

Tetrahedron Letters 42 (2001) 3113-3116

TETRAHEDRON LETTERS

Et₃B-promoted, Pd-catalyzed C-allylation of *o*-hydroxyacetophenone and its derivatives with allyl alcohols

Yoshikazu Horino, Makoto Naito, Masanari Kimura, Shuji Tanaka and Yoshinao Tamaru*

Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan Received 8 February 2001; accepted 19 February 2001

Abstract—Triethylborane promotes the Pd-catalyzed selective C-diallylation of o-hydroxyacetophenone and C-monoallylation of o-hydroxypropiophenone with a variety of ally alcohols. The reaction proceeds smoothly at 25–50°C and provides the allylation products in excellent yields. © 2001 Elsevier Science Ltd. All rights reserved.

Palladium-catalyzed allylic alkylation of active methylene compounds such as β -ketoesters and malonates is an established, efficient method for C–C bond formation reactions.¹ In most cases, carboxylic acid esters, carbonates, phosphates and related compounds of allyl alcohols have been utilized as the alkylation agents. In a limited number of cases, however, the reaction has proven to be successful with direct use of allyl alcohols.² On the other hand, the α -allylic alkylation of non-stabilized ketones and esters is still to be explored. The alkylation reported so far is rather sophisticated and requires both reaction partners to be pre-activated: allyl alcohols as their ester derivatives and ketones and esters as their metal and metalloid enolates³ or as their enol ethers.⁴

Here we would like to disclose that o-hydroxylphenyl alkyl ketones and allyl alcohols react to provide the *C*-allylation products in excellent yields when they are treated with Et₃B in the presence of a catalytic amount of Pd(OAc)₂. Significantly, no pre-activation of either reaction partner is required. Thus, the reaction of o-

Scheme 1.

Keywords: alcohols; allylation; boron and compounds; palladium and compounds. * Corresponding author.

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00381-1

hydroxyacetophenone (2a, 1.0 mmol) and allyl alcohol (1a, 1.2 mmol) in the presence of Et₃B (2.4 mmol), Pd(OAc)₂ (0.05 mmol), and PPh₃ (0.10 mmol) at room temperature for 24 h provided mono-3a (1%) and diallylation product 4a (43%) with recovery of 2a in 45% yield (run 1, Scheme 1). The same reaction with 2.4 mmol of 1a provided 4a in 82% isolated yield with no recovery of 2a (run 2, Scheme 1). The selective formation of 4a in good yield (run 1, Scheme 1; 78% based on 55% conversion of 2a) suggests that the second alkylation (3a \rightarrow 4a) proceeds much faster than the first one (2a \rightarrow **3a**). Indeed, the alkylation of **3a** with **1a** completed in a remarkably shorter reaction time and provided **4a** in excellent yield (run 3, Scheme 1). o-Hydroxypropiophenone (**2b**) displayed similar reaction features: **2b** smoothly reacted with **1a** and provided **3b** in good yield (run 4). Interestingly, a further alkylation of **3b** leading to **4b** proceeded to a negligible extent even when the reaction was undertaken in the presence of an excess amount of **1a** (run 5). All these results indicate that the present alkylation displays a strong tendency to selectively provide α -disubstituted alkyl ketones.

Table 1. Pd-catalyzed C-diallylation of 2a and C-monoallylation of 2b with allyl alcohols 1b-h^a)

a) Typical reaction conditions: A mixture of 1 (2.4 mmol for 2a, 1.2 mmol for 2b), 2 (1.0 mmol), Et₃B (2.4 mmol, 1 M solution in hexane), $Pd(OAc)_2$ (0.05 mmol) and PPh₃ (0.10 mmol) in THF (5 ml) was stirred for the period of time and at the temperature indicated in the Table. b) Isolated yield for the spectroscopically homogenous products (based on conversion).

- c) A mixture of 1,6- and 1,4-diphenyl-1,5-hexadienes (24% in run 2, 4% in run 6, 6% in run 7) was also produced.
- d) Ratios of two diastereomers determined on the basis of ¹H NMR spectra (400 MHz).

Figure 1. A list of acetophenone derivatives that provide no C-allylation products for the reaction with 1a under standard conditions.

Scheme 2. A plausible catalytic cycle for the Et₃B-promoted, Pd-catalyzed C-allylation of 2a with 1a.

Results obtained for the reaction of **2a** and **2b** with other allyl alcohols **1b–h** (2.4 equiv. for **2a** and 1.2 equiv. for **2b**) are summarized in Table 1, which reveals that the present allylative alkylation is successfully applicable to primary, secondary and tertiary allyl alcohols with a wide variety of substitution patterns on the double bond.⁵ Regioselectivity is just as is expected for the reactions via π -allylpalladium complexes as intermediates; unsymmetrical allyl alcohols react at the least substituted allylic termini either exclusively (runs 2, 6 and 7 Table 1) or selectively (runs 4, 5 and 8).

o-Hydroxyphenyl alkyl ketones seem to be unique substrates that undergo the present alkylation; acetophenone, *m*- and *p*-hydroxyacetophenones were all unreactive under similar reaction conditions (Fig. 1). These results suggest the importance of activation of alkyl ketones through either intramolecular hydrogen bonding or coordination of some borane species bound to the *o*-hydroxyl group. Accordingly, we examined various *o*-heteroatom substituted acetophenones (2fh).⁶ However, none of them turned out to be reactive; 2h provided N-allylaminoacetophenone in low yield (29% based on 31% conversion). As reported recently from these laboratories,^{2a} the Et₃B-promoted, Pd-catalyzed alkylation of malonates with allyl alcohols proceeds only in the presence of bases such as NaH. In sharp contrast to this, o-hydroxyphenyl alkyl ketones smoothly undergoes the alkylation in the absence of a base even though the acidity of these ketones is expected to be lower than that of malonates.

In Scheme 2 our working hypothesis for the present Pd-catalyzed allylic alkylation using **1a** and **2a** as typical reaction partners is outlined, where Et_3B serves in many ways to promote the reaction. Et_3B may reduce Pd(II) to Pd(0) through a few steps: ethyl group(s)

transfer from B to Pd(II), followed by either reductive elimination from Et₂Pd or β -H elimination from EtPdOAc and/or Et₂Pd. Et₃B may coordinate to the oxygen atom of **1a** to help it undergo oxidative addition to Pd(0). Furthermore, a small portion of Et₃B may be hydrolyzed by **1a** or **2a** to produce an intermediate II.⁷ The intermediate II would react through its enol form with π -allylpalladium species I and produce a mixture of III, H₂O–BEt₃ and Pd(0) complexes. The thusformed III may undergo transesterification with **2a**, regenerating II and liberating **3a**. In a similar way, **3a** may be alkylated further to finally provide **4a**.

The mechanism suggests that the reaction could be catalytic with respect to Et_3B . Indeed, the reactions of **1a** (1.2 mmol) and **2b** (1.0 mmol) performed with reduced amounts of Et_3B (1.2 and 0.6 mmol) completed in 5 h at room temperature and provided **3b** in 92 and 96% yields, respectively (cf. run 4, Scheme 1). In the absence of Et_3B , no reaction was observed and **2b** was recovered quantitatively.

Acknowledgements

Financial support from the Ministry of Education, Science, Sports and Culture, Japanese Government, Grant-in-Aid for Scientific Research B, is acknowledged.

References

 (a) Tsuji, J. Transition Metal Reagents and Catalysts; Wiley: Chichester, 2000; (b) Trost, B. M. Pure Appl. Chem. 1992, 64, 315; (c) Godleski, S. A. In Comprehensive *Organic Synthesis*; Trost, B. M.; Fleming, I.; Paquette, L. A., Eds.; Pergamon: Oxford, 1991; Vol. 4, p. 585.

- (a) Tamaru, Y.; Horino, Y.; Araki, M.; Tanaka, S.; Kimura, M. *Tetrahedron Lett.* 2000, 41, 5705 and references cited therein. See also: (b) Kumareswaran, R.; Vankar, Y. D. *Tetrahedron Lett.* 1997, 38, 8421; (c) Ito, K.; Hamaguchi, N.; Miura, M.; Nomura, M. J. Chem. Soc., Perkin Trans. 1 1992, 2833.
- (a) Kazmaier, U.; Zumpe, F. L. Angew. Chem., Int. Ed. Engl. 1999, 38, 1468; (b) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759; (c) Luo, F.-T.; Negishi, E. Tetrahedron Lett. 1985, 26, 2177; (d) Negishi, E.; John, R. A. J. Org. Chem. 1983, 48, 4098.
- (a) Satake, A.; Kadohama, H.; Koshino, H.; Nakata, T. *Tetrahedron Lett.* 1999, 40, 3597; (b) Tsuji, J.; Takahashi, K.; Minami, I.; Shimizu, I. *Tetrahedron Lett.* 1984, 25, 4783; (c) Tsuji, J.; Minami, I.; Shimizu, I. *Chem. Lett.* 1983, 1325; (d) Trost, B. M.; Keinan, E. *Tetrahedron Lett.* 1980, 21, 2591.
- 5. Typical reaction procedure (run 1, Table 1): Into an N_2 purged flask containing Pd(OAc)₂ (11.2 mg, 0.05 mmol)

and PPh₃ (26.2 mg, 0.10 mmol), THF (5.0 mL), β -methylallyl alcohol (**1b**, 172.8 mg, 2.4 mmol), **2a** (136.2 mg, 1.0 mmol) and Et₃B (2.4 mmol, 1 M in hexane) were added successively via a syringe. The homogeneous mixture was stirred at ambient temperature for 48 h, during which the reaction was monitored by means of TLC. After dilution with ethyl acetate, the mixture was washed with 2 M HCl and then with brine. The organic layer was dried (MgSO₄) and the solvent was removed in vacuo. Purification of the residue by column chromatography over silica gel (hexane) provided **4c**: 196.5 mg (81% yield). $R_{\rm f}$ (**2a**)=0.55, $R_{\rm f}$ (**4c**)=0.71 (hexane–EtOAc, 4:1).

- Fluorine coordination: (a) Brown, H. C.; Chen, G.-M.; Jennings, M. P.; Ramachandran, P. V. Angew. Chem., Int. Ed. Engl. 1999, 38, 2052; (b) Ooi, T.; Kagoshima, N.; Maruoka, K. J. Am. Chem. Soc. 1997, 119, 5754.
- (a) Chen, K.-M.; Gunderson, K. G.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. *Chem. Lett.* **1987**, 1923; (b) Köster, R.; Fenzl, W.; Seidel, G. *Liebigs Ann. Chem.* **1975**, 352.