Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A stereoselective and scalable synthesis of a conformationally constrained S1P₁ agonist

Shannon R. Fix-Stenzel^a, Martin E. Hayes^{b,*}, Xiaolei Zhang^b, Grier A. Wallace^b, Pintipa Grongsaard^b, Lisa M. Schaffter^b, Steven M. Hannick^a, Thaddeus S. Franczyk^a, Robert H. Stoffel^b, Kevin P. Cusack^b

^a Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA ^b Abbott Bioresearch Center, 381 Plantation Dr, Worcester, MA 01605, USA

ARTICLE INFO

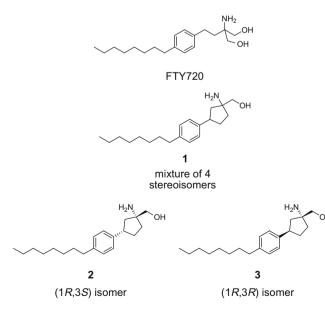
Article history: Received 6 March 2009 Revised 16 April 2009 Accepted 24 April 2009 Available online 3 May 2009

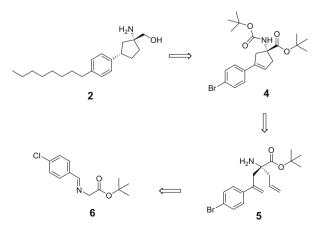
ABSTRACT

A scalable and enantioselective synthesis of a potent S1P₁ agonist containing two stereogenic centers on a cyclopentane ring is described. Control of the absolute chirality of an amino alcohol precursor, generated via a robust phase-transfer catalyzed alkylation protocol, allows for substrate directed hydrogenation to install the second stereogenic center providing access to gram-quantities of compound **2**.

© 2009 Elsevier Ltd. All rights reserved.

Agonism of sphingosine-1-phosphate (S1P) receptors, specifically the S1P₁ receptor, has been linked to many diverse cellular functions including sequestration of lymphocytes into secondary lymph organs thereby preventing them from causing an autoimmune response.¹ FTY720 represents a new class of immunomodulating agents that act via agonism of the S1P₁ receptor and has been shown to be active in Phase II clinical trials for multiple scle-




Figure 1. FTY720 and conformationally constrained analogs.

* Corresponding author. Tel.: +1 5086888081. *E-mail address:* martin.hayes@abbott.com (M.E. Hayes).

0040-4039/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.04.099

rosis.² Compound **1** (see Fig. 1) is a conformationally constrained analog of FTY720 that has been shown to induce sequestration of lymphocytes in mice.³ Two diastereomers, (1R,3S) (**2**) and (1R,3R) (**3**, Fig. 1), have been prepared in milligram-quantities and confirmed to be the stereoisomers that are active in vivo. Herein, we disclose a gram-scale, enantioselective route to one of the active stereoisomers which provides intermediates suitable for analog synthesis to establish structure-activity relationships.

A synthetic route was chosen that would set the conserved (1R) stereogenic center of the two diastereomers that induce lymphopenia while allowing for late-stage induction of the benzylic stereocenter through either chirality transfer or reagent control (see Scheme 1). In addition, an alkene such as compound **4**, which could be prepared via ring-closing metathesis (RCM), would likely be amenable to stereoselective hydrogenation allowing access to either the (3R) or (3S) stereoisomers.

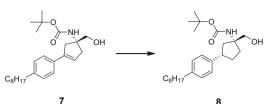

Scheme 1. Retrosynthesis of the (1*R*,3*S*) isomer.

Table 1

Evaluation of hydrogenation catalysts

Entry	Compound	H ₂ (psi)	Catalyst ^a	% conv ^b (% de)
1	7	50	Ir(COD)ThrePHOX	0 ^c
2	7	970	Ir(COD)ThrePHOX	0 ^c
3	1-Methylstilbene	50	Ir(COD)ThrePHOX	100 ^{c,d}
4	7, 1-Methylstilbene	50	Ir(COD)ThrePHOX	0, 100 ^{c,d}
5	7	15	$Ir(COD)Py(PCy_3)$	100 (33) ^c
6	7	15	Pd/BaSO ₄	100 (70) ^e
7	7	15	1% Pt/C	100 (20) ^e
8	7	15	5% Pd/CaCO ₃	100 (50) ^e
9	7	15	PtO ₂	100 (33) ^e
10	7	15	2% Pd/SrCO ₃	100 (60) ^e

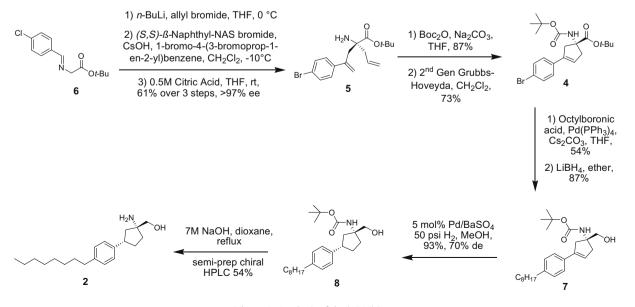
^a All reactions were conducted at rt using 5 mol % of catalyst.

^b Diastereomeric excess as measured by chiral HPLC.

^c Reaction run in CH₂Cl₂.

^d >95% ee was observed for the reduction of 1-methylstilbene.

^e Reaction run in MeOH.


Synthesis of an amino alcohol precursor with control of absolute stereochemistry could be achieved through a variety of methods including selective-Strecker reactions,⁴ the use of chiral auxiliaries such as the Williams diphenyloxazinone,⁵ or through recently developed techniques such as the DuBois nitrene insertion protocol.⁶ In addition, phase-transfer catalysts, such as those developed by Maruoka and co-workers, have been shown to be effective in preparing quaternary amino acid precursors with high enantioselectivity and chemical yield.⁷ Initial attempts at bis-alkylation of the known glycine imine **6** using a chiral phase-transfer catalyst via the reported one-pot protocol⁸ led to incomplete alkylation. However, employing the standard two-step protocol using *n*-BuLi to install the allyl group followed by $CsOH H_2O$ and (*S*,*S*)-3,4,5-trifluorophenyl-NAS bromide⁹ to enable the second alkylation with 1-bromo-4-(3-bromoprop-1-en-2-yl)benzene¹⁰ led to greater conversion and higher isolated yields.¹¹ The chiral imine intermediate was hydrolyzed with citric acid to provide the quaternary amino ester **5** in 97% ee on a multi-gram scale. Protection of the amine as the Boc carbamate facilitated a Ru-catalyzed ring-closing metathesis using the Grubbs–Hoveyda second generation catalyst.¹²

This provided rapid access to multi-gram quantities of **4** (Scheme 2), which could be used for analog synthesis via crosscoupling reactions of the aryl bromide moiety. To enable the synthesis of compound **2**, an *n*-octyl chain was installed using standard Suzuki coupling conditions followed by reduction of the ester to the corresponding alcohol with LiBH₄ resulting in cyclopentene intermediate **7**.

Compound **7** provided a reasonable scaffold with which to investigate methods for installing the second stereogenic center. A number of methods for asymmetric hydrogenation of olefins have been reported including the Iridium–threoninephosphinite–oxazoline (Ir[COD]ThrePHOX) catalysts developed by Pfaltz and co-workers that have been shown to provide excellent enantiose-lectivities for trisubstituted olefins without the need for substrate complexation.¹³ However, evaluation of the Pfaltz catalyst¹⁴ system on the functionalized cyclopentene **7** resulted, surprisingly, in no conversion of the starting material (Table 1, entries 1 and 2).¹⁵

Control experiments using 1-methylstilbene, both with and without the cyclopentene **7**, showed excellent conversion of the acyclic trisubstituted olefin, and no catalyst inhibition by the cyclopentene substrate **7** (Table 1, entries 3 and 4).

Crabtree's catalyst was also screened to evaluate a substrate directed approach utilizing either the primary alcohol or it's *t*-butyl ester precursor moiety for catalyst complexation.¹⁶ However, only modest de's were observed, presumably due to the competing directing potential of the Boc carbamate group (Table 1, entry 5). A further screen of catalysts, which included heterogeneous hydrogenation catalysts, identified Pd/BaSO₄ as a promising reagent (Table 1, entry 6). The Pd/BaSO₄ hydrogenation system provided compound **8** as an 85:15 mixture of diastereomers, favoring the stereochemistry (1*R*,3*S*) found in compound **2**. This mixture could be further enriched to a 95:5 mixture by recrystalization from heptane.¹⁷ To complete the synthesis of compound **2**, the Boc group was removed via hydrolysis at elevated temperature. The remaining undesired stereoisomer was removed by semi-preparative chiral HPLC to furnish compound **2** in >98% de.

Scheme 2. Synthesis of the (1R,3S) isomer.

In conclusion, we have developed a stereoselective route that was used to successfully provide gram-quantities of the S1P₁ agonist **2**. This route demonstrates excellent enantioselectivity in setting the stereochemistry at the quaternary center which facilitates moderate stereo-induction at the benzylic site. This route also enabled the preparation of multi-gram quantities of **4**, an intermediate suitable for analog synthesis and SAR evaluation. Additional details of analog synthesis efforts will be published in due course.

Acknowledgments

The authors would like to acknowledge Dr. Dominique Bonafoux and Thomas Gordon for helpful discussions and Kimberly Yach for assisting in the generation of spectral data.

Supplementary data

Full experimental details for the preparation of compound **2**, ¹H NMR spectra, and chiral HPLC traces are provided. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.04.099.

References and notes

 (a) Pyne, S.; Pyne, J. N. *Biochemistry* 2000, 349, 385; (b) Rosen, H.; Sanna, G.; Alfonso, C. *Immunol. Rev.* 2003, 195, 160; (c) Pettus, B. J.; Chalfant, C. E.; Hannun, Y. A. *Curr. Mol. Med.* 2004, 4, 405; (d) Cyster, J. G. *Annu. Rev. Immunol.* **2005**, *23*, 127; (e) Chun, J.; Rosen, H. *Curr. Pharm. Des.* **2006**, *12*, 161; (f) Ryan, J. J.; Spiegel, S. *Drug News Perspectives* **2008**, *21*, 89; (g) Huwiler, A.; Pfeilschifter, J. *Biochem. Pharmacol.* **2008**, *75*, 1893.

- (a) Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O'Connor, P.; Polman, C. H.; Haas, T.; Korn, A. A.; Karlsson, G.; Radue, E. W. New Engl. J. Med. 2006, 255, 1124; (b) Baumruker, T.; Billich, A.; Brinkmann, V. Expert Opin. Investig. Drugs 2007, 16, 283.
- Zhu, R.; Snyder, A. H.; Khrarel, Y.; Schaffter, L.; Sun, Q.; Kennedy, P. C.; Lynch, K. R.; Macdonald, T. L. J. Med. Chem. 2007, 50, 6428.
- 4. Kato, N.; Suzuki, M.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2004, 45, 3147.
- 5. Williams, R. M.; Im, M-N. J. Am. Chem. Soc. 1991, 113, 9276.
- 6. Espino, C.; When, P.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935.
- 7. Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.
- Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228.
- 9. The S,S-ammonium bromide catalyst, [287384-12-7], is commercially available from several vendors including Sigma–Aldrich.
- Prepared according to the method described in: Yamanaka, M.; Arisawa, M.; Nishida, A.; Nakagawa, M. *Tetrahedron Lett.* 2002, 43, 2403.
- Isolated yields of the free amine 5 using the one-pot procedure ranged from 29% to 38% while the two-pot protocol provided 61–72% yield of 5 on multigram scale.
- 12. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
- (a) Lightfoot, A.; Schnider, P.; Pfaltz, A. Angew.Chem., Int. Ed. 1998, 37, 2897; (b) Menges, F.; Pfaltz, A. Adv. Synth. Catal. 2002, 344, 40.
- 14. Both enantiomers of the diphenylphosphinite precatalyst are commercially available from Strem: *S*,*S*-[405235-55-4] and *R*,*R*-[880262-16-8].
- Macdonald and co-workers also reported a lack of reactivity using the Pfaltz catalyst on a similar substituted cyclopentene, as described in Ref. 3.
- (a) Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organomet. Chem. 1977, 141, 205;
 (b) Crabtree, R. H. Acc. Chem. Res. 1979, 12, 331.
- Modest mass recovery was observed upon recrystalization from heptane under unoptimized conditions.