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Abs t rac t :  Acid-catalyzed cyclization of hydroxy-cyclic sulfates occurs with endo-regioselectivity affording 
bispyran products from substrates in which the nucleophilic hydroxyl and electrophilic cyclic sulfate groups are 
1,2-trans-substituted on a cyclic pyran template. This methodology is demonstrated in an enantioselective 
synthesis of the trans-syn-trans fused AB cyclic ether rings of the brevetoxin natural products. 
© 1999 Elsevier Science Ltd. All rights reserved. 

Oxidative cyclization pathways have been hypothesized for the biosynthesis of several 
classes of cyclic and polycyclic ether natural products. ] For the brevetoxin-type polycyclic 
ether structures such as hemibrevetoxin B (1),2 the repeating trans-syn-trans fused polycyclic 
ether stereochemistry has been proposed to arise from tandem anti-cyclization transformation 
of a polyepoxide arising from enantioselective epoxidation of a polyene precursor.lb, c 
However, this biosynthetic pathway requires not only enantioselective epoxidation of a polyene 
such as a hypothetical prebrevetoxin polyene 3, but also necessitates regioselective endo- 
cyclization of each hydroxyepoxide of polyepoxide 2 (Figure 1).3, 4 

Figure 1 : Proposed biosynthesis of hemibrevetoxin via polyepoxide polycyelization 
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Electrophile-promoted hydroxyalkene cyclizations and acid-catalyzed hydroxyepoxide 
cycloisomerizations generally proceed via exocyclic pathways (i.e. 4 ~ 5, Figure 2) unless 
carbocation-stabilizing groups are present at Re and/or Rz. 5,6 However, selenium 7 and 
tellurium-promoted 8 endo-cyclizafions are known for hydroxyalkenes in which hydroxyl and 
alkene substituents are trans-substituted on a monocyclic template, particularly when these 
cyclizations are conducted under equilibrating reaction conditions rather than "kinetic" or 
non-equilibrating conditions. Although hydroxyepoxide endo-cyclizations are generally 
disfavored by the early transition state associated with opening of the strained oxirane ring, 
we hypothesized that the relatively unstrained cyclic sulfate electrophiles9 (i.e. 7) might 
permit endo-cyclization to afford exclusively or predominantly regioisomeric structure 6. In 
this communication we describe the first successful examples of this strategy, resulting in the 
enantioselective synthesis of the AB bis-pyran ring system of the brevetoxin natural products. 

Figure 2: Exo- vs. endo-cyclization pathways 
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A family of substrates was generated from the monocyclic aldehyde 11, described in an 
earlier publication.10 A significant modification in the preparation of dihydropyrone 10 was 
enantioselective titanium-BINOL catalyzed cyclocondensation 11 of the Kitahara-Danishefsky 
diene (9) with 4-benzyloxybutanal (8, Scheme 1), affording dihydropyrone 10 in 
approximately 95% ee (determined by NMR analysis with the chiral shift reagent Eu(hfc)3). 
Wittig reactions of 11 afforded the trisubstituted alkene of 12 and the monosubstituted alkene 
product 13. In accordance with previous findings that a similar dihydropyran alkene was 
resistant to osmium-catalyzed dihydroxylation procedures,10 we observed regioselective 
enantioselective dihydroxylation of the acyclic alkene of 12 with both dihydroquinine- and 
dihydroquinidine-derived phthalazine-linked osmate catalysts (AD-mix-t~, 4 : 1 ratio, 70% 
combined yield; AD-mix-~, 10 : 1 ratio, 77% yield). 12 After separation of diol diastereomers, 

Scheme 1 : Synthesis of cyclic sulfites 14 - 16 
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Reagents and Conditions: (a) (S)-BINOL / Ti(O-/-Pr)4 / CF3CO2H, 4A MS, Et20; then CF3CO2H (65% yield, 95% ee). 
(b) (CH3)2CHPPh3Br / n-BuLl, Et20 , 0°C (40% yield). (c) CH3PPh3Br / n-BuLl, THF, 0°C (52% yield). (d) AD-mix c~ or ~, 
CH3SO2NH 2, t-BuOH : H20 (1:1), 0°C to 20°C (see text). (e) imidazole / SOCI2, THF, -20°C to 20°C (95% yield). 
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the corresponding cyclic sulfites 14 and 15 were formed by reaction with thionyl 
diimidazole. 9 Although the monosubstituted alkene 13 was considerably less reactive to 
enantioselective dihydroxylation catalysts (AD-mix-alpha, 3 : 2 ratio, 35% yield) than was 
compound 12, we could also prepare cyclic sulfite 16 by the same route. 

Oxidation of the remaining alkene and the cyclic sulfite in compound 14 could be 
accomplished in a single operation by reaction with ruthenium trichloride and sodium 
periodate (Scheme 2). 13 It appears that the alkene of 14 reacted more rapidly than the sulfur 
atom; furthermore the resulting diol-cyclic sulfate product 17 was relatively unstable and 
could not be purified by silica gel chromatography. However, heating a solution of crude 17 
in acetonitrile in the presence of 1% water (by volume) 14 and a catalytic amount of p- 
toluenesulfonic acid afforded one major bicyclic product 18.15 This structure was assigned by 
acetylation of both alcohols and observation of significant shifts of both carbinol methine I H- 
NMR resonances consistent with the production of two secondary alcohols via endocyclization 
rather than the tertiary alcohol expected from exocyclization.16 Endo-regioselectivity is not 
restricted to diastereomer 17 but is also observed upon cyclization of the epimeric cyclic 
sulfate 19 arising from compound 15, leading to the bicyclic product 20. Moreover, cyclic 
sulfate 21 provided predominantly the endocyclic product 22 (endo:exo = 4:1), indicating the 
generality of this endocyclization strategy for C-O bond formation even at primary carbon 
centers. These results constitute the first examples of pyran (six-membered ring) formation 
from hydroxy-cyclic sulfate cyclization. 

Scheme 2: Endocyclizations of diol-cyclic sulfates 17, 19, and 21 
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Reagents and Conditions: (a) cat. RuCI3-3H20, NalO4, EtOAc : CH3CN : H20 (3:3:1), 
0°C to 20°C, 10 min. (b) cat. p-TsOH, 1% H20 in CH3CN, reflux 6 h. (15 - 21%, two steps). 
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Current  efforts are directed towards tandem oxidative endo-cyclizat ions of polyene 

substrates analogous to polyene 3 for an eventual synthesis o f  hemibrevetoxin B (1) and other 

members  of  this family of  natural products. 
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