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ABSTRACT: Herein we report a direct vicinal 
difunctionalization of thiophenes via the palladium/norbornene 
(Pd/NBE) cooperative catalysis. A series of mono- and 
disubstituted thiophenes can be difunctionalized site- and regio-
selectively at the C4 and C5 positions in good yields, enabled by 
an arsine ligand and a unique amide-based NBE. The synthetic 
utility has been shown in derivatizations of complex bioactive 
compounds and an open-flask gram-scale preparation. Preliminary 
results have been obtained in the difunctionalization of furans and 
a direct C4-selective arylation of 2-substituted thiophenes. 

Polysubstituted aromatic heterocycles are commonly found in 
pharmaceuticals, agrochemicals and organic materials (Figure 1).1 
Site-selective conversion of unactivated C−H bonds directly to 
new functional groups (FGs) represents an important and 
straightforward approach for efficient functionalization of 
heteroarenes.2 To date, great success has been achieved for site-
selectively introducing one FG to heteroarenes without aids of 
directing groups (DGs);3 it remains challenging to simultaneously 
install two different FGs,4 particularly at vicinal positions in a 
regioselective manner. However, such a transformation would 
constitute significant interests because it could rapidly increase 
molecular complexity, thereby facilitating streamlined synthesis 
of polysubstituted heteroarenes.
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Figure 1. Examples of Polysubstituted Thiophenes and Furans

The palladium/norbornene (Pd/NBE) cooperative catalysis, also 
known as Catellani-type reactions, has emerged as a versatile 
approach for vicinal difunctionalization of arenes.5 Seminal 
efforts led by Catellani6 and Lautens7 show that, using aryl halides 
as substrates, an electrophile and a nucleophile could be coupled 
simultaneously at arene ipso and ortho positions, respectively 
(Scheme 1a). Beyond using aryl halides as substrates,8 in 2015 the 

Yu9a and our9b groups independently disclosed the direct meta 
functionalizations of arenes initiated by a directed ortho C−H 
palladation (Scheme 1b). Very recently, a meta arylation of 
electron-rich alkoxyarenes was developed by Yu through a related 
approach.10 However, to the best of our knowledge, vicinal 
difunctionalization of arenes through the C−H-initiated Pd/NBE 
catalysis (either directed or non-directed) has not been reported 
yet. The primary challenge is associated with the fact that, for the 
proposed difunctionalization, acidic conditions are often 
beneficial for the C−H palladation step,11 which could result in an 
ipso protonation process instead of further couplings.9 Additional 
difficulties could be envisaged for using heteroarene substrates in 
the Pd/NBE catalysis, as many aromatic heterocycles can behave 
as good ligands for Pd and they are often less stable than arenes 
under oxidative conditions. Herein, stimulated by these challenges 
and given the therapeutic importance of thiophene derivatives,12 
we describe the initial development of a double C−H 
functionalization of thiophenes at the C4 and C5 positons via the 
Pd/NBE catalysis using a unique catalytic system (Scheme 1c).
Scheme 1. Direct C−H Functionalization of Heterocycles

a) The typical Pd/NBE catalysis with aryl halide susbtrates

b) CH palladation-initiated meta functionalization

c) This work: direct regioselective difunctionalization of thiophenes
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The C5 (or C2) position of thiophene is generally considered to 
be most electron-rich, and a number of direct C−H metalation 
methods have been successfully developed.13 However, directly 
merging the C5-palladation with the Pd/NBE catalysis would still 
be nontrivial because of (1) the lack of an ortho substituent to 
promote the NBE extrusion (namely the “ortho constraint”)14 and 
(2) the coordinative ability of the sulfur that could retard the C4 
palladation and NBE extrusion (Scheme 2). For example, the use 
of α-halothiophenes as substrates for the Catellani-type reactions 
has been elusive.15 We hypothesized that one key to address the 
sulfur coordination problem is to use a weak and π-acidic ligand 
that could facilitate dechelation from the sulfur on thiophene but 
not inhibit the C−H palladation and the Catellani process. In 
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addition, the use of a bulkier NBE was also anticipated to be 
beneficial over simple NBE for assisting the NBE extrusion step 
via β-carbon elimination.5c
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Scheme 2. Potential Challenges for the Proposed Approach

To test the hypothesis, 2-butylthiophene (1a) was used as the 
model substrate, and ortho arylation/ipso Heck reaction was 
examined at this initial stage (Table 1). Indeed, AsPh3, previously 
employed for dechelating the amine directing group in our meta 
arylation reaction,9b was found to be superior over phosphine and 
phosphite ligands (entries 1-4) and delivered the desired C4,5-
difunctionalized thiophene product (4a) in 82% yield after 
systematic optimization. Unsurprisingly, no desired product was 
observed in the absence of Pd or NBE (entries 5 and 6). The C2 
methyl amide-substituted NBE (N1) proved to be most efficient,16

Table 1. Control Experiments

S
+ +

CO2Me
Pd(OAc)2 (10 mol%)

AsPh3, N1
AgOAc, BQ, HOAc

ethyl acetate (0.2 M)
65 oC, air

I
CO2Me

Entry Change from the "standard condition" yield of 4a (%)a

5 w/o Pd(OAc)2

2 w/o AsPh3
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1a 2a 3a

SnBu CO2Me

MeO2C

4a

9
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4
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11 0.1 M

0

2

11

13

51

1

0

72b

7

12 1a/2a = 1 : 1 (1 equiv)

25 mol% N1

71c
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6 w/o N1 0

1 none 82(81)
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aThe reaction was run with 0.15 mmol 1a, 0.1 mmol 2a, 0.18 
mmol 3a, Pd(OAc)2 (0.01 mmol), N1 (0.15  mmol), AsPh3 (0.025 
mmol), AgOAc (0.3 mmol), BQ (0.1 mmol) and HOAc (0.5 
mmol) in 0.5 mL ethyl acetate for 48 h. Yields were determined 
by 1H NMR analysis using dibromomethane as the internal 
standard. b1 mL ethyl acetate was used. c0.1 mmol 1a was used.

and 72% yield was still obtained with 25 mol% N1 (entry 7). 
Other substituted NBEs were less optimal. For example, tertiary 
amide-derived NBEs (N2 and N3)17 showed significantly reduced 
reactivity likely due to excessive steric hindrance. In addition, the 
C2 ester-substituted one (N4) was slightly less effective.18 While 
simple NBE (N7) gave almost no desired product, the bulkier 
bridgehead-substituted NBEs (N5 and N6)14 or the remotely 
substituted NBEs (N8-10)18,19 could indeed afford the desired 
product in higher yields. The difunctionalization reaction requires 
stoichiometric oxidants to regenerate the Pd(II) catalyst. Both BQ 
and AgOAc were found necessary (entries 8 and 9); it is likely 
that BQ could promote fast oxidation of Pd(0) to Pd(II) by acting 
as a redox active ligand,20 while AgOAc could assist activation of 
the C−I bond through forming AgI. Adding HOAc was beneficial, 
though 51% yield could still be achieved without HOAc (entry 
10). The reaction was less efficient at a lower concentration (entry 
11). Finally, when substrates 1a and 2a were used in an equal 
molar ratio, the desired product 4a was afforded in a good yield 
(entry 12). It is noteworthy that the reaction can be run directly in 
air at a relatively low reaction temperature (65 oC).
Table 2. Thiophene Derivatives Scopea
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aThe reaction was run with 0.3 mmol 1, 0.2 mmol 2 and 0.36 
mmol 3 in 1.0 mL ethyl acetate for 48 h. 

With the optimized reaction condition in hand, the scope with 
respect to thiophenes was examined first (Table 2). A range of 
thiophenes with various substituents at the C2 position were found 
to be suitable substrates for vicinal difunctionalization. Besides 
alkyl substitution (4a-4e), aryl-derived thiophenes (4f-4h) still 
delivered the desired products in good to excellent yields; both 
electron-rich (4g) and deficient (4h) aryl groups were tolerated. 
Interestingly, for 4g, the C−H functionalization took place site-
selectively at the thiophene site instead of the electron-rich 
alkoxyarenes. Many FGs were found compatible, including 
methoxy group (4c), benzyl and silyl-protected primary alcohols 
(4d and 4e) and esters (4h). Note that 2-chloro and bromo 
thiophenes (4i and 4j) were also reactive; the halogen FGs could 
potentially be used as a handle for further functionalization. The 
C2 and C3 disubstituted thiophenes also proved to be competent 
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substrates, giving fully substituted products (4k-4n) that are 
nontrivial to be prepared via conventional approaches. In 
particular, the reaction can tolerate internal alkyne (4m) and 
generate a tetrasubstituted thiophene bearing all carbon groups 
with three different hybridizations. 

The scope with respect to aryl iodides and olefins was next 
explored (Table 3). Aryl iodides with an ortho electron-
withdrawing group (EWG) were found to be most efficient, which 
is consistent with the preference in the standard Catellani ortho 
arylation5 and our prior observation9b. Ester, amide, ketone and 
nitro-substituted aryl iodides served as effective electrophiles. 
Notably, a second iodide moiety (5d) not ortho to the EWG was 
compatible. Use of other aryl iodides, particularly the less reactive 
electron-rich ones, was challenging under the current conditions, 
though 3,5-bistrifluoromethylphenyl iodide gave the desired 
difunctionalization product in 37% yield. In addition to methyl 
acrylate, other Michael acceptors, such as conjugated esters (6a-
c), amides (6d, 6e) and ketones (6f), are also excellent coupling 
partners for the C5 functionalization. Encouragingly, the more 
electron-neutral styrene could also be efficiently coupled in 81% 
yield (6g).
Table 3. Aryl Iodides and Olefin Scopea
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aThe reaction was run with 0.3 mmol 1a, 0.2 mmol 2 and 0.36 
mmol 3 in 1.0 mL ethyl acetate for 48 h. 

The synthetic utility of this method was first tested in the 
derivatization of complex bioactive compounds that contain 
thiophenes (Table 4). Reactions with derivatives from vitamin E 
(7a), estrone (7d) and hexahydro-1,4-diazepine-L-proline adduct 
(7e), clopidogrel (7b) and Boc-protected duloxetine (7c) all 
worked smoothly to afford the desired difunctionalized products 

in moderate to good yields. Additional chemoselectivity could be 
observed from the tolerance of electron-rich arenes (7a, 7c, 7d), 
ketones (7d), tertiary amines (7b, 7e) and epimerizable 
stereocenters (7b, 7e). In addition, this reaction is robust and 
scalable: a high yield was obtained on a gram scale in an open-
flask operation (Eq. 1). The commercial ethyl acetate can be 
directly used as solvent without further purification. 
Table 4. Functionalization of Complex Bioactive 
Compoundsa
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Me
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O N
Boc

Me

S

from Duloxetine

EAr

7c, 57%

N

S
E

Ar CO2Me

Cl

7b, 48%b
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S N

N

O Boc
N

E

Ar

from hexahydro-1,4-diazepine-
L-proline

7e, 45%

S
+ +

CO2Me

I
CO2Me

1o-s 2a 3a

S
E

Ar

7a-e

R4 R4
standard condition

N1
N
H

O
Me

(Ar-I) (E-H)

aThe reaction was run with 0.3 mmol 1, 0.2 mmol 2a and 0.36 
mmol 3a in 1.0 mL ethyl acetate for 48 h. bA pair of rotational 
isomers was isolated in a 1:1 ratio.

S
+ +

CO2tBu

I
CO2Me

1a 2b 3b

SnBu CO2tBu

MeO2C

4o

standard condition

except N1 (50 mol%)
MeO2C

CO2Me

2.04 g, 89%

nBu

open flask solvent

(1)

Beyond thiophenes, preliminary success was achieved using a 
simple furan substrate. When 2-butylfuran 1t was subjected to the 
standard conditions with 1.0 equiv of N1, the desired 
trisubstituted product (8) was obtained in 30% yield (Eq. 2). In 
addition, the direct C4 arylation with protonation at the C5 
position was realized with excess HOAc in the absence of acrylate 
3a (Eq. 3).21 
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Regarding the mechanistic pathway, an intriguing question is 
whether the reaction goes through a “coupled” difunctionalization 
as a regular Catellani pathway (path a) or a sequential stepwise 
C4/C5 functionalization (path b), i.e. C4 arylation followed by an 
independent C5 C−H/Heck reaction. To address this question, the 
kinetic profile of the model reaction was obtained (Fig. 2), which 
indicates that the difunctionalization product (4a) was formed 
immediately at the beginning of the reaction and there was no 
accumulation of the C4-arylation intermediate (9a) during the 
course of the reaction. A competition experiment further indicated 
that direct difunctionalization is more favorable than the C5 
alkenylation (C−H/Heck) of 9a (see Supporting Information). 
Taken together, these results suggest that the Heck quench at the 
C5 position is preferred compared to the protonation, thus 
supporting the “coupled” difunctionalization pathway (path a). 

S SR R'

Ar

R

path a

ArI R'

simultaneous difunctionalization

C4-arylation

ArISR R'

Ar

SR

Ar

path b

R'

stepwise functionalization

Figure 2. Kinetic Profile of the Model Reaction

In summary, a direct method for vicinal difunctionalizations of 
thiophenes has been developed through the Pd/NBE cooperative 
catalysis. The reaction exhibits excellent FG tolerance and 
complete site- and regio-selectivity. The mild and robust reaction 
condition should make it attractive for preparing complex poly-
substituted thiophenes and late-stage functionalization of 
bioactive compounds. Efforts on disclosing the detailed 
mechanism, including the exact role of the amide-derived NBE 
cofactor, and expanding the reaction scope to other types of 
difunctionalizations and other electron-rich heterocycles (besides 
thiophenes and furans) are ongoing. 
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