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[2,3]-Wittig rearrangement by a chlorine–lithium exchange
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Abstract—The reaction of different allylic chloromethyl ethers 1 with an excess of lithium powder (1:7 molar ratio) and a catalytic
amount of DTBB (2.5 mol %) in THF at 0 �C for 1 h gives, after hydrolysis with water, the expected alcohols 2 resulting from a [2,3]-
Wittig rearrangement, in an exclusive manner. The same process can also be applied to the corresponding [1,2]-Wittig rearrange-
ment, as it is exemplified for benzyl chloromethyl ether.
� 2005 Elsevier Ltd. All rights reserved.
The �Wittig rearrangement�, originally reported1 as the
1,2-migration of an alkyl group from an oxygen to a
carbanion centre, was further extended to the corre-
sponding 2,3-migration2 and nowadays both processes
are well known as the [1,2]-3 and [2,3]-Wittig rearrange-
ment,4 respectively. For allylic derivatives I, the main
difference between both reactions, has to do with the
regiochemistry of the process as it is shown in Scheme 1.

The [2,3]-rearrangement of allylic systems of type I to
give the alkoxide III (which proceeds through a con-
certed thermally allowed sigmatropic process) is much
more favoured than the corresponding [1,2] rearrange-
ment (which is believed to occur via a radical-pair disso-
ciation–recombination mechanism) to give the other
alkoxide II. Apart from other interesting considerations
(i.e., stereochemical details), one important aspect con-
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Scheme 1.
cerning the [2,3]-Wittig rearrangement is the generation
of the corresponding a-oxygenated carbanion I. This
operation can be carried out by deprotonation using a
strong base (LDA or an alkyllithium reagent) when R3

is an electron-withdrawing group (aryl, hetaryl, alkenyl,
alkynyl, cyano, acyl, alkoxycarbonyl, carboxyl, carbamo-
yl) or a second-row heteroatom, such as sulfur. Under
these conditions, formation of the allylic carbanion, by
deprotonation at the most substituted a-position
(respect to the oxygen atom) is avoided. However, this
hydrogen–lithium exchange methodology fails when
R3 = H or alkyl, and consequently other alternatives
must be used. Among them, tin–lithium transmetalla-
tion5 (from compounds of type IV, usually with n-butyl-
lithium) or sulfur–lithium exchange6 (from sulfides V7 or
sulfones VI8 by an arene-promoted lithiation) have been
used to generate intermediates of type I.
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To the best of our knowledge, the [2,3]-Wittig rearrange-
ment has never been studied involving a chlorine–lith-
ium exchange as the key step to access intermediate I.
This transformation is of great interest due to the
easy access to the starting materials by conventional
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Scheme 2. Reagents and conditions: (i) Li excess, DTBB (2.5 mol %),
THF, 0 �C, 1 h; (ii) H2O, 0 �C to rt.
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Scheme 3. Reagents and conditions: (i) Li excess, DTBB (2.5 mol %),
THF, 0 �C, 1 h; (ii) H2O, 0 �C to rt.
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methodologies. However, low temperatures are required
in many cases in order to avoid secondary reactions,
mainly the corresponding [1,2]-rearrangement, espe-
cially in cyclic substrates. In order to solve this problem,
we have developed in the last few years a lithiation
methodology based on the use of an excess of lithium
and a catalytic amount of an arene, mainly naphthalene
and 4,4 0-di-tert-butylbiphenyl (DTBB).9–11 Thus, a ser-
ies of new reactions, such as the preparation of organo-
lithiums from non-halogenated materials,12 preparation
of very reactive functionalised organolithium com-
pounds13 (by chlorine–lithium exchange14 or by ring
opening of heterocycles15), generation of dilithium syn-
thons16 or the activation of other metals,17 especially
nickel,18 have been carried out successfully.19 In this let-
ter, we report our preliminary results on the [2,3]-Wittig
rearrangement from different allylic chloromethyl ethers
by using the above mentioned arene-catalysed lithiation
under mild reaction conditions.

The reaction of different allylic chloromethyl ethers 1
with an excess of lithium (1:7 molar ratio; theoretical
1:2) and a catalytic amount of DTBB (1:0.05 molar
Table 1. Preparation of homoallylic alcohols 2

Entry Starting material

Structure No.

1 O Cl 1a

2
O Cl

1b

3
O Cl

1c

4
O Cl

1d

5 O Cl 1e

6 O Cl 1f

7
O Cl

1g

a All compounds 2 were >95% pure (GLC and/or 300 MHz 1H NMR) and w
and MS).

b Isolated yield after vacuum distillation (Kugelrohr) based on the starting c
c A ca. 1:1 mixture of (Z/E) diastereomers was obtained (NMR).
ratio; 2.5 mol %) in THF at 0 �C for 1 h led, after hydro-
lysis with water, to the expected homoallylic alcohols 2
(Scheme 2 and Table 1). In the case of starting from
a-substituted materials (1c, 1e and 1g), a ca. 1:1 molar
ratio of the corresponding (Z/E)-alcohols 2 was
obtained (NMR; Table 1, entries 3, 5 and 7, and foot-
note c).20

In the case of non-allylic chloromethyl ethers, such as
the commercially available benzyl chloromethyl ether
(3), the same reaction described in Scheme 2 led to a
clean [1,2]-Wittig rearrangement, furnishing the corre-
sponding 2-phenylethanol (4) as the only reaction prod-
uct in 70% isolated yield (Scheme 3).21

Starting chloromethyl ethers 1 were easily prepared fol-
lowing two procedures: (a) reaction of the correspond-
ing allylic alcohols with hydrogen chloride and
trioxane in a benzene–toluene mixture at �10 �C (for
compounds 1a, 1f and 1g; 40–60% yield),22 and (b) treat-
ment of the same starting materials with paraformalde-
hyde and chlorotrimethylsilane in carbon tetrachloride
at room temperature (for compounds 1b–e; around
60% yield).23,24
Producta

Structure No. Yield (%)b

HO 2a 82

HO 2b 78

HO
2c 60c

HO 2d 80

HO
2e 70c

HO
2f 81

HO 2g 75c

ere fully characterised by spectroscopic means (IR, 1H and 13C NMR

hloromethyl ether 1.
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In conclusion, we have described herein the simplest way
to perform the [2,3]-Wittig rearrangement from non-
activated substrates by an arene-catalysed chlorine–lith-
ium exchange starting from easily available allylic chloro-
methyl ethers.25 This new and versatile methodology can
be applied to the total synthesis of interesting naturally
occurring complex molecules.4
Acknowledgements

This work was generously supported by the Dirección
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Rev. 2004, 104, 2667–2722; (h) Chinchilla, R.; Nájera, C.;
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