HYDROGEN AZIDE-AMINE SYSTEMS AS AN AZIDE NUCLEOPHILE FOR SUBSTITUTIONS OF SULFONATES, HALIDES, AND VICINAL DISULFONATES

Seiki Saito,* Hajime Yokoyama, Teruhiko Ishikawa, Nobuko Niwa, and Toshio Moriwake* Department of Applied Chemistry, Faculty of Engineering, Okayama University Tsushima-naka, 3-1-1, Okayama, Japan 700

Summary: Hydrogen azide–alkylamine combination turned out to ensure the displacement of simple primary or secondary sulfonates, halides, and vicinal disulfonates with an azido-group in which an enhanced reactivity is generally achieved as compared with a case of traditional alkali metal azides.

Nucleophilic substitutions of alkyl or alkenyl sulfonates and halides in acyclic or cyclic systems with alkali metal azides such as sodium or lithium azide (NaN₃ or LiN₃) are well-established basic organic reaction and play an important role in synthesizing primary amines Nevertheless, we have often encountered many hardships in doing these transformations mainly because of a low reactivity of these metallic azides. For instance, in some cases, which do not allow for those azides to attack sterically congested reaction centers, far more reactive trifluoromethanesulfonates coupled with tetraalkylammonium azide are required.¹ In addition, a vicinal-diazido introduction *vua* an *S*_N2 process (NaN₃ in DMF) of acyclic secondary disulfonates strongly requires crown ether as a promoter, otherwise resulting in the decomposition of the substrates or the formation of deteriorated mixture.² Thus, a simple solution to these problems is a desirable goal of organic synthesis. In this communication, we provide our findings that hydrogen azide, when coupled with alkyl amines, becomes a useful azide nucleophile (R₃NHN₃) and applicable to azide substitution processes for a variety of sulfonates or halides including secondary vicinal disulfonates.

R₃NHN₃ reagents were prepared by simply m1xing a solution of HN₃ in ether³ with amines such as diethylamine (DEA) or diisopropylethylamine (DIPEA) and usually purified by sublimation to give the powders,⁴ which was used as a solution in DMF. In general, DEAHN₃ reagent exhibited higher reactivity than DIPEAHN₃ reagent probably for steric reason. However, these may rapidly reach equilibrium consisted of the salt and the free counterparts This situation makes DEAHN₃ reagent more basic, in a kinetic sense, than DIPEAHN₃ reagent and attention should be paid when DEAHN₃ is applied to substrates having acidic hydrogens.

The reactions of DEAHN₃ reagent (2 - 2.5 eq) with several primary sulfonates in DMF at 60°C were conducted and the results were listed in Table 1. Every run provided the corresponding azides with high yields and purity.⁵

Substrate	Time	azide yield	Substrate	Time	azide yield
	0.5 hr	73%		6 hr	76%
OTs OTs	0.5 hr	90%	TsO OMe	16 hr	86%

Table 1 Primary tosylate substitution with Et₂HNHN₃ at 60°C in DMF

In order to confirm that DEAHN3 attacks sulfonates with 100% inversion, stereochemically defined substrates such as *cis*- and *trans*-4-*t*-butylcyclohexyl tosylates were submitted to the reaction with DEAHN3 in DMF at 60°C. The stereochemistry of the corresponding azides were ascertained on the basis of NMR spectroscopy to be quantitatively inverted (Scheme 1).

Scheme 1.

$$\begin{array}{c} \text{OTs} \\ \text{+Bu} & \underbrace{\text{Et}_{2}\text{HNHN}_{3}/\text{DMF}/60^{\circ}\text{C}}_{\text{f-Bu}} & 8 \text{ hr}, 47\% & \text{f-Bu} & \underbrace{\text{N}_{3}}_{\text{N}_{3}} \\ \text{t-Bu} & \underbrace{\text{OTs}}_{\text{f-Bu}} & 4 \text{ hr}, 84\% & \text{f-Bu} & \underbrace{\text{N}_{3}}_{\text{f-Bu}} \end{array}$$

Keeping above important information in mind, we examined the applicability of DEAHN₃ reagent to vicinal azide substitution for optically pure 2,3-ditosylates of L-tartaric acid-based protected butanetetraol **1a–c** (Scheme 2). Although the rate of an S_N2 process was somewhat low, the desired vicinal diazides **2a–c** were given in good yields. The stereochemical outcome of **2a**, readily confirmed as 100% inversion at both stereogenic centers by an NMR spectroscopy because of its C_2 nature, should certainly be extrapolated to the cases of unsymmetrical products. A series of routine reactions⁶ from, for instance, **2b**, led to protected vicinal diaminobutane-1,4-diols (**3**), which may serve as a potent chiral synthon for a variety of synthetic purposes. Recently developed chiral controller system by Corey⁷ features 1,2-diamino-1,2-diphenylethane as the key ingredient, an immediate precursor (**5**) of which now became available in 79% yield from (R^*, R^*)-1,2-diphenylethylene dimesylate by the present simple chemistry. As already mentioned above,² NaN₃ required 18-crown-6 in order to effect the above vicinal diazide substitutions, otherwise no diazide being furnished.

Scheme 2.

If the S_N2 process of α -haloesters with the present "N₃⁻⁻⁻" nucleophile takes place, the reaction should afford α -azidoesters as precursors for α -amino acids . In this case DEA must be replaced with DIPEA to prevent α -azidoesters from epimerizing at the stereogenic center under the conditions. Thus, DIPEAHN₃ reagent effected the desired transformations (Scheme 3). While bromobutanoates (Eqs 1 – 3) left no problem at all, succinate version suffered from considerable epimerization at the α -position (Eq 4) even if DIPEAHN₃ reagent was employed.

Scheme 3.

Finally, we tested the feasibility of the S_N2 reaction of primary allylic halides with the present reagents. It has generally been believed that an terminal allylic azide can rearrange in a thermodynamically controlled manner to give an equilibrated mixture consisted of the internal and terminal azides.⁸ Hence, even if a clean S_N2 process is realized, the product would be a mixture of two types of azides. Indeed, the reaction of geranyl chloride with DIPEAHN₃ (2 eq) in DMF proceeded at rt and was completed within 1.5 hr to give such a mixture in a ratio 8:1 (Eq 5), which, however, is delightfully much larger in favor of the primary azide than that of previously reported

(4:1).^{8d} We also found that the allylic substrates bearing oxygen-linked setereocenter adjacent to the C=C bond such as 5 or 6 (Eqs 6 and 7) exclusively afforded clean S_N2 product 7 or 8 in very high yield, respectively. The protected 1,8-diaminooctadiene (9), given by reduction⁹ and ensuing N-protection should be an interesting chiral synthon (Eq 8). The successful application of the present "N₃⁻" nucleophiles to the regioselective azide cleavage of 2,3-epoxyesters will be a subject of a subsequent paper.

Acknowledgment: We are grateful to "The SC-NMR Laboratory of Okayama University" for high field NMR experiments.

References and notes

- (1) S. J Danishefsky, M. P. DeNinno, and S.-H. Chen, J. Am. Chem Soc., 110, 3929 (1988).
- (2) Private communication through the courtesy of Prof. S. Torii and Dr. H. Okumoto (Okayama University): the reaction of methanesulfonate version of 1 (R = R' = Bn) with NaN3 (2.2 eq) in DMF at 80°C (20 hr) in the presence of 18-crown-6 (10 mol%) gave the corresponding diazide in 85% yield. Without crown ether, however, the reaction resulted in the formation of a complex mixture.
- (3) H. Wolff, Org. React., 3, 307 (1946).
- (4) All the experiments, involving HN₃ generation, the preparation of the HN₃ ether solution, the sublimation of HN₃-amine salts, weighing or transfer of the salts, and not only the reactions employing the salts but also a workup should be executed in a well-ventilated hood because of their high toxicity.
- (5) All the new compounds obtained in this work showed satisfactory physical data (IR, NMR, mass, $[\alpha]_D$).
- (6) S. Saito, H. Nakajima, M. Inaba, and T. Moriwake, Tetrahedron lett., 30, 5239 (1989).
- (7) (a) E. J. Corey, R Imwinkelried, S. Pikul, and Y. B. Xiang, J. Am. Chem. Soc., 111, 5492 (1989); (b) E. J. Corey, P. D. Jardine, S. Virgil, P.-W. Yuen, and R. D. Connell, *ibid.*, 111, 9243 (1989); (c) E. J. Corey, C.-M. Yu, and D.-H. Lee, *ibid.*, 112, 878 (1990).
- (8) (a) A. Gagneux, S. Winstein, and W. G. Young, J. Am. Chem. Soc., 82, 5956 (1960); (b) C. A. Vanderwerf and V. L. Heasley, J. Org. Chem., 31, 3534 (1966); (c) M Arimoto, H. Yamaguchi, E. Fujita, M. Ochiai, Y. Nagao, Tetrahedron Lett., 28, 6289 (1987); (d) S. Murahashi, Y. Taniguchi, Y. Imada, and Y. Tanigawa, J. Org. Chem., 54, 3292 (1989).
- (9) M. Vaultier, N. Knouzi, and R. Carrié, Tetrahedron Lett., 24, 763 (1983).