2-diazo-

2-phenylacetate. Methyl 2-diazo-2-phenylacetate was prepared according to the 

literature method
44

. To a solution of methyl 2-phenylacetate (1.50 g, 10 mmol, 1 equiv.) 

and 4-acetamidobenzenesulfonyl azide (p-ABSA) (2.88 g, 12 mmol, 1.2 equiv.) in 

anhydrous CH3CN (30 mL) 2.10 mL of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (14 

mmol, 1.4 equiv.) was added. The reaction mixture was stirred at room temperature for 

16 h. After this time, the reaction mixture was diluted with distilled water (20 mL) 

followed by extraction with diethyl ether (3 × 10 mL). The organic phase was washed 

with 10% NH4Cl solution (3 x 10 mL) and brine (3 x 10 mL), the combined organic 

extracts were dried over MgSO4 and concentrated under reduced pressure. The residue 

was purified by flash column chromatography to afford 2l (1.4 g, 81%) as an orange oil. 
1
H NMR (500 MHz, CDCl3) δ 7.51 – 7.45 (m, 2H), 7.42 – 7.35 (m, 2H), 7.22 – 7.15 (m, 

1H), 3.87 (s, 3H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 165.6, 129.0, 125.8, 125.5, 124.0, 

52.0. 

6. General Procedure and Characterization Data for the insertion products. To a 

solution of azlactone (0.1 mmol) and diazo compound (0.11 mmol, 1.1 equiv) in 

fluorobenzene (0.33 mL, 0.3 mol L
−1

 ) was added the DIPEA (0.1 mmol, 1 equiv) at 

room temperature for 24 h. After reaction completion, the precipitate formed was filtered 

off under reduced pressure.  

2-((4-methyl-2-phenyloxazol-5-yl)oxy)-1-phenylethan-1-one. The product 3a was 

obtained as a white solid (28.6 mg, 97%), m.p. 96.8-98.7 °C .IR (ZnSe, cm
-1

): 3419, 

3357, 3242, 2996, 2949, 1686, 1521, 1442, 1349, 1229, 838, 726, 688. 
1
H NMR (500 

MHz, CDCl3) δ 8.06 (d, J = 6.8 Hz, 2H), 8.00 (d, J = 7.2 Hz, 2H), 7.66 (t, J = 7.5 Hz, 

1H), 7.54 (t, J = 7.7 Hz, 2H), 7.43 – 7.36 (m, 3H), 5.60 (s, 2H), 2.45 (s, 3H). 
13

C{1H} 

NMR (125 MHz, CDCl3) δ 190.6, 161.1, 154.6, 134.4, 134.1, 130.9, 129.1, 129.1, 128.5, 

128.2, 126.2, 54.5, 12.0. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd for C18H15NO3Na 

316.0944, found 316.0926. 
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2-((4-isobutyl-2-phenyloxazol-5-yl)oxy)-1-phenylethan-1-one. The product 3b was 

obtained as a white solid (31.8 mg, 95%), m.p. 71.2-72.6 °C. IR (ZnSe, cm
-1

): 3060, 

2960, 2929, 2873, 1693, 1596, 1481, 1445, 1349, 1226, 984, 751, 718, 689, 844.
 1

H NMR 

(500 MHz, CDCl3) δ 8.08 (d, J = 7.0 Hz, 2H), 8.02 (d, J = 7.9 Hz, 2H), 7.67 (t, J = 7.4 

Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.44 – 7.36 (m, 3H), 5.61 (s, 2H), 2.57 (d, J = 7.3 Hz, 

2H), 2.29 – 2.20 (m, 1H), 1.01 (d, J = 6.6 Hz, 6H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 

190.8, 161.3, 157.6, 134.4, 134.2, 131.1, 129.1, 129.0, 128.4, 128.2, 126.4, 54.3, 34.9, 

27.9, 22.4. HRMS (ESI-QTOF) m/z: [M + Na]
 +

 calcd for C21H21NO3Na 358.1419, found 

358.1415. 

 

2-((4-isopropyl-2-phenyloxazol-5-yl)oxy)-1-phenylethan-1-one. The product 3c was 

obtained as a white solid (30.8 mg, 96%), m.p. 145.6-148.2 °C. IR (ZnSe, cm
-1

): 3063, 

2972, 2936, 2863, 1688, 1596, 1496, 1453, 1348, 1223, 838, 748, 680.
 1

H NMR (500 

MHz, CDCl3) δ 8.08 (d, J = 6.9 Hz, 2H), 8.02 (d, J = 8.0 Hz, 2H), 7.66 (t, J = 7.5 Hz, 

1H), 7.54 (t, J = 7.9 Hz, 2H), 7.44 – 7.33 (m, 3H), 5.62 (s, 2H), 2.90 (sept, J = 6.8 Hz, 

1H), 1.39 (d, J = 6.9 Hz, 6H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 191.0, 162.8, 161.3, 

134.3, 134.2, 131.3, 129.1, 128.9, 128.4, 128.1, 126.4, 54.2, 26.0, 21.4. HRMS (ESI-

QTOF) m/z: [M + Na]
 +

 calcd for C20H19NO3Na 344.1257, found 344.1247. 

 

2-((4-(sec-butyl)-2-phenyloxazol-5-yl)oxy)-1-phenylethan-1-one. The product 3d was 

obtained as a white solid (28.2 mg, 84%), m.p. 88.8-91.9 °C. IR (ZnSe, cm
-1

): 3063, 

2962, 2924, 2870, 1690, 1595, 1479, 1448, 1346, 1222, 986, 746, 684.
  1

H NMR (500 

MHz, CDCl3) δ 8.08 (d, J = 7.2 Hz, 2H), 8.02 (d, J = 7.6 Hz, 2H), 7.66 (t, J = 7.2 Hz, 

1H), 7.54 (t, J = 7.5 Hz, 2H), 7.42 – 7.36 (m, 3H), 5.67 (d, J = 17.8 Hz, 1H), 5.58 (d, J = 

17.8 Hz, 1H), 2.70 – 2.60 (sex, J = 6.9 Hz,1H), 1.96 – 1.87 (m, 1H), 1.75 – 1.67 (m, 1H), 

1.37 (d, J = 6.8 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 

191.0, 162.2, 161.4, 134.3, 134.3, 131.3, 129.1, 128.9, 128.4, 128.2, 126.2, 54.2, 33.1, 

28.9, 19.3, 12.0. HRMS (ESI-QTOF) m/z: [M + Na]
 +

 calcd for C21H21NO3Na 358.1419, 

found 358.1406. 

 

2-((4-benzyl-2-phenyloxazol-5-yl)oxy)-1-phenylethan-1-one. The product 3e was obtained 

as a white solid (33.5 mg, 91%) using the general procedure with concentration of 0.2 

mol L
−1

 of azlactone in fluorobenzene, m.p. 159.7-161.2 °C. IR (ZnSe, cm
-1

): 3080, 3059, 

3026, 2977, 2936, 1692, 1596, 1479, 1438, 1348, 1226, 841, 761, 716, 691. 
1
H NMR 

(500 MHz, CDCl3) δ 8.11 (d, J = 7.0 Hz, 2H), 7.86 (d, J = 7.9 Hz, 2H), 7.64 (t, J = 7.3 

Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.46 – 7.36 (m, 3H), 7.30 – 7.16 (m, 5H), 5.37 (s, 2H), 

4.22 (s, 2H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 190.7, 161.2, 156.2, 135.0, 134.3, 

134.1, 130.9, 129.1, 129.0, 128.9, 128.6, 128.5, 128.0, 127.2, 126.3, 54.8, 32.7. HRMS 

(ESI-QTOF) m/z: [M + Na]
 +

 calcd for C24H19NO3Na 392.1257, found 392.1261. 

 

2-((4-allyl-2-phenyloxazol-5-yl)oxy)-1-phenylethan-1-one. The product 3f was obtained 

as a light orange solid (27.3 mg, 86%), m.p. 126.7-128.0 °C. IR (ZnSe, cm
-1

): 3067, 

2982, 2922, 1696, 1592, 1475, 1446, 1345, 1221, 922, 724, 684.
 1

H NMR (500 MHz, 

CDCl3) δ 8.08 (d, J = 7.2 Hz, 2H), 7.99 (d, J = 7.5 Hz, 2H), 7.66 (t, J = 7.2 Hz, 1H), 7.54 

(t, J = 7.5 Hz, 2H), 7.45 – 7.35 (m, 3H), 6.01 – 5.94 (m, 1H), 5.62 (s, 2H), 5.17 (d, J 

=10.1 Hz, 1H), 5.13 (d, J =17.21 Hz, 1H), 3.58 (d, J = 5.8 Hz, 2H). 
13

C{1H} NMR (125 

MHz, CDCl3) δ 190.8, 161.3, 155.5, 134.4, 134.2, 131.7, 130.9, 129.1, 128.5, 128.1, 

126.3, 118.3, 54.6, 30.9. HRMS (ESI-QTOF) m/z: [M + Na]
 +

 calcd for C20H17NO3Na 

342.1101, found 342.1084. 
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2-((4-methyl-2-(p-tolyl)oxazol-5-yl)oxy)-1-phenylethan-1-one. The product 3g was 

obtained as a white solid (25.5 mg, 83%), m.p. 156.4-157.6 °C. IR (ZnSe, cm
-1

): 3064, 

3037, 2934, 1695, 1592, 1492, 1452, 1338, 1222, 748, 688.
1
H NMR (500 MHz, CDCl3) δ 

8.01 (d, J = 6.8 Hz, 2H), 7.94 (d, J = 8.2 Hz, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.54 (t, J = 7.6 

Hz, 2H), 7.22 (d, J = 7.4, 2H), 5.59 (s, 2H), 2.44 (s, 3H), 2.38 (s, 3H). 
13

C{1H} NMR 

(125 MHz, CDCl3) δ 190.7, 161.2, 154.4, 139.0, 134.4, 134.1, 129.2, 129.1, 128.1, 126.1, 

54.5, 21.3, 12.0. HRMS (ESI-QTOF) m/z: [M + Na]
 +

 calcd for C19H17NO3Na 330.1101, 

found 330.1086. 

 

2-((2-(4-bromophenyl)-4-methyloxazol-5-yl)oxy)-1-phenylethan-1-one. The product 3h 

was obtained as a white solid (21.2 mg, 91%) using the general procedure with 

concentration of 0.2 mol L
−1

 of azlactone in fluorobenzene, m.p. 166.9-169.4 °C. IR 

(ZnSe, cm
-1

): 3033, 2920, 2854, 1695, 1593, 1485, 1452, 1405, 1225, 836, 685, 636.
1
H 

NMR (500 MHz, CDCl3) δ 8.01 (d, J = 7.2 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H), 7.68 (t, J = 

7.5 Hz, 1H), 7.56 – 7.53 (m, 4H), 5.60 (s, 2H), 2.45 (s, 3H). 
13

C{1H} NMR (126 MHz, 

CDCl3) δ 190.5, 160.3, 154.8, 134.5, 134.0, 131.7, 129.9, 129.1, 128.2, 127.8, 123.3, 

54.5, 12.0. HRMS (ESI-QTOF) m/z: [M + Na]
 +

 calcd for C18H14BrNO3Na 394.0049, 

found 394.0051. 

 

2-((4-(2-(methylthio)ethyl)-2-phenyloxazol-5-yl)oxy)-1-phenylethan-1-one. The product 

3i was obtained as a white solid (31.5 mg, 94%), m.p. 108.7-110.3 °C. IR (ZnSe, cm
-1

): 

3059, 2942, 2914, 2836, 1682, 1593, 1481, 1448, 1351, 1226, 929, 762, 691. 
1
H NMR 

(500 MHz, CDCl3) δ 8.06 (d, J = 6.9 Hz, 2H), 8.02 (d, J = 8.1 Hz, 2H), 7.68 (t, J = 7.5 

Hz, 1H), 7.55 (t, J = 7.8 Hz, 2H), 7.45 – 7.37 (m, 3H), 5.71 (s, 2H), 3.05 – 2.96 (m, 4H), 

2.11 (s, 3H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 190.8, 161.3, 156.6, 134.4, 134.0, 

130.9, 129.1, 128.5, 128.1, 126.3, 54.5, 32.0, 26.8, 15.9. HRMS (ESI-QTOF) m/z: [M + 

Na]
+
 calcd for C20H19NO3SNa 376.0983, found 376.0980. 

 
1-((4-methyl-2-phenyloxazol-5-yl)oxy)pentan-2-one. The product 3j was obtained as a 

yellow solid (19.2 mg, 74%) after purification through a chromatography column 

(elution: hexane/ethyl acetate, 3:1), m.p. 53.7-55.2 °C. IR (ZnSe, cm
-1

): 3347, 3063, 

2962, 2929, 2874, 1722, 1668, 1519, 1442, 1356, 1112, 1036, 795, 722, 689. 
1
H NMR 

(500 MHz, CDCl3) δ 8.04 (d, J = 6.9 Hz, 2H), 7.43 – 7.37 (m, 3H), 4.90 (s, 2H), 2.46 (t, J 

= 7.3 Hz, 2H), 2.42 (s, 3H), 1.67 (sex, J = 7.4 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). 
13

C{1H} 

NMR (125 MHz, CDCl3) δ 202.3, 161.2, 154.0, 130.8, 129.1, 128.5, 126.2, 57.0, 41.7, 

16.7, 13.6, 11.9. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd for C15H17NO3Na 282.1101, 

found 282.1073. 

 

3,3-dimethyl-1-((4-methyl-2-phenyloxazol-5-yl)oxy)butan-2-one. The product 3k was 

obtained as a yellow oil (25.6 mg, 94%) after purification through a chromatography 

column (elution: hexane/ethyl acetate, 3:1). IR (ZnSe, cm
-1

): 3394, 3064, 2969, 2872, 

1722, 1673, 1523, 1478, 1443, 1352, 1109, 1064, 1006, 822, 725, 688. 
1
H NMR (500 

MHz, CDCl3) δ 8.03 (d, J = 7.1 Hz, 2H), 7.42 – 7.35 (m, 3H), 5.11 (s, 2H), 2.36 (s, 3H), 

1.28 (s, 9H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 206.3, 160.9, 154.2, 130.9, 129.0, 

128.4, 126.2, 52.6, 43.4, 26.1, 11.8. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd for 

C16H19NO3Na 296.1257, found 296.1235. 

 

4-(3-methoxyphenyl)-1-((4-methyl-2-phenyloxazol-5-yl)oxy)butan-2-one. The product 3l 

was obtained as a white solid (30.6 mg, 87%), m.p. 107.8-108.9 °C. IR (ZnSe, cm
-1

): 
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3396, 3057, 2932, 2839, 2105, 1723, 1601, 1523, 1483, 1439, 1359, 1158, 1005, 786, 

721, 691. 
1
H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 6.8 Hz, 2H), 7.43 – 7.37 (m, 3H), 

7.20 (t, J = 7.9 Hz, 1H), 6.75 (d, J = 8.0 Hz, 2H), 6.71 (s, 1H), 4.85 (s, 2H), 3.77 (s, 3H), 

2.94 (t, J = 7.3 Hz, 2H), 2.81 (t, J = 7.3 Hz, 2H), 2.33 (s, 3H). 
13

C{1H} NMR (125 MHz, 

CDCl3) δ 201.6, 161.1, 159.8, 154.0, 141.6, 130.7, 129.7, 129.2, 128.5, 126.2, 120.6, 

114.1, 111.7, 57.3, 55.1, 41.3, 29.4, 11.7. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd for 

C21H21NO4Na 374.1363, found 374.1361. 

 

1-(4-methoxyphenyl)-2-((4-methyl-2-phenyloxazol-5-yl)oxy)ethan-1-one. The product 3m 

was obtained as a yellow solid (24.5 mg, 76%) after purification through a 

chromatography column (elution: hexane/ethyl acetate, 3:1), m.p. 126.6-127.7 °C. IR 

(ZnSe, cm
-1

): 3367, 3059, 2924, 2844, 1685, 1596, 1512, 1441, 1353, 1311, 1165, 1016, 

984, 816, 719, 688. 
1
H NMR (500 MHz, CDCl3) δ 8.05 (d, J = 7.3 Hz, 2H), 7.96 (d, J = 

8.7 Hz, 2H), 7.42 – 7.35 (m, 3H), 6.97 (d, J = 8.7 Hz, 2H), 5.52 (s, 2H), 3.87 (s, 3H), 2.43 

(s, 3H).
13

C{1H} NMR (125 MHz, CDCl3) δ 189.0, 164.4, 160.9, 154.6, 130.9, 130.5, 

129.0, 128.4, 127.0, 126.2, 114.2, 55.6, 54.2, 12.0. HRMS (ESI-QTOF) m/z: [M + Na]
+
 

calcd for C19H17NO4Na 346.1050, found 346.1039. 

 

1-(4-chlorophenyl)-2-((4-methyl-2-phenyloxazol-5-yl)oxy)ethan-1-one. The product 3n 

was obtained as a white solid (30.8 mg, 94%), m.p. 137.4-139.0 °C. IR (ZnSe, cm
-1

): 

3364, 3089, 2923, 1689, 1585, 1522, 1442, 1349, 1296, 1223, 1091, 988, 835, 722, 688. 
1
H NMR (500 MHz, CDCl3) δ 8.05 (d, J = 6.9 Hz, 2H), 7.95 (d, J = 8.6 Hz, 2H), 7.51 (d, 

J = 8.5 Hz, 2H), 7.44 – 7.36 (m, 3H), 5.55 (s, 2H), 2.44 (s, 3H). 
13

C{1H} NMR (125 

MHz, CDCl3) δ 189.6, 161.2, 154.6, 141.1, 132.4, 130.8, 129.6, 129.5, 129.2, 128.5, 

126.2, 54.4, 12.0. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd for C18H14ClNO3Na 

350.0554, found 350.0545. 

 

2-((4-methyl-2-phenyloxazol-5-yl)oxy)-1-(4-nitrophenyl)ethan-1-one. The product 3o was 

obtained as a yellow solid (31.5 mg, 93%), m.p. 162.8-164.4 °C. IR (ZnSe, cm
-1

): 3067, 

2927, 2110, 1709, 1595, 1515, 1436, 1405, 1335, 1205, 1105, 984, 851, 719, 686. 
1
H 

NMR (500 MHz, CDCl3) δ 8.37 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.8 Hz, 2H), 8.04 (d, J = 

6.8 Hz, 2H), 7.44 – 7.38 (m, 3H), 5.60 (s, 2H), 2.47 (s, 3H). 
13

C{1H} NMR (125 MHz, 

CDCl3) δ 189.6, 161.4, 154.6, 151.0, 138.4, 130.7, 129.4, 129.3, 128.6, 126.2, 124.3, 

54.7, 12.0. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd for C18H14N2O5Na 361.0795, found 

361.0790. 

 

1-(2-chlorophenyl)-2-((4-methyl-2-phenyloxazol-5-yl)oxy)ethan-1-one. The product 3p 

was obtained as an orange solid (32.1 mg, 98%), m.p. 103.7-105.5 °C. IR (ZnSe, cm
-1

): 

3057, 2924, 2853, 2106, 1700, 1585, 1523, 1472, 1436, 1351, 1209, 1101, 1065, 979, 

834, 719, 688. 
1
H NMR (500 MHz, CDCl3) δ 8.04 (d, J = 6.9 Hz, 2H), 7.66 (d, J = 7.6 

Hz, 1H), 7.47 (d, J = 3.7 Hz, 2H), 7.43 – 7.36 (m, 4H), 5.55 (s, 2H), 2.48 (s, 3H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 193.5, 161.1, 154.4, 135.6, 133.3, 131.5, 130.8, 

130.1, 129.1, 128.5, 127.4, 126.2, 57.4, 12.0. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd 

for C18H14ClNO3Na 350.0554, found 350.0541. 

 

(E)-1-((4-methyl-2-phenyloxazol-5-yl)oxy)-4-phenylbut-3-en-2-one. The product 3q was 

obtained as a orange solid (24.3 mg, 76%) after purification through a chromatography 

column (elution: hexane/ethyl acetate, 3:1), m.p. 143.7-144.6 °C. IR (ZnSe, cm
-1

):3357, 

3024, 2923, 2853, 1783, 1665, 1622, 1523, 1491, 1442, 1352, 1311, 1193, 1101, 1071, 
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994, 829, 719, 685. 
1
H NMR (500 MHz, CDCl3) δ 8.07 (d, J = 7.0 Hz, 2H), 7.77 (d, J = 

16.1 Hz, 1H), 7.55 (d, J = 6.8 Hz, 2H), 7.45 – 7.38 (m, 6H), 6.77 (d, J = 16.1 Hz, 1H), 

5.19 (s, 2H), 2.46 (s, 3H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 190.9, 161.2, 154.3, 

145.8, 133.7, 131.4, 130.8, 129.1, 129.1, 128.7, 128.5, 126.2, 121.4, 56.2, 12.0. HRMS 

(ESI-QTOF) m/z: [M + H]
+
 calcd for C20H18NO3 320.1281, found 320.1275. 

 

benzyl(R)-(4-((4-methyl-2-phenyloxazol-5-yl)oxy)-3-oxo-1-phenylbutan-2-yl)carbamate. 

The product 3r was obtained as a white solid (40.2 mg, 85%) using the general 

methodology for 8 h, m.p. 123.7-124.6 °C. IR (ZnSe, cm
-1

):3306, 3033, 2923, 2856, 

1726, 1682, 1531, 1443, 1349, 1256, 1153, 1029, 979, 719, 688. 
1
H NMR (500 MHz, 

CDCl3) δ 8.04 (d, J = 7.2 Hz, 2H), 7.42 – 7.28 (m, 11H), 7.16 (d, J = 7.0 Hz, 2H), 5.38 

(d, J = 6.5 Hz, 1H), 5.10 (s, 2H), 5.05 (d, J = 18.2 Hz, 1H), 4.84 (d, J = 18.2 Hz, 1H), 

4.57 (dd, J = 14.1, 7.1 Hz, 1H), 3.16 (dd, J = 13.9, 6.3 Hz, 1H), 3.03 (dd, J = 13.9, 7.7 

Hz, 1H), 2.31 (s, 3H). 
13

C{1H} NMR (125 MHz, CDCl3) δ 190.9, 161.2, 154.3, 145.8, 

133.7, 131.4, 130.8, 129.1, 129.1, 128.7, 128.5, 126.2, 121.4, 56.2, 12.0. HRMS (ESI-

QTOF) m/z: [M + Na]
+
 calcd for C28H26N2O5Na 493.1734, found 493.1699. 

benzyl(S)-(4-((4-methyl-2-phenyloxazol-5-yl)oxy)-3-oxo-1-phenylbutan-2-yl)carbamate. 

The product 3s was obtained as a white solid (40.9 mg, 87%) using the general 

methodology for 8 h, m.p. 125.4-127.3 °C. IR (ZnSe, cm
-1

):3310, 3034, 2926, 2854, 

1725, 1670, 1528, 1446, 1345, 1273, 1155, 1036, 979, 721, 691. 
1
H NMR (500 MHz, 

CDCl3) δ 8.03 (d, J = 7.2 Hz, 2H), 7.42 – 7.27 (m, 11H), 7.16 (d, J = 7.0 Hz, 2H), 5.40 

(d, J = 6.6 Hz, 1H), 5.10 (s, 2H) 5.05 (d, J = 18.3 Hz, 1H), 4.84 (d, J = 18.2 Hz, 1H), 4.57 

(dd, J = 13.9, 6.9 Hz, 1H), 3.15 (dd, J = 13.9, 6.4 Hz, 1H), 3.03 (dd, J = 13.9, 7.7 Hz, 

1H), 2.31 (s, 3H).
13

C{1H} NMR (125 MHz, CDCl3) δ 201.2, 161.1, 156.1, 154.6, 135.8, 

135.2, 130.7, 129.2, 129.1, 129.0, 128.6, 128.5, 128.4, 128.1, 127.5, 126.2, 67.4, 59.0, 

55.8, 36.8, 11.6. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd for C28H26N2O5Na 493.1734, 

found 493.1754. 

 

methyl 2-((4-methyl-2-phenyloxazol-5-yl)oxy)-2-phenylacetate. The product 3t was 

obtained as a yellow solid (6.8 mg, 21%) using the general procedure with toluene at 90 

°C after purification through a chromatography column (elution: hexane/ethyl acetate, 

3:1), m.p. 79.9-81.7 °C. IR (ZnSe, cm
-1

): 3064, 2953, 1748, 1653, 1521, 1442, 1345, 

1269, 1212, 1171, 1109, 1002, 911, 724, 696. 
1
H NMR (500 MHz, CDCl3) δ 8.08 (d, J = 

7.0 Hz, 2H), 7.43 – 7.37 (m, 8H), 6.24 (s, 1H), 3.86 (s, 3H), 2.33 (s, 3H).
13

C{1H} NMR 

(125 MHz, CDCl3) δ 168.0, 160.7, 153.8, 133.1, 130.8, 129.2, 129.1, 128.9, 128.4, 128.4, 

126.3, 65.2, 53.2, 12.8. HRMS (ESI-QTOF) m/z: [M + Na]
+
 calcd for C19H17NO4Na 

346.1050, found 346.1035. 

 

ethyl 2-((4-methyl-2-phenyloxazol-5-yl)oxy)acetate. The product 3u was obtained as a 

white solid (6.9 mg, 26%), m.p. 84-86°C . IR (ATR, cm
-1

): 2916, 2850, 1747, 1674, 

1522, 1483, 1444, 1376, 1350, 1242, 1206, 1113, 1024, 727, 696. 
1
H NMR (400 MHz, 

CDCl3) δ 8.11 – 8.00 (m, 2H), 7.48 – 7.34 (m, 3H), 4.91 (s, 2H), 4.27 (q, J = 7.2 Hz, 2H), 

2.49 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). 
13

C{1H} NMR (126 MHz, CDCl3) δ 166.6, 161.1, 

154.1, 132.0, 130.8, 129.2, 128.6, 128.5, 127.4, 126.3, 62.3, 49.8, 14.1, 12.0. HRMS 

(ESI-QTOF) m/z: [M + Na]
+
 calcd for C14H15NNaO4 284.0899, found 284.0876. 
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Supporting information contains 
1
H and 

13
C{

1
H} NMR spectra, IR spectra, HPLC 

chromatograms, and mechanistic investigation. The supporting information is available 

free of charge on the ACS Publications website at DOI: 
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