

Carbohydrate Research 299 (1997) 271-279

CARBOHYDRATE RESEARCH

Synthesis of 2"-acylamido derivatives of 2"-amino-5,2"-dideoxy-5-epi-5-fluorodibekacin and a study on the structures of 5-fluorinated dibekacin analogs by ¹³C NMR

Ryuji Kuwahara, Tsutomu Tsuchiya *

Institute of Bioorganic Chemistry, 3-34-17 Ida, Nakahara-ku, Kawasaki 211, Japan

Received 23 October 1996; accepted 7 January 1997

Abstract

Several 2"-amino-2"-deoxy and 2"-acylamido-2"-deoxy derivatives (15–21) of 5-deoxy-5epi-5-fluorodibekacin have been prepared, introducing the 2"-NH₂ group via oxidationmethoxyimination-reduction processes. The C-4 and C-6 chemical shifts in the ¹³C NMR spectra of several 5-fluorinated kanamycin analogs have been studied, and the difference in shifts was explained on the basis of F-5–O-4 and F-5–O-6 distances estimated by MOPAC93/PM3 calculations on related model compounds. © 1997 Elsevier Science Ltd.

Keywords: 5-Fluorinated dibekacin; 2"-Acylamidation; ¹³C Chemical shift; F-O Distance

1. Introduction

Dibekacin (3',4'-dideoxykanamycin B) [1] is a strongly antibacterial aminoglycoside antibiotic and its 1-N-[(S)-4-amino-2-hydroxybutanoyl] (AHB) derivative (arbekacin) [2] is still more active. However, these clinically used compounds have shortcomings, such as being acetylated or phosphorylated by resistant bacteria at the H₂N-6' and HO-2" positions [3], respectively. Their toxicity is also a defect. To overcome these drawbacks, several attempts at structural modification [4–9] have been made, among which substitution of HO-2" with an NH₂ group provided a compound not phosphorylated at that position [6]. Comparison of stereo models of arbekacin, 1-*N*-(4-amino-2-hydroxybutanoyl)kanamycin A [10], and 1-*N*-[(2*R*,3*R*)-4-amino-3-fluoro-2-hydroxybutanoyl]dibekacin [11] with that of a proposed compound, the 2"-*N*-(4-aminobutanoyl)dibekacin analog, suggested that the amino acid residue of the last compound extends sterically in a direction similar to that of the former compounds having side-chains at H₂N-1 [11]. Preparation of several related 2"-acyl derivatives of 2"-amino-5,2"-dideoxy-5-epi-5-fluorodibekacin [6] was thus undertaken in the hope of obtaining new analogs not susceptible to phosphorylation at the HO-2" position of arbekacin.

2. Results and discussion

* Corresponding author.

Synthesis.—Penta-N-tosyldibekacin (1) [7] was converted into its 4'', 6''-O-benzylidene derivative 2,

which was acetylated (to give 3) and fluorinated with diethylaminosulfur trifluoride (DAST) [12] to give the 5-epi-5-fluoro derivative 4. The fluorination was useful to avoid oxidation at the C-5 in the next step as well as to enhance the antibacterial activity [13]. Deacetylation of 4 (to give 5) followed by oxidation with $(CH_3)_2SO-Ac_2O$ gave the 2"-oxo derivative 6.

Reductive amination of the oxo group was first attempted with NH₄OAc-NaBH₃CN in methanol; however, it gave only a 2"-hydroxy compound (possibly 5). Several attempts were made by varying the amounts and the time of addition of the two reagents, but these proved unsuccessful. Changing the solvent from methanol to pyridine, however, gave the 2"amino derivative 8 without accompaniment by 9 (as described later) but in poor yield ($\sim 20\%$). As the structurally similar 3"-N-(benzyloxycarbonyl)-2"-oxo derivative [6] was reported to give the corresponding 2"-amino derivative in good yield by conventional reductive amination, the difficulty in amination of 6 may be ascribed to the vicinal TsNH-3" group. Reduction of 6 was, therefore, tried after conversion into the oxime. The 2"-methoxyimino derivative 7 prepared was treated with $LiBH_4-(CH_3)_3SiCl$ according to Banaszek and Karpiesiuk [14], whereupon the 2"-amino compound (8) and its 2"-epimer were obtained in a moderate yield in 3:1 ratio. Deprotection of 8 and 9 with Na in liquid NH₃ gave, respectively, the free amines, namely, 2"-amino-5,2"-dideoxy-5-epi-5-fluorodibekacin (15) [15] and 2"-amino-5,2"-dideoxy-5,2"-diepi-5-fluorodibekacin (16).

The N-protected (S)-4-amino-2-hydroxybutanoyl (AHB) residue was next attached to the H_2N-2'' of **8** and **9** utilizing its active ester [16], and the resulting amides (**10** and **11**, respectively) were deblocked to give the 2"-*N*-AHB derivatives **17** and **18**. Similarly, N-protected glycine, β -alanine, and 4-aminobutanoic acid were introduced at the H_2N-2'' position of **8**, and the products (**12**, **13**, and **14**) were deblocked to give the corresponding 2"-*N*-acyl derivatives (**19**, **20**, and **21**), whose structures were confirmed by their ¹³C NMR spectra (Table 1). All of the C-2" resonances of the synthetic products were shifted upfield (at ~ 55 ppm) indicating the presence of an N-2" atom.

16 $R^1 = NH_2, R^2 = H$

15

17 $R^1 = H$, $R^2 = NHCOCH(OH)CH_2CH_2NH_2$

18 $R^1 = NHCOCH(OH)CH_2CH_2NH_2$, $R^2 = H$

19 $R^1 = H$, $R^2 = NHCOCH_2NH_2$

- 20 $R^1 = H$, $R^2 = NHCOCH_2CH_2NH_2$
- 21 $R^1 = H$, $R^2 = NHCOCH_2CH_2CH_2NH_2$

Structure.—¹³C chemical-shift relationships.—Examination of the ¹³C NMR spectra of **15–21** showed that their C-4 signals resonated at higher fields ($\Delta\delta$ 5.5–6 ppm) than those of C-6 (Table 2). In general, in kanamycin analogs having an equatorial HO-5, both C-4 and C-6 have similar shift-values (measured as free bases), reflecting a similar steric environment [17–19]. When, however, the equatorial HO-5 is replaced by an equatorial F, axial F, or diF, both C-4 and C-6 shifted upfield but to different extents, that is, more significantly at C-4 and less at C-6 (Table

Table 1								
¹³ C NMR chemical	shifts (ppm) of	15-21	measured in	ı 26%	ND ₃	in	D_2O	a

	15	16	17	18	19	20	21
<u>C-1</u>	48.14 d	47.75 d	48.06 d	47.83 d	47.87 d	48.01 d	48.05 d
C-2	36.43	32.20	36.21	36.28	36.23	36.22	36.18
C-3	47.66 d	47.53 d	47.61 d	47.64 d	47.61 d	47.66 d	47.63 d
C-4	79.18 d	79.02 d	79.02 d	79.07 d	79.07 d	79.08 d	79.06 d
C-5	90.38 d	90.05 d	90.18 d	89.99 d	90.12 d	90.20 d	90.20 d
C-6	84.88 d	84.51 d	84.95 d	84.75 d	85.10 d	85.07 d	85.06 d
C-1′	97.22	97.09	97.14	97.19	97.17	97.18	97.17
C-2′	50.22	50.06	50.16	50.17	50.14	50.18	50.17
C-3′	26.83	26.66	26.75	26.81	26.71	26.76	26.75
C-4′	28.27	28.10	28.21	28.21	28.20	28.24	28.23
C-5′	71.26	71.12	71.17	71.21	71.20	71.23	71.22
C-6′	45.81	45.62	45.73	45.74	45.73	45.77	45.76
C-1″	102.52	104.48	100.08	101.79	100.01	100.08	100.10
C-2″	56.27	54.21	54.32	53.05	54.38	54.58	54.62
C-3″	56.03	52.37	52.93	51.29	52.90	52.69	52.65
C-4″	71.21	68.13	71.30	68.45	71.36	71.36	71.31
C-5″	73.65	74.49	73.57	74.33	73.44	73.46	73.44
C-6″	61.98	61.86	61.80	61.61	61.77	61.83	61.83
C=O			177.64	177.84	176.38	175.68	177.21
C-2‴			70.35	70.44	44.32	39.06 ^b	33.87
C-3‴			37.09	37.15		38.00 ^b	29.01
C-4‴			37.97	37.86	_		40.99

^a $J_{C,F}$ are $J_{C-1,F}$ 3.5–3.8, $J_{C-3,F}$ 3.8–4, $J_{C-4,F} \approx J_{C-6,F}$ 16.7–17, $J_{C-5,F}$ 177 Hz.

Interconvertible.

2). This means that the β -effect caused by the conversion of the HO-5*eq* to the more electronwithdrawing fluorine(s) is larger at C-4 than at C-6. This tendency was also observed in the present study, as already described. The reason for this phenomenon is, however, not clear. As F-5ax gives a different effect from that of F-5eq [13], electronegativity and orientation of the fluorine at C-5 may be the cause. However, a reverse effect was observed in 5-epinetilmicin [8] (see Table 2), which showed a larger

Table 2

¹³C NMR chemical shifts (ppm) of fluorinated kanamycin analogs and netilmicin analogs [8] at C-4 and C-6 measured in 20-26% ND₃ in D₂O (expressed by the upfield shifts from the standard values)

Substituent at C-5		C-4 C-6		Nr of compounds	Ref.	
Ka	anamycins ^a	0	0			
(0)	H-5eq)	(86.8-89.1; av 88.0)	(88.4–89.2; av 88.6)	9	[4,17–19]	
Axial F		8.9–9.1 ^b	3.6–3.7 °	2	[13]	
		8.8–9.0 ^b	3.5–4.1 °	7 (15–21)	This paper	
DiF		6.2–6.4 ^b	4.3 °	2	[7]	
Equatorial F		4.3-4.5 ^b	2.7–2.8 °	3	[7]	
Ne	etilmicin ^a	0	0		[8]	
		(86.7)	(85.5)			
DiF ^d		6.1 ^b	2.9 °	1	[8]	
Equatorial F ^e		4.0 ^b	1.3 °	1	[8]	
Axial OH (epinetilmi	al OH (epinetilmicins) $2.6-2.7^{b}$ $4.6-4.8^{c}$ 2		[8]			

^a Reference compounds.

^b Upfield shift ($\Delta\delta$, ppm) based on 88.0 or 86.7 ppm (for netilmicin analogs).

^c Upfield shift ($\Delta\delta$, ppm) based on 88.6 or 85.5 ppm (for netilmicin analogs).

^d 5-Deoxy-5,5-difluoronetilmicin.

^e 5-Deoxy-5-fluoronetilmicin.

upfield shift at C-6 than at C-4 (netilmicin has a 2-deoxy-1-*N*-ethylstreptamine moiety instead of the 2-deoxystreptamine present in kanamycins).

To clarify this result, electron-densities at C-4 and C-6 of several model compounds, namely, dibekacin (A), 5-epi- (B), 5-deoxy-5-fluoro- (C), 5-deoxy-5epi-5-fluoro- (D), and 5-deoxy-5,5-difluoro-dibekacins (E) were calculated [20] by using MOPAC93/PM3; however, no correlation of the densities at C-4 and C-6 was observed in the foregoing compounds, precluding this possibility. As magnetic shielding (deshielding) of ¹³C nuclei is determined by diamagnetic, paramagnetic (these predominate in ¹³C nuclei and relate to electron-density), and neighboring-group-(or -molecule-)participation items [21,22], the experimental shift-difference was predicted to be derived from the third item. Consequently, further study examined the energy-minimum conformations of A-E; however, no correlation was seen between the actual shifts in our synthetic compounds and the inter-moiety angles (usually termed ϕ and φ), or charge-distributions in particular atoms in A-E. However, the results obtained relative to the distances of F-5-O-4 and F-5-O-6 in the model compounds (Table 3) were promising; the former was always shorter than the latter, which agrees with the experimental result that C-4 always resonated at higher field than C-6. This means that, in D_2O-ND_3 , a through-space interaction in F-5-O-4 (or O-6) may operate to shield the vicinal carbons at C-4 and C-6, closer to the F-O atoms, and stronger in effect. These distance-related results (Table 3) also show good agreement with the order of upfield shifts of our synthetic compound, that is, C-4 (ax-F) > C-4 (diF)> C-4 (eq-F) \ge C-6 (diF) > C-6 (ax-F) > C-6 (eq-F) (Table 2) is inversely proportional to the order of distances, O-4 (ax-F) < O-4 (diF; F-ax is taken as the value) < O-4 (eq-F) < O-6 (diF) = O-6 (ax-F) < O-6(eq-F) (abbreviations are used to facilitate the comparison with these data; see Table 3). These results may also be applicable to the netilmicin series (Table 2). It should be noted that 5-epinetilmicins, which are similar in structure to 5-epidibekacin (**B**), show larger upfield shifts at C-6 than at C-4 (Table 2), and this agrees with the negative difference in O–O distances in **B** (Table 3). This may relate to the fact that the HO-5ax hydrogen in **B** is located closer to O-4 (OHax-O-4 2.47 Å, which is in a range for hydrogen-bonding interaction [23]) than to O-6 (OHax-O-6 3.68 Å), although a similar tendency was also observed in A. The small shift-differences in kanamycins having HO-5eq also reflect the small difference in O–O distances in A.

Antibacterial activity.—The synthesized products, except for 15, showed only limited antibacterial activity or were devoid of such activity (see Experimental section). This indicates that attachment of an ω -amino acid at H₂N-2" of 8 had no desirable effect, confirming that 1-N-acylation is not substituted by 2"-Nacylation. Moreover, it was established that epimerization of the H₂N-2" group of 15 (to give 16) greatly decreases the antibacterial activity.

3. Experimental

General methods.—TLC was performed on Silica Gel 60 F_{254} (E. Merck 5715), with detection under UV light at 254 nm, by charring with aq 50% H_2SO_4 , or by 0.4% ninhydrin in pyridine. Column chromatography was performed on Wakogel C-300. Optical rotations were determined with a Perkin–Elmer

Table 3

Distances (Å) of F-5–O-4 (or O-5–O-4) and F-5–O-6 (or O-5–O-4) for model compounds A-E determined by MM2UEC refined by MOPAC93/PM3

Substitue	nt at C-5	at C-5 Compound ^a F-5-O-4 (O-4) ^b F-5-O-6 (O-6) ^b Differen		Difference	
Axial F		D	2.71	2.77	0.06
DiF	ax	Ε	2.73	2.77	0.04
	eq	Е	2.76	2.85	0.09
Equatorial F		С	2.75	2.84	0.09
			0-5-0-4	O-5–O-4	
Axial OH		В	2.85	2.81 -0.04	
Equatorial OH		Α	2.89	2.91	0.02

^a A, B, C, D, E are the model compounds, respectively, for kanamycin analogs having HO-5*eq* [4,17–19], 5-epinetilmicin [8], 5-deoxy-5-fluoro-kanamycin B's [7] and -netilmicin [8], 5-deoxy-5-epifluorokanamycin B's [13], 5-deoxy-5,5-difluoro-kanamycin B's [7] and -netilmicin [8] (see also Table 2).

^b O-4 And O-6 are the abbreviations for F-5–O-4 and F-5–O-6, respectively (see text).

241 polarimeter. NMR spectra (¹H at 250 and 500 MHz, ¹³C at 125.8 MHz, ¹⁹F at 235 and 470.5 MHz) were recorded with Bruker AC-250P and AMX-500 spectrometers, using Me_4Si or CFCl₃ (for ¹⁹F) as the internal reference. Proton signals were mostly confirmed by the ¹H–¹H COSY.

4", 6" - O - Benzylidene - 1, 3, 2', 6', 3" - penta - N tosyldibekacin (2).—A mixture of 1 (12.25 g, 10.0 mmol), $C_6H_5CH(OMe)_2$ (4.5 mL, 30 mmol), and TsOH (620 mg, 3.6 mmol) in dry DMF (130 mL) was stirred at 50 °C overnight, poured into aq NaHCO₃ (3 L, satd), and the resulting precipitate was filtered, washed thoroughly with water and hexane, and dried (at 50 °C in vacuo under P_2O_5) to give 2 as a solid (13.12 g, quant), $[\alpha]_D^{23} + 22^\circ$ (*c* 1, DMF). Anal. Calcd for $C_{60}H_{71}N_5O_{18}S_5$: C, 54.99; H, 5.46; N, 5.34; S, 12.23. Found: C, 55.23; H, 5.67; N, 5.43; S, 11.76.

2"-O-Acetyl-4",6"-benzylidene-1,3,2',6',3"-penta-Ntosyldibekacin (3).—A mixture of 2 (13.1 g, 10.0 mmol) and AcCl (1.42 mL, 20 mmol) in pyridine (130 mL) was stirred vigorously (~ 30 min) and allowed to stand at room temperature for 3 h. After water (6 mL) was added, the soln was concd to a small volume, poured into water (2.5 L), and the precipitate was filtered off, washed with water, and dried. Chromatography (15:1 CHCl₃-MeOH) of the solid gave **3** as a solid (11.5 g, 84%), $[\alpha]_{D}^{22} + 17^{\circ} (c$ 1, CHCl₃); ¹H NMR (pyridine- d_5) (only selected signals were shown): δ 2.12, 2.15, 2.17, 2.32, 2.33, 2.49 [each s of 3 H, 5 Ts(Me) and one Ac], 3.55 (m, 1 H, H-5), 5.51 (d, 1 H, H-1'), 5.60 (s, 1 H, C*H*Ph), 5.65 (dd, $J_{1'',2''}$ 3.5, $J_{2'',3''}$ 10 Hz, H-2"), 5.88 (d, 1 H, H-1"). Anal. Calcd for $C_{62}H_{73}N_5O_{19}S_5 \cdot H_2O$: C, 54.33; H, 5.52; N, 5.11. Found: C, 54.31; H, 5.44; N, 4.96.

2"-O-Acetyl-4",6"-O-benzylidene-5-deoxy-5-epi-5fluoro-1,3,2',6',3"-penta-N-tosyldibekacin (4).—To a soln of **3** (10.40 g, 7.6 mmol) in CH₂Cl₂ (200 mL) was added DAST (3.0 mL, 15 mmol), and the soln was kept at room temperature for 2.5 h. Aqueous NaHCO₃ (200 mL, satd) was added under vigorous stirring, and the separated organic layer was dried (Na_2SO_4) and concd. The residue was chromatographed (15:1 CHCl₃-MeOH) to give 4 as a solid (8.53 g, 83%), $[\alpha]_D^{22} + 27^\circ$ (c 1, CHCl₃); ¹H NMR (pyridine- d_5): δ 2.14, 2.17, 2.20, 2.23, 2.30, 2.34 [each s of 3 H, 5 Ts(Me) and Ac], 3.54 (m, 1 H, H-2'), 3.65 (br t, 1 H, H-1 or 3), 4.05 (m, 1 H, H-6 or 4), 4.09 (m, 1 H, H-3 or 1), 4.09 (m, 1 H, H-4 or 6), 4.64 (t, 1 H, H-3"), 5.39 (d, 1 H, H-1'), 5.52 (dd, 1 H, H-2"), 5.54 (s, 1 H, CHPh), 5.56 (d, 1 H, H-1"), 5.82

(d, 1 H, $J_{5,F}$ 52 Hz, H-5). ¹⁹F NMR (pyridine- d_5): δ – 212.95 (dt, J 28, 28, 52 Hz, F-5). Anal. Calcd for C₆₂H₇₂FN₅O₁₈S₅: C, 54.97; H, 5.36; N, 5.17; S, 11.84. Found: C, 54.75; H, 5.09; N, 5.01, S, 11.81.

4",6"-O-Benzylidene-5-deoxy-5-epi-5-fluoro-1,3,2', 6',3"-penta-N-tosyldibekacin (5).—A soln of 4 (8.13 g, 6.0 mmol) in a 1:60 mixture of 28% NaOMe in MeOH and MeOH (100 mL) was kept at room temperature for 1 h. After concn, the residue dissolved in CHCl₃ was washed with water, dried (Na_2SO_4) , and concd. The residue was chromatographed (CHCl₃ \rightarrow 20:1 CHCl₃-MeOH) to give 5 as a solid (6.85 g, 87%), $[\alpha]_{D}^{22} + 26^{\circ}$ (c 1, DMF) and -5° (c 1, pyridine); ¹H NMR (pyridine- d_5): δ 2.07, 2.16, 2.17, 2.20, 2.34 [each s of 3 H, 5 Ts(Me)], 4.34 (dd, 1 H, H-2"), 4.46 (dd, 1 H, H-3"), 5.40 (s, 1 H, CHPh), 5.43 (m, 2 H, H-1', 1"), 5.83 (d, 1 H, H-5). ¹⁹F NMR (pyridine- d_5): $\delta - 212.34$ (dt, J 28, 28, 52 Hz, F-5). Anal. Calcd for C₆₀H₇₀FN₅O₁₇S₅: C, 54.90; H, 5.38; N, 5.33; S, 12.21. Found: C, 54.68; H, 5.39; N, 5.51; S, 12.32.

4",6"-O-Benzylidene-5,2"-dideoxy-5-epi-5-fluoro-2"oxo-1,3,2',6',3"-penta-N-tosyldibekacin (6).—A soln of 5 (2.5 g, 1.9 mmol) in a mixture of Me_2SO (25 mL) and Ac₂O (12.5 mL) was heated at 50 °C for 30 min. After concn to $\sim 1/3$ volume in vacuo, the soln was poured into aq NaHCO₂ (30 mL, satd), and the precipitate was filtered off, washed with water, and dried. Chromatography (CHCl₃ \rightarrow 20:1 CHCl₃-MeOH) of the solid and the fractions showing a spot of R_f 0.3 (TLC with 15:1 CHCl₃-MeOH) were collected, washed with water, dried (Na_2SO_4) , and concd to give **6** as a solid (1.48 g, 58%), $[\alpha]_{D}^{23} + 38^{\circ}$ $(c 1, CHCl_3)$; ¹H NMR (pyridine- d_5 ; measured after the soln was kept at 50 °C overnight in the presence of molecular sieves 4 Å): δ 2.10, 2.17, 2.20, 2.23, 2.27 [each s of 3 H, 5 Ts(Me)], 3.56 (dq, 1 H, H-2'), 3.99 (t, 1 H, H-6"a), 4.01 (m, 1 H, H-1 or 3), 4.07 (dd, 1 H, H-4"), 4.13 (dd, 1 H, H-4 or 6), 4.16 (dd, 1 H, H-6 or 4), 4.25 (m, 1 H, H-3 or 1), 4.71 (dt, 1 H, H-5"), 5.03 (dd, 1 H, H-6"b), 5.27 (dd, 1 H, H-3"), 5.40 (s, 1 H, CHPh), 5.42 (d, 1 H, H-1'), 5.60 (s, 1 H, H-1"), 5.87 (d, 1 H, H-5), 8.42 (t, 1 H, J 6 Hz, TsNH-6'), 9.06 (d, 1 H, J 9 Hz, TsNH-3 or 1), 9.27 (d, 1 H, J 7 Hz, TsNH-1 or 3), 9.32 (d, 1 H, J 8 Hz, TsNH-2'), 10.02 (d, 1 H J 8 Hz, TsNH-3"); $J_{1.6} \approx$ $J_{3,4}$ 11, $J_{4(6),F}$ 28, $J_{5,F}$ 52, $J_{1',2'_{1}}$ 4, $J_{3'',4''} \approx J_{4'',5''} \approx$ $J_{5'',6''a} \approx J_{6''a,6''b}$ 10, $J_{5'',6''b}$ 5 Hz. ¹⁹F NMR (pyridine d_5): δ -213.2 (dt, ~0.5 H, F-5 for the 2"-oxo form), -212.1 (dt, ~ 0.5 H, F-5 for the hydrate form; disappeared on addition of molecular sieves); $J_{5,F}$ 52, $J_{4,F} \approx J_{6,F}$ 26 Hz. ¹³C NMR (pyridine- d_5 ;

measured after addition of molecular sieves): δ 21.16, 21.18, 21.21, 21.29, 21.32 [5 Ts(*C*H₃)], 24.22 (C-3'), 27.95 (C-4'), 36.55 (C-2), 47.50 (C-6'), 51.02 and 51.08 (each d, $J_{C-1(3),F}$ 5 Hz, C-1, C-3), 52.87 (C-2'), 63.02 (C-3"), 65.50 (C-5"), 67.75 (C-5'), 69.07 (C-6"), 77.79 and 81.11 (d, J_{C-4} (or 6),F 17.5 and 18 Hz, respectively, C-4, 6), 81.68 (C-4"), 90.12 (d of $J_{C-5,F}$ 184 Hz, C-5), 98.43 (C-1'), 101.70 (C-1"), 101.86 (*C*HPh), 195.13 (C-2"); C-2" appeared at δ 107.26 in addition to 195.13 before addition of molecular sieves. Anal. Calcd for C₆₀H₆₈FN₅O₁₇S₅ · 2H₂O: C, 53.51; H, 5.39; N, 5.20; S, 11.90. Found: C, 53.35; H, 5.03; N, 5.67; S, 11.78.

4",6"-O-Benzylidene-5,2"-dideoxy-5-epi-5-fluoro-2-(methoxyimino) - 1, 3, 2', 6', 3" - penta - N - tosyldibekacin (7).—A mixture of 6 (200 mg, 0.15 mmol), $NH_2OMe \cdot HCl$ (63 mg, 0.75 mmol), and molecular sieves 3 Å (50 mg) in dry pyridine (4 mL) was heated at 70 °C for 15 h; NH₂OMe · HCl (32 mg) and molecular sieves 3 Å (25 mg) were added, and the mixture was heated for a further 40 h. Evaporation left a residue, which was dissolved in CHCl₃, and the soln was successively washed with aq 10% KHSO₄ and aq NaHCO₃ (satd), dried (Na₂SO₄), and concd. The residue (202 mg, quant for 7) showed, on TLC (15:1 CHCl₃–MeOH), an R_f value of 0.5 along with R_f 0.6 [very weak spot; the minor oxime isomer (?)]. The product was used, without purification, for the next step. For an analytical sample, it was purified by chromatography (20:1 CHCl₃–MeOH), $[\alpha]_{D}^{22}$ + 34° (c 1, CHCl₃); ¹H NMR (pyridine- d_5): δ 2.14, 2.17, 2.20, 2.26, 2.29 [each s of 3 H, 5 Ts(Me)], 3.55 (m, 1 H, H-2'), 3.70 (s, 3 H, NOCH₃), 3.77 (m, 1 H, H-1 or 3), 3.92 (dd, 1 H, H-6"a), 3.95 (t, 1 H, H-4"), 4.12 (dd, 1 H, H-6 or 4), 4.13 (dd, 1 H, H-4 or 6), 4.23 (m, 1 H, H-3 or 1), 4.46 (dt, 1 H, H-5"), 5.02 (dd, 1 H, H-6"b), 5.17 (dd, 1 H, H-3"), 5.43 (d, 1 H, H-1'), 5.61 (s, 1 H, C*H*Ph), 5.82 (d, 1 H, J_{5.F} 51 Hz, H-5), 6.29 (s, 1 H, H-1"); $J_{1.6} \approx J_{3.4}$ 10, $J_{4(6),F}$ 28, $J_{5,F}$ 51, $J_{1',2'}$ 3, $J_{3'',4''} \approx J_{4'',5''} \approx J_{5'',6''a} \approx J_{6''a,6''b}$ 10, $J_{5'',6''b}$ 5, $J_{3'',NH}$ 8 Hz. ¹⁹F NMR (pyridine- d_5): δ -213.2 (dt, J 28, 28, 52 Hz, F-5). ¹³C NMR (pyridine-d₅): δ 25.45 (C-3"), 29.26 (C-4'), 37.33 (C-2), 48.82 (C-6'), 52.20 and 52.45 (d, $J_{C-1 \text{ (or 3)},F}$ 5.1 and 4.7 Hz, C-1,3), 54.13 (C-2'), 56.77 (C-3'), 63.91 (NOCH₃) 66.72 (C-5"), 68.96 (C-5'), 70.22 (C-6"), 79.31 [d, J_{C-4 (or 6),F} 17.8 Hz, C-4 (or 6)], 81.03 (C-2"), 82.37 (C-4"), 82.40 [d, $J_{C-6 \text{ (or 4)},F}$ 17.9 Hz, C-6 (or 4)], 91.56 (d, J_{C-5,F} 184 Hz, C-5), 95.06 (C-1"), 99.83 (C-1'), 103.21 (CHPh). Anal. Calcd for $C_{61}H_{71}FN_6O_{17}S_5 \cdot H_2O$: C, 53.96; H, 5.42; N, 6.19; S, 11.81. Found: C, 54.19; H, 5.36; N, 6.46; S, 11.82.

2"-Amino-4",6"-O-benzylidene-5,2"-dideoxy-5-epi-5fluoro-1,3,2',6',3"-penta-N-tosyldibekacin (8) and 2"amino-4",6"-O-benzylidene-5,2"-dideoxy-5,2"-diepi-5fluoro-1,3,2',6',3"-penta-N-tosyldibekacin (9).—To a mixture of LiBH₄ (26 mg, 1.2 mmol) in cold (-20°C) dry THF (3 mL) was added Me₃SiCl (0.38 mL, 3.0 mmol) under N_2 , and the mixture was stirred at room temperature for 2 h. To the suspension cooled to -20 °C was added a soln of 7 (162 mg, 0.12) mmol) in THF (0.5 mL), and the mixture was stirred under N_2 at room temperature overnight. In TLC (10:1 CHCl₃–MeOH), the organic layer showed spots of $R_f 0.65$ (7), 0.26 (9), 0.24 (8), 0.05 (minor), and 0 (minor). The mixture was poured into a NaHCO₃ ((satd, 4 mL), concd, and the residue was extracted with THF. The extracted product was chromatographed (silica gel 30 mL, 15:1 CHCl₃-MeOH) to give 8 (64 mg, 40%) and 9 (23 mg, 14%) as solids.

Compound 8: $[\alpha]_{D}^{22} + 29^{\circ}$ (*c* 1, DMF); ¹H NMR (pyridine- d_5): δ 2.14, 2.16, 2.20, 2.27, 2.31 [each s of 3 H, 5 Ts(Me)], 3.31–3.36 (m, 2 H, H-6'a, 2"), 3.41 (dt, 1 H, H-6'b), 3.54 (dddd, 1 H, J 3, 4, 8, 11 Hz, H-2'), 3.76 (t, 1 H, H-4"), 4.09 (m, 1 H, H-3"), 5.25 (d, 1 H, $J_{1',2''}$ 4 Hz, H-1"), 5.39 (s, 1 H, C*H*Ph), 5.41 (d, 1 H, $J_{1',2''}$ 3 Hz, H-1'), 5.83 (br dt, $J \sim 1$, ~ 1 , 51 Hz, H-5). ¹⁹F NMR (pyridine- d_5): δ –212.74 (dt, J 28, 28, 51 Hz, F-5). Anal. Calcd for C₆₀H₇₁FN₆O₁₆S₅ · H₂O: C, 54.20; H, 5.53; N, 6.32; S, 12.06. Found: C, 54.10; H, 5.63; N, 6.63; S, 11.95.

Compound **9**: $[\alpha]_{D}^{22} + 40^{\circ}$ (*c* 1, DMF); ¹H NMR (pyridine- d_{5}): δ 2.14, 2.17, 2.20, 2.24, 2.29, [each s of 3 H, 5 Ts(Me)], 3.30–3.41 (m, 2 H, H-6'a, 6'b), 3.58 (m, 1 H, H-2'), 3.68 (d, 1 H, $J_{2'',3''}$ 4 Hz, H-2''), 4.39–4.44 (m, 2 H, H-3'', 5''), 5.25 (s, 1 H, H-1''), 5.38 (d, 1 H, $J_{1',2'}$ 3 Hz, H-1'), 5,50 (s, 1 H, C*H*Ph), 5.84 (d, 1 H, $J_{5,F}$ 51 Hz, H-5). ¹⁹F NMR (pyridine- d_{5}): δ –212.61 (dt, J 28, 28, 51 Hz, F-5). Anal. Calcd for C₆₀H₇₁FN₆O₁₆S₅ · H₂CO₃: C, 53.34; H, 5.36; N, 6.12; S, 11.67. Found: C, 53.37; H, 5.59; N, 6.28; S, 11.57.

4",6"-O-Benzylidene-2"-[(S)-4-(benzyloxycarbonylamino)-2-hydroxybutanoylamido]-5,2"-dideoxy-5-epi-5-fluoro-1,3,2',6',3"-penta-N-tosyldibekacin (10) and its 2"-epimer (11).—To a soln of 8 (107 mg, 0.08 mmol) in 3:1 4-dioxane-H₂O (1.1 mL) were added N-[(S)-4-(benzyloxycarbonylamino)-2-hydroxybutanoyloxy]succinimide [16] (56 mg, 0.16 mmol) and Na₂CO₃ (17 mg, 0.16 mmol), and the soln was kept at 50 °C for 3.5 h. Evaporation left a residue, which was extracted with CHCl₃. The soluble matter was chromatographed (12:1 CHCl₃-MeOH) to give 10 as a solid (91.2 mg, 73%) along with 8 recovered (27 mg). Compound **10**: $[\alpha]_D^{22} + 60^\circ$ (*c* 1, CHCl₃). Similar treatment of **9** (110 mg, 0.08 mmol) gave **11** as a solid (86 mg, 70%) along with **9** (30 mg). Compound **11**: $[\alpha]_{22}^{22} + 30^\circ$ (*c* 1, CHCl₃). Anal. Calcd for $C_{72}H_{84}FN_7O_{20}S_5$: C, 55.91; H, 5.47; N, 6.34; S, 10.36. Found: compound **10**, C, 55.95; H, 5.73; N, 6.21; S,10.51. Compound **11**, C, 55.64; H, 5.65; N, 6.23; S, 10.16.

Condensation of 8 with N - (benzyloxycarbonyl)glycine (Zgly), 3-(benzyloxycarbonylamino)propanoic acid (Zapa), and 4-(benzyloxycarbonylamino)butanoic acid (Zaba) to give 12, 13, and 14, respectively. —To a mixture of 8 (80 mg, 0.06 mmol) and Zgly (25.5 mg, 0.12 mmol) [Zapa (27 mg, 0.12 mmol) or Zaba (22 mg, 0.09 mmol)] in THF (1.6 mL) were added Et₃N [27 µL, 0.12 mmol (27 µL, 0.12 mmol or 20 μ L, 0.09 mmol)] and water-soluble carbodiimide [EtN=C=N(CH₂)₃NMe₂ · HCl] [23.4 mg, 0.12 mmol (23.4 mg, 0.12 mmol or 17 mg, 0.09 mmol)], and the mixture was kept at 50 °C for 2 h (2 h or 8 h). Evaporation left a residue, the soln of which in CHCl₃ was successively washed with aq 10% KHSO₄, aq NaHCO₃ (satd), and water, dried (Na_2SO_4) , and concd. The residue was chromatographed with 12:1 (15:1 or 12:1) CHCl₃-MeOH to give 12 (80.7 mg, 89%), 13 (82.4 mg, 90%), and 14 (74.4 mg, 81%) as solids, respectively.

Compound **12**: $[\alpha]_D^{23} + 68^\circ$ (*c* 1, CHCl₃). Anal. Calcd for C₇₀H₈₀FN₇O₁₉S₅: C, 55.95; H, 5.37; N, 6.52; S, 10.67. Found: C, 55.80; H, 5.45; N, 6.60; S, 10.50.

Compound **13**: $[\alpha]_D^{23} + 57^\circ$ (*c* 1, CHCl₃). Anal. Calcd for C₇₁H₈₂FN₇O₁₉S₅: C, 56.22; H, 5.45; N, 6.46; S, 10.57. Found: C, 56.03; H, 5.49; N, 6.57; S, 10.53.

Compound 14: $[\alpha]_D^{22} + 69^\circ$ (*c* 1, CHCl₃). Anal. Calcd for C₇₂H₈₄FN₇O₁₉S₅: C, 56.49; H, 5.53; N, 6.41; S, 10.47. Found: C, 56.46; H, 5.74; N, 6.15; S,10.29.

2"-Amino-5,2"-dideoxy-5-epi-5-fluorodibekacin (15). —To a soln of 8 (100 mg, 0.075 mmol) in liquid NH₃ (~15 mL) at -55 °C was added Na (~60 mg), and the deep-blue soln was kept at this temperature for 15 min. Powdered NH₄Cl was added until the soln became colorless, and the NH₃ was evaporated off. The residue was charged onto a column of Amberlite CG 50 (NH₄⁺ form) and, after the column was washed with water, the product was eluted with aq 0.1 \rightarrow 0.4 M NH₃ (gradually raised) to give 15 as a solid, $[\alpha]_D^{23} + 130^\circ$ (c 1, H₂O) (only antibacterial data was reported [16]); ¹H NMR (26% ND₃ in D₂O): δ 2.63 (dd, 1 H, $J_{1",2"}$ 3.5, $J_{2",3"}$ 10.5 Hz, H-2"), 2.78 (dt, 1 H, $J_{1',2'} \approx J_{2',3'eq}$ 3.5, $J_{2',3'ax}$ 12 Hz, H-2'), 2.81 (dd, 1 H, $J_{2'',3''}$ 10.5, $J_{3'',4''}$ 9.5 Hz, H-3"), 3.44 (ddd, 1 H, J 2, 10, 30 Hz, H-6), 3.57 (ddd, 1 H, J 2, 10, 29 Hz, H-4), 4.94 (d, 1 H, H-1'), 4.98 (d, 1 H, H-1"), 5.38 (br dt, 1 H, J 2, 2, 52 Hz, H-5). ¹⁹F NMR (26% ND₃ in D₂O): δ –213.79 (ddd, J 29, 30, 52 Hz, F-5). Anal. Calcd for C₁₈H₃₇FN₆O₆ · 0.7H₂CO₃: C, 45.29; H, 7.80; N, 16.95; F, 3.83. Found: C, 45.42; H, 7.76; N, 17.16; F, 3.62.

2"-Amino-5,2"-dideoxy-5,2"-diepi-5-fluorodibekacin (16).—Compound 9 (79.5 mg, 0.058 mmol) was treated as described for 15 to give 16 as a solid monocarbonate (17.8 mg, 60%), $[\alpha]_{23}^{23} + 100^{\circ}$ (*c* 1, H₂O); ¹H NMR (26% ND₃ in D₂O): δ 2.81 (ddd, 1 H, *J* 3, 4, 12 Hz, H-2'), 3.00 (dd, 1 H, $J_{2",3"}$ 4, $J_{3",4"}$ 10 Hz. H-3"), 3.21 (d, 1 H, $J_{2",3"}$ 4 Hz, H-2"), 3.36 (t, 1 H, $J_{3",4"} \approx J_{4",5"}$ 10 Hz, H-4"), 3.49 (ddd, 1 H, *J* ~ 1, 10, 29 Hz, H-6), 3.53 (ddd, 1 H, *J* ~ 1, 10, 29 Hz, H-4), 4.95 (s, 1 H, H-1"), 4.96 (d, 1 H, H-1'), 5.37 (br dt, 1 H, *J* ~ 1, ~ 1, 52 Hz, H-5). ¹⁹F NMR (26% ND₃ in D₂O): δ -214.04 (dt, *J* 29, 29, 52 Hz, F-5). Anal. Calcd for C₁₈H₃₇FN₆O₆ · H₂CO₃: C, 44.35; H, 7.64; N, 16.33; F, 3.69. Found: C, 44.39; H, 7.83; N, 16.43; F, 3.50.

2"-[(S)-4-Amino-2-hydroxybutanoylamido]-5,2"dideoxy-5-epi-5-fluorodibekacin (17).—Compound 10 (57.5 mg, 0.037 mmol) was treated as described for 15 to give 17 as a solid sesquicarbonate (12.0 mg, 50%), $[\alpha]_{D}^{22} + 93^{\circ} (c \ 1, H_{2}O); {}^{1}H \ NMR \ (26\% \ ND_{3})$ in D₂O): δ 1.64–1.72 (m, 3 H, H-3'eq, 4'eq, 3'''a), 1.86 (m, 1 H, H-3"b), 2.69 (t, 2 H, J 7, 7 Hz, H-4^ma,b), 2.75 (ddd, 1 H, J 3, 4, 12 Hz, H-2'), 3.06 (dd, 1 H, $J_{2'',3''}$ 11, $J_{3'',4''}$ 9.5 Hz, H-3"), 3.22 (t, 1 H, J 9.5, 9.5 Hz, H-4"), 3.38 (br dd, 1 H, $J \sim 1$, 10, 29 Hz, H-6), 3.47 (br dd, 1 H, $J \sim 1$, 10, 29 Hz, H-4), 3.81-3.86 (m, 3 H, H-2", H-5", H-6"b), 4.21 (dd, 1 H, J 4, 9 Hz, H-2^{'''}), 4.90 (d, 1 H, $J_{1',2'}$ 3 Hz, H-1'), 4.97 (d, 1 H, $J_{1'',2''}$ 3.5 Hz, H-1"), 5.33 (br dt, 1 H, J ~1, ~1, 53 Hz, H-5). ¹⁹F NMR (26% ND₃ in D₂O): δ -213.74 (dt, J 29, 29, 53 Hz, F-5). Anal. Calcd for $C_{22}H_{44}FN_7O_8 \cdot 1.5H_2CO_3$: C, 43.65; H, 7.33; N, 15.16; F, 2.94. Found: C, 43.38; H, 7.10; N, 15.00; F, 2.74.

2"-[(S)-4-Amino-2-hydroxybutanoylamido]-5,2"dideoxy-5,2"-diepi-5-fluorodibekacin (18).—Compound 11 (182.4 mg, 0.118 mmol) was treated similarly to the way described for 15 to give 18 as a solid (30.0 mg, 39%), $[\alpha]_D^{23} + 60^\circ$ (c 1, H₂O); ¹H NMR (26% ND₃ in D₂O): δ 1.66–1.72 (m, 3 H, H-3'eq, 4'eq, 3""a), 1.86 (m, 1 H, H-3""b), 2.70 (t, 2 H, H-4""a,b), 2.76 (ddd, 1 H, J 3, 4, 12 Hz, H-2'), 3.19 (dd, 1 H, $J_{2'',3''}$ 4, $J_{3'',4''}$ 9.5 Hz, H-3''), 3.35 (t, 1 H, H-4''), 3.44 (ddd, 1 H, $J \sim 1$, 10, 29 Hz, H-6), 3.48 (ddd, 1 H, $J \sim 1$, 10, 28 Hz, H-4), 4.24 (dd, 1 H, J4, 8 Hz, H-2'''), 4.35 (dd, 1 H, $J_{1'',2''}$ 1, $J_{2'',3''}$ 4 Hz, H-2''), 4.90 (br s, 1 H, H-1''), 4.91 (d, 1 H, $J_{1',2'}$ 3 Hz, H-1'), 5.30 (br dt, 1 H, $J \sim 1$, ~ 1 , 52 Hz, H-5). ¹⁹F NMR (26% ND₃ in D₂O): δ -213.92 (ddd, J28, 29, 52 Hz, F-5). Anal. Calcd for C₂₂H₄₄FN₇O₈ · 1.5H₂CO₃: C, 43.65; H, 7.33; N, 15.16; F, 2.94. Found: C, 43.29; H, 7.44; N, 14.92; F,2.97.

5, 2" - Dideoxy - 5 - epi - 5 - fluoro - 2" - glycylamidodibekacin (19).—Compound 12 (52.0 mg, 0.035 mmol) was treated as described for 15 to give 19 as a solid carbonate \cdot hemihydrate (10.8 mg, 54%), [α]_D²³ + 122° (c 1, H₂O); ¹H NMR (26% ND₃ in D₂O): δ 2.80 (ddd, 1 H, J 3, 4, 12 Hz, H-2'), 3.04 (dd, 1 H, J_{2",3"} 11.5, J_{3",4"} 9 Hz, H-3"), 3.27 (t, 1 H, J 9, 9 Hz, H-4"), 3.31 (d, 1 H, J 16 Hz, H-2""a), 3.38 (d, 1 H, J 16 Hz, H-2^mb), 3.41 (ddd, 1 H, J 2, 10, 28 Hz, H-6), 3.57 (ddd, 1 H, J 2, 10, 28 Hz, H-4), 3.85-3.90 (m, 3 H, H-2", 5", 6"b), 4.95 (d, 1 H, $J_{1',2'}$ 3 Hz, H-1'), 5.02 (d, 1 H, $J_{1'',2''}$ 4 Hz, H-1"), 5.38 (br dt, 1 H, J ~1, ~1, 53 Hz, H-5). ¹⁹F NMR (26% ND₃ in D_2O : δ -213.70 (dt, J 28, 28, 53 Hz, F-5). Anal. Calcd for $C_{20}H_{40}FN_7O_7 \cdot H_2CO_3 \cdot 0.5H_2O$: C, 43.43; H, 7.46; N, 16.88. Found: C, 43.75; N, 7.19; N, 16.51.

2"-(3-Aminopropanoylamido)-5,2"-dideoxy-5-epi-5fluorodibekacin (20).—Compound 13 (54.4 mg, 0.036 mmol) was treated as described for 15 to give **20** as a solid tricarbonate (12.6 mg, 50%), $[\alpha]_{\rm D}^{23}$ +112° (c 1, H₂O); ¹H NMR (26% ND₃ in D₂O): δ 2.41-2.52 [m, 2 H, H-2""a, H-2""b (or H-3""a, H-3"b)], 2.83 (ddd, 1 H, J 3, 4, 12 Hz, H-2'), 2.90 [m, 2 H, H-3^{'''}a, 3^{'''}b (or 2^{'''}a, 2^{'''}b)], 3.06 (dd, 1 H, $J_{2^{''},3^{''}}$ 11, $J_{3'',4''}$ 9.5 Hz, H-3"), 3.28 (t, 1 H, J 9.5, 9.5 Hz, H-4"), 3.44 (ddd, 1 H, J 2, 10, 30 Hz, H-6), 3.55 (ddd, 1 H, J 2, 10, 29 Hz, H-4), 3.87–3.93 (m, 3 H, H-2", 5", 6"b), 4.97 (d, 1 H, $J_{1',2'}$ 3 Hz, H-1'), 5.05 (d, 1 H, $J_{1'',2''}$ 4 Hz, H-1"), 5.41 (br dt, 1 H, $J \sim 2$, ~ 2, 52 Hz, H-5). ¹⁹F NMR (26% ND₃ in D₂O): δ -213.65 (ddd, J 29, 30, 52 Hz, F-5). Anal. Calcd for $C_{21}H_{42}FN_7O_7 \cdot 3H_2CO_3$: C, 40.62; H, 6.82; N, 13.82; F, 2.68. Found: C, 40.78; H, 6.99; N, 14.37; F, 2.87.

2"-(4-Aminobutanoylamido)-5,2"-dideoxy-5-epi-5fluorodibekacin (21).—Compound 14 (38.8 mg, 0.025 mmol) was treated as described for 15 to give 21 as a solid tricarbonate (12.3 mg, 67%), $[\alpha]_D^{21}$ +95° (c 1, H₂O); ¹H NMR (26% ND₃ in D₂O): δ 1.68–1.78 (m, 4 H, H-3'eq, 4'eq, 3"'a, 3"'b), 2.27– 2.38 (m, 2 H, H-2'''a, 2"'b), 2.61 (t, 2 H, J 7 Hz, H-4‴a, 4‴b) 2.80 (ddd, 1 H, J 3, 4, 12 Hz, H-2'), 3.04 (dd, 1 H, $J_{2'',3''}$ 11, $J_{3'',4''}$ 9 Hz, H-3″), 3.25 (t, 1 H, J 9, 9 Hz, H-4″), 3.41 (ddd, 1 H, J 2, 10, 30 Hz, H-6), 3.52 (ddd, 1 H, J 2, 10, 29 Hz, H-4), 3.83–3.90 (m, 3 H, H-2″, 5″, 6″b), 4.94 (d, 1 H, $J_{1',2'}$ 3 Hz, H-1'), 5.01 (d, 1 H, $J_{1'',2''}$ 4 Hz, H-1″), 5.38 (br dt, 1 H, $J \sim 2$, ~ 2 , 52 Hz, H-5). ¹⁹F NMR (26% ND₃ in D₂O): δ – 213.63 (dt, J 29, 29, 52 Hz, F-5). Anal. Calcd for C₂₂H₄₄FN₇O₇ · 3H₂CO₃: C, 41.49; H, 6.96; N, 13.55. Found: C, 41.26; H, 7.00; N, 13.73.

Minimal inhibitory concn ($\mu g / mL$) of dibekacin, 15, 16, 17, 18, 19, 20, and 21.—Performed on Mueller–Hinton agar at 37 °C for 18 h. Staphylococcus aureus Smith: 0.39, 6.25, 6.25, 12.5, 25, 25, 25, A, in the following order; S. aureus Ap01: A, 50, 50, A, A, A, A, A; S. epidermidis 109: 1.56, 6.25, 6.25, 50, A, A, A, A; Escherichia coli K-12: 3.13, 12.5, 12.5, 50, A, 50, A, A; E. coli K-12 ML 1629: 6.25, 25, 25, A, A, A, A, A; Klebsiella pneumoniae PCI 602: 3.13, 25, 25, A, A, A, A, A, A; Serratia marcescens: 6.25, 50, 50, A, A, A, A, A, A; Pseudomonas aeruginosa A3: 1.56, 12.5, 12.5, A, A, A, A, A (A: 100 or > 100).

Acknowledgements

The authors are grateful to Dr. Yoshihiko Kobayashi at our Institute for carrying out the computations.

References

- H. Umezawa, S. Umezawa, T. Tsuchiya, and Y. Okazaki, J. Antibiot., 24 (1971) 485-487; S. Umezawa, H. Umezawa, Y. Okazaki, and T. Tsuchiya, Bull. Chem. Soc. Jpn., 45 (1972) 3624-3628.
- [2] S. Kondo, K. Iinuma, H. Yamamoto, K. Maeda, and H. Umezawa, J. Antibiot., 26 (1973) 412–415.
- [3] S. Kondo, A. Tamura, S. Gomi, Y. Ikeda, T. Takeuchi, and S. Mitsuhashi, J. Antibiot., 46 (1993) 310-315.
- [4] R. Kuwahara and T. Tsuchiya, Carbohydr. Res., 286 (1996) 107-122.
- [5] R. Kuwahara and T. Tsuchiya, Carbohydr. Res., 293 (1996) 15–30.
- [6] S. Kondo, S. Shibahara, T. Usui, T. Kudo, A. Tamura, S. Gomi, Y. Ikeda, D. Ikeda, and T. Takeuchi, J. Antibiot., 46 (1993) 531–534.
- [7] T. Shitara, Y. Kobayashi, T. Tsuchiya, and S. Umezawa, *Carbohydr. Res.*, 232 (1992) 273-290.
- [8] E. Umemura, T. Tsuchiya, Y. Koyama, and S. Umezawa, *Carbohydr. Res.*, 238 (1993) 147-162.
- [9] T. Tsuchiya, T. Shitara, S. Umezawa, T. Takeuchi, M. Hamada, N. Tomono, and E. Umemura, *Carbo-hydr. Res.*, 240 (1993) 307-312.

- [10] T. Naito, S. Nakagawa, Y. Narita, S. Toda, Y. Abe, M. Oka, H. Yamashita, T. Yamasaki, K. Fujisawa, and H. Kawaguchi, J. Antibiot., 27 (1974) 851-858.
- [11] Y. Takahashi, C. Ueda, T. Tsuchiya, and Y. Kobayashi, Carbohydr. Res., 249 (1993) 57-76.
- [12] L.N. Markovskii, V.E. Pashinnik, and A.V. Kirsanov, Synthesis, (1973) 787–789; M. Hudlicky, Org. React., 35 (1988) 513–637; J.A. Wilkinson, Chem. Rev., 92 (1992) 505–519.
- [13] T. Shitara, E. Umemura, T. Tsuchiya, and T. Matsuno, *Carbohydr. Res.*, 276 (1995) 75–89.
- [14] A. Banaszek and W. Karpiesiuk, *Carbohydr. Res.*, 251 (1994) 233-242.
- [15] S. Kondo, Jpn. J. Antibiot., 47 (1994) 561-574.
- [16] H. Kawaguchi, T. Naito, S. Nakagawa, and K. Fujisawa, J. Antibiot., 25 (1972) 695-708.
 [17] Y. Takahashi, T. Tsuchiya, S. Umezawa, and H.
- [17] Y. Takahashi, T. Tsuchiya, S. Umezawa, and H. Umezawa, Carbohydr. Res., 210 (1991) 221–232.

- [18] Y. Kobayashi, T. Tsuchiya, T. Ohgi, N. Taneichi, and Y. Koyama, *Carbohydr. Res.*, 230 (1992) 89-105.
- [19] Y. Takahashi, S. Tsuneda, T. Tsuchiya, Y. Koyama, and S. Umezawa, *Carbohydr. Res.*, 232 (1992) 89– 105.
- [20] A. El Nemr, T. Tsuchiya, and Y. Kobayashi, *Carbohydr. Res.*, 293 (1996) 31–59.
- [21] E. Breitmaier and W. Voelter, ¹³C NMR Spectroscopy, 2nd ed., Verlay Chemie, Weinheim, 1978, pp 69–70.
- [22] H.O. Kalinowski, S. Berger, and S. Braun, Carbon-13 NMR Spectroscopy, Engl. ed., Wiley, Chichester, 1986, pp 92–96.
- [23] Y. Kobayashi and T. Tsuchiya, *Carbohydr. Res.*, submitted.