Simplified Chiral Aminolysis of Prochiral σ -Symmetric Dicarboxylic Anhydrides with Sodium Salt of 4(S)-IPTT¹⁾

Yoshimitsu NAGAO,^{*} Yuichi HAGIWARA, Yukari HASEGAWA, Masahito OCHIAI, Takehisa INOUE,^{††} Motoo SHIRO,[†] and Eiichi FUJITA^{†††} Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 [†]Shionogi Research Laboratories, Shionogi & Co. Ltd., Fukushima-ku, Osaka 553 ^{††}Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607 ^{++†}Osaka University of Pharmaceutical Sciences, Kawai, Matsubara, Osaka 580

Highly enantioselective chiral aminolysis of <u>cis</u>-4-cyclohexen-1,2-ylenebis(carboxylic acid) anhydride has been performed by employing sodium salt of $4(\underline{R})$ -isopropyl-1,3-thiazolidine-2thione in THF-DMSO. Other chiral aminolyses of prochiral σ -symmetric dicarboxylic anhydrides such as <u>cis</u>-cyclobutan-1,2ylenebis(carboxylic acid) anhydride, <u>meso</u>-2,4-dimethylglutaric anhydride, and $3-[(\underline{t}$ -butyldimethylsilyl)oxy]glutaric anhydride were similarly investigated.

Chiral Differentiation between two identical carboxyl groups in prochiral σ -symmetric dicarboxylic acids utilizing enzymatic or nonenzymatic procedure should be a rational strategy for chiral syntheses of biologically active compounds because the resultant chiral product(s) can be available for its (or thier) further "enantioconvergent" transformations on the basis of the latent σ -symmetry.²⁾ Previously, we disclosed a novel nonenzymatic chiral induction into prochiral σ -symmetric dicarboxylic acids employing a functional heterocycle, 4 (R or S)-methoxycarbonyl-1,3-thiazolidine-2-thione.²⁻⁵⁾ In the course of our series of studies on the chiral induction utilizing C4-chiral thiazolidines,³⁻⁷⁾ we anticipated that 4(S)-isopropyl-1,3-thiazolidine-2-thione [4(S)-IPTT](1)⁷⁾ would be available for chiral aminolysis of prochiral dicarboxylic anhydrides 2[e. g., cis-4-cyclohexen-1,2-ylenebis(carboxylic acid) anhydride (2a)] (See Scheme 1).¹⁾ From the viewpoint that anhydride 2a is regarded as a useful prochiral precursor for the chiral synthesis of carbapenems and (+)-carbacyclin,^{8,9)} we firstly attempted its chiral aminolysis with 4(S)-IPTT(1) as follows.

A solution of 60% NaH (coated type with mineral oil, 220 mg, 5.5 mmol) in THF (6 ml) was added to a solution of $4(\underline{S})$ -IPTT (1) (805 mg, 5 mmol) in THF (5 ml) at 0 $^{\circ}$ C with stirring. The mixture was stirred at 0 $^{\circ}$ C for 10 min and then anhydrous DMSO (0.43 ml, 6 mmol) was added at room temperature. After being stirred at room temperature for 1 h, the reaction mixture was added to a solution of 2a (836.8 mg, 5.5 mmol) in THF (6 ml) at -50 $^{\circ}$ C. The mixture was stirred at

-50 - -40 ^OC for 1 h, acidified with saturated aqueous NaHSO₄ (20 ml), and extracted with CH₂Cl₂. The usual work-up of the CH₂Cl₂ extract gave a crude carboxylic acid, which was treated with CH₂N₂ in ether affording methyl ester 3a [1.30 g (80.2% yield); 94% diastereomer excess (de), $[\alpha]_D^{24} + 217.9^{\circ}$ (c 1.12, CHCl₃)] as a yellow oil after chromatographic purification (Run 5 in Table 1). This simple chiral induction¹⁰ into 2a can be promised for the big-scale synthesis of the useful chiral synthon for carbapenems and (+)-carbacyclin.^{8,9}

Scheme 1.

The absolute configuration of the product 3a was established by its chemical conversion to the antipodal compound $4 [62\% \text{ overall yield from } 3a; [\alpha]_D^{25} + 78.5^{\circ}$ (c 0.7, acetone)] of the known lactone $[[\alpha]_D^{25} - 85.4^{\circ}$ (c 2.63, acetone)]⁹) <u>via</u> reduction of 3a with NaBH₄ in aqueous EtOH followed by lactonization with a catalytic amount of TsOH in toluene at 110 °C for 3 h.

Although similar aminolyses of 2a with sodium salt of $4(\underline{S})$ -IPTT were carried out in the absence or in the presence of some additives such as HMPA, 18-Crown-6, and TMEDA, their results might be unsatisfactory with respect to the chemical and/or optical yield(s) of 3a (Runs 1-4 in Table 1).

Based on the result of 2a, chiral aminolyses of anhydrides 2b - 2d with or without 1.2 mol equiv. of DMSO as an effective additive were similarly examined by employing sodium salt of $4(\underline{S})$ -IPTT(1). All results were listed in Table 1 (Runs 6 - 11). The product (Run 7) obtained from the chiral aminolysis of <u>cis</u>-4-cyclobutan-1,2-ylenebis(carboxylic acid) anhydride (2b) proved to be the 3b-excess compound by its chemical conversion to the antipodal compound 5 [42% overall yield from 3b; $[\alpha]_D^{24} - 77.9^{\circ}$ (c 1.2, CHCl₃)] of the known lactone¹⁰ [$[\alpha]_D^{24} + 118.7^{\circ}$ (c 10, CHCl₃)] in the same manner as the case of 3a. In anhydride 2c (Run

9), the 3c - excess product was obtained, which was confirmed by its aminolysis with piperidine (1.0 mol equiv.) in CH_2Cl_2 at 0 $^{\circ}C$ giving the known amide 6 [91% yield; $[\alpha]_D^{20} + 0.92^{\circ}$ (c 3.5, $CHCl_3$); lit.⁵⁾ $[\alpha]_D^{25} + 2.45^{\circ}$ (c 3.26, $CHCl_3$)]. The stereochemistry of the major aminolysis product (Run 10) of $2d^{10}$ was clarified to be 3d [38.8% yield; mp 64 - 65 $^{\circ}C$ (ether - hexane); $[\alpha]_D^{20} + 219^{\circ}$ (c 0.8, $CHCl_3$)] by its X-ray analysis (Fig. 1) after separation of the major diastereomer on a silica gel column [hexane-AcOEt (4 : 1)].

Run	Anhydride	Additive	Yield/% of 3a - d	Diastereomer excess/% ^{a)}
1		None	96(3a excess)	86
2	H 0 .~	HMPA	48(3a excess)	96
3	"	18-Crown-6	6(3a excess)	76
4	"	TMEDA	68(3a excess)	82
5	"	DMSO	80(3a excess)	94
6		None	81(3b excess)	62
7	н~ "	DMSO	85(3b excess)	68
8	Me	None	87(3c excess)	28b)
9		DMSO	86(3c excess)	46 ^b)
10 ₽		None	62(3d excess)	40
11	H	DMSO	46(3d excess)	16

Table 1. Chiral aminolysis of prochiral dicarboxylic anhydrides 2a - d with sodium salt of $4(\underline{S})$ -IPTT (1)

a) Checked by HPLC unless otherwise stated. b) Checked by 1 H-NMR.

Fig. 1. Perspective view of the crystallographic structure of compound 3d,

We assigned a structure 7 to the sodium salt of $4(\underline{S})$ -IPTT based on its 13 C-NMR spectrum (δ 180 ppm : \gtrsim C=S)¹² in d8-THF and X-ray analysis of 3-(p-bromobenzyl)-4(\underline{S})-isopropyl-1,3-thiazolidine-2-thione($\underline{8}$) [mp 108 °C (CHCl₃-hexane)] (Fig: 2). Thus, stereochemical outcome of the chiral aminolysis of anhydrides 2a can be rationalized by assuming a transition state (Fig. 3) where the sodium salt 7 attacks the S-site carbonyl carbon from the least hindered convex side. Another transition state where compound 7 may approach the <u>R</u>-site carbonyl carbon on the convex face should be eliminated due to the severe steric hindrance between two axial-like protons of 2a and C4- and C5-protons of 7. In other three cases of 2b - 2d, the similar consideration would also be available for their stereochemical results.

Fig. 2. X-Ray analysis of compound <u>8</u>.

References

- Presented at the 106th Annual Meeting of the Pharmaceutical Society of Japan, Chiba, Japan, April 2-4, 1986; abstract paper p.369.
- 2) Y. Nagao and E. Fujita, Yuki Gosei Kagaku Kyokai Shi, <u>42</u>, 622 (1984) and references cited therein.
- 3) Y. Nagao, T. Ikeda, M. Yagi, E. Fujita, and M. Shiro, J. Am. Chem. Soc., <u>104</u>, 2079 (1982).
- 4) Y. Nagao, T. Ikeda, T. Inoue, M. Yagi, M. Shiro, and E. Fujita, J. Org. Chem. 50, 4072 (1985).
- 5) Y. Nagao, T. Inoue, E. Fujia, S. Terada, and M. Shiro, Tetrahedron, <u>40</u>, 1215 (1984).
- 6) Y. Nagao, T. Kumagai, S. Tamai, T. Abe, Y. Kuramoto, T. Taga, S. Aoyagi, Y. Nagase, M. Ochiai, Y. Inoue, and E. Fujita, J. Am. Chem. Soc., <u>108</u>, 4673 (1986).
- 7) Y. Nagao, Y. Hagiwara, T. Kumagai, M. Ochiai, T. Inoue, K. Hashimoto, and E. Fujita, J. Org. Chem., <u>51</u>, 2391 (1986).
- N. Tamura, H. Natsugari, Y. Kawano, Y. Matsushita, K. Yoshioka, and M. Ochiai, Chem. Pharm. Bull., <u>35</u>, 996 (1987).
- 9) H. -J. Gais and K. L. Lukas, Angew. Chem., Int. Ed. Engl., <u>23</u>, 142 (1984).
- After our oral report,¹⁾ a similar interesting paper was published. See. M.
 Oshima and T. Mukaiyama, Chem. Lett., <u>1987</u>, 377.
- 11) I. J. Jakovac, H. B. Goodbrand, K. P. Lok, and J. B. Jones, J. Am. Chem. Soc., 104, 4659 (1982).
- 12) E. Fujita, Y. Nagao, K. Seno, S. Takao, T. Miyasaka, M. Kimura, and W. H. Watson, J. Chem. Soc., Perkin Trans 1., 1981, 914.

(Received December 2, 1987)

384