2008 Vol. 10, No. 5 925–928

Synthesis of Functionalized Oxazolones by a Sequence of Cu(II)- and Au(I)-Catalyzed Transformations

Florin M. Istrate, Andrea K. Buzas, Igor Dias Jurberg, Yann Odabachian, and Fabien Gagosz*

Laboratoire de Synthèse Organique, UMR 7652 CNRS/Ecole Polytechnique, Ecole Polytechnique, 91128 Palaiseau, France

gagosz@dcso.polytechnique.fr

Received December 21, 2007

ABSTRACT

A study concerning a two-step sequence leading to the formation of diversely 1,5-disubstituted oxazolones is described. The mild conditions employed allow the efficient and rapid synthesis of a variety of such compounds via an initial Cu(II)-catalyzed coupling of a bromoalkyne with a secondary *tert*-butyloxycarbamate followed by a Au(I)-catalyzed cycloisomerization of the *N*-alkynyl *tert*-butyloxycarbamates thus obtained.

Oxazolones and their derivatives are attractive building blocks in organic synthesis. They have been sucessfully employed in a range of transformations mostly as an alkene unit in intramolecular Pauson–Khand reactions,¹ [4 + 2] cycloadditions,² palladium-catalyzed coupling reactions,³ radical additions or cyclizations,⁴ and in hydrogenation reactions for the synthesis of functionalized oxazolidinones.⁵ The oxazolone motif is also found in a variety of synthetic substances exhibiting a wide range of pharmacological activities.⁶ Surprisingly, there are only a few methods to synthesize polysubstituted oxazolones. Most use 1,2-ami-

noketone derivatives as starting materials and involve either high temperature, ⁷ strong basic⁸ or acidic conditions, ⁹ or the use of toxic carbonylating reagents¹⁰ which are not always compatible with the substitution pattern of the substrates.

Gold(I) complexes have emerged as efficient and mild catalysts¹¹ for the synthesis of various oxygen-containing

^{(1) (}a) Nomura, I.; Mukai, C. *J. Org. Chem.* **2004**, *69*, 1803–1812. (b) Nomura, I.; Mukai, C. *Org. Lett.* **2002**, *4*, 4301–4304.

^{(2) (}a) D'Andrea, S. V.; Freeman, J. P.; Szmuszkovicz, J. J. *Org. Chem.* **1990**, *55*, 4356–4358. (b) Hashimoto, N.; Ishizuka, T.; Kunieda, T. *Tetrahedron Lett.* **1994**, *35*, 721–724.

⁽³⁾ Choshi, T.; Fujimoto, H.; Sugino, E.; Hibino, S. *Heterocycles* **1996**, *43*, 1847–1854.

^{(4) (}a) Yuasa, Y.; Ando, J.; Shibuya, S. J. Chem. Soc., Perkin Trans. 1 1996, 465–474. (b) Butora, G.; Hudlicky, T.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R.; Abboud, K. Tetrahedron Lett. 1996, 37, 8155–8158. (c) Hoshimoto, S.; Matsunaga, H.; Wada, M.; Kunieda, T. Chem. Pharm. Bull. 2002, 50, 435–438.

^{(5) (}a) Shono, T.; Matsumura, Y.; Kanazawa, T. *Tetrahedron Lett.* **1983**, 24, 4577–4580. (b) Yonezawa, Y.; Shin, C.; Ohtsu, A.; Yoshimura, J. *Chem. Lett.* **1982**, 1171–1172.

^{(6) (}a) Nam, N.-H.; Kim, Y.; You, Y.-J.; Hong, D.-H.; Kim, H.-M.; Ahn, B.-Z. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 3073–3076. (b) Kudo, N.; Taniguchi, M.; Furuta, S.; Sato, K.; Endo, T.; Honma, T. J. *Agric. Food Chem.* **1998**, *46*, 5305–5312. (c) Puig, C.; Crespo, M. I.; Godessart, N.; Feixas, J.; Ibarzo, J.; Jimenez, J.-M.; Soca, L.; Cardelus, I.; Heredia, A.; Miraplex, M.; Puig, J. *J. Med. Chem.* **2000**, *43*, 214–223. (d) Pereira, E. R.; Sancelme, M.; Voldoire, A.; Prudhomme, M. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 2503–2506.

⁽⁷⁾ Krieg, B.; Lautenschlaeger, H. *Justus Liebigs Ann. Chem.* **1976**, 788–792

⁽⁸⁾ Lenz, G. R.; Costanza, C. J. Org. Chem. 1988, 53, 1176–1183.

⁽⁹⁾ Aichaoui, H.; Poupaert, J. H.; Lesieur, D.; Henichart, J.-P. *Tetrahedron* **1991**, *47*, 6649–6654.

⁽¹⁰⁾ For selected examples, see: *With phosgene* (a) Hamad, M. O.; Kiptoo, P. K.; Stinchcomb, A. L.; Crooks, P. *Bioorg. Med. Chem.* **2006**, *14*, 7051–7061. *With triphosgene* (b) Makino, K.; Okamoto, N.; Hara, O.; Hamada, Y. *Tetrahedron: Asymmetry* **2001**, *12*, 1757–1762.

⁽¹¹⁾ For recent reviews on gold catalysis, see: (a) Gorin, D. J.; Toste, F. D. *Nature* **2007**, *46*, 395–403. (b) Fürstner, A.; Davies, P. W. *Angew. Chem., Int. Ed.* **2007**, *46*, 2–42. (c) Hashmi, S. A.; Huchings, G. J. *Angew. Chem., Int. Ed.* **2006**, *45*, 7896–7936.

heterocycles¹² by intramolecular addition of an oxygenated nucleophile onto an alkyne or an allene. In this respect, special attention has been paid to the *tert*-butyloxycarbonyl moiety which was used as the nucleophilic partner in the gold-catalyzed formation of butenolides,^{13a} dioxanones,^{13b,c} dioxolanones,^{13d,e} and oxazolidinones.^{13f}

Following our ongoing efforts in developing new gold-catalyzed transformations, ¹⁴ we now report that diversely functionalized oxazolones could be efficiently synthesized by a gold(I) isomerization of *N*-alkynyl *tert*-butyloxycarbamates.

Scheme 1. Synthetic Approach to Functionalized Oxazolones

Our synthetic approach, depicted in Scheme 1 (eq 1), relies on a two-step sequence. The initial Cu(II)-catalyzed coupling of a bromoalkyne 1 with a *tert*-butyloxycarbamate 2,¹⁵ would lead to the formation of an *N*-alkynyl *tert*-butyloxycarbamate 3. A subsequent 5-*endo* gold-catalyzed isomerization of 3 would furnish the desired oxazolone 4 (Scheme 1, eq 1). Indeed, while this work was in progress, Hashmi and coworkers validated this approach and reported that 3 could actually be isomerized into oxazoles 4, using 5 mol % of

(12) For selected examples, see: Furans (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285–2289. (b) Yao, T.; Zhang, X.; Larock, R. C. J. Org. Chem. Soc. 2005, 70, 7679–7685. (c) Hashmi, A. S. K.; Sinha, P. Adv. Synth. Catal. 2004, 346, 432–438. (d) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett. 2005, 7, 5409–5412. (e) Istrate, F.; Gagosz, F. J. Org. Chem. 2007, 73, 730–733. Oxazoles and oxazolines (f) Hashmi, A. S. K.; Rudolph, M.; Shymura, S.; Visus, J.; Frey, W. Eur. J. Org. Chem. 2006, 4905–4909. (g) Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W.; Bats, J. W. Org. Lett. 2004, 6, 4391–4394. (h) Milton, M. D.; Inada, Y.; Nishibayashi, Y.; Uemura, S. Chem. Commun. 2004, 2712–2713. (i) Kang, J. E.; Kim, H.-B.; Lee, J.-W.; Shin, S. Org. Lett. 2006, 8, 3537–3540. Lactones and furanones (j) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genêt, J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112–3113. (k) Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao, H. Org. Lett. 2006, 8, 3445–3448.

(13) (a) Kang, J. E.; Lee, E.-S.; Park, S.-I.; Shin, S. *Tetrahedron Lett.* **2005**, *46*, 7431–7433. (b) Shin, S. *Bull. Korean Chem. Soc.* **2005**, *26*, 1925–1926. (c) Kang, J;-E.; Shin, S. *Synlett* **2006**, 717–720. (d) Buzas, A.; Gagosz, F. *Org. Lett.* **2006**, *8*, 515–518. (e) Lim, C.; Kang, J.-E.; Lee, J.-E.; Shin, S. *Org. Lett.* **2007**, *9*, 3539–3542. (f) Buzas, A.; Gagosz, F. *Synlett* **2006**, 2727–2730. (g) Robles-Machin, R.; Adrio, J.; Carretero, J. C. *J. Org. Chem.* **2006**, 71, 5023–5026. (h) Lee, E.-S.; Yeom H.-S., Hwang J.-H., Shin S. *Eur. J. Org. Chem.* **2007**, 3503–3507.

(14) (a) Istrate, F., Gagosz, F. *Org. Lett.* **2007**, *9*, *16*, 3181. (b) Buzas, A.; Istrate, F.; Gagosz, F. *Angew. Chem., Int. Ed.* **2007**, *46*, 1141–1144. (c) Buzas, A.; Gagosz, F. *J. Am. Chem. Soc* **2006**, *128*, 12614–12615. (d) Buzas, A.; Istrate, F.; Gagosz, F. *Org. Lett.* **2007**, *9*, 985–988. (e) Buzas, A.; Istrate, F.; Gagosz, F. *Org. Lett.* **2006**, *8*, 1957–1959.

Ph₃PAuNTf₂ (Scheme 1, eq 2).¹⁶ Even if this procedure proved to be efficient (65–93% yield) and led to the desired products under mild conditions (0 °C or rt), we believed that our sequence could present a major advantage. Given the restricted access to functionalized iodonium salt **5** and its inefficient coupling with **3** (27–51%), it appeared to us that the Cu(II)-catalyzed coupling of **1** with **2** might advantageously broaden the scope of the transformation.¹⁷

We first investigated the Cu(II)-catalyzed step leading to the formation of the *N*-alkynyl *tert*-butyloxycarbamate 3. Although numerous examples of direct copper-catalyzed cross-coupling of an alkynyl bromide with a carbamate, a sulfonamide, or an amide are described in the literature, ¹⁵ only one example of such a reaction was previously reported using a *tert*-butyloxycarbamate such as 2 as the reactant, and the yield was very low (12%). ^{15a}

In spite of the poor yield, attributed by the authors to steric hindrance, ^{15a} we decided to study this cross-coupling between a series of functionalized bromoalkynes **1a**-**g** and *tert*-butyloxycarbamates **2a**-**i** (Figure 1).

Figure 1. Bromoalkynes and *tert*-butyloxycarbamates used in the Cu(II)-catalyzed cross-coupling reaction.

Using slightly modified reaction conditions 15a (20 mol % of CuSO₄·5H₂O and 40 mol % of 1,10-phenanthroline as the ligand with K₃PO₄ as the base in toluene at 80 °C), we were delighted to see that the cross-coupling was generally much more efficient than previously reported (Table 1). A wide range of *N*-alkynyl *tert*-butyloxycarbamates 3a-v containing various functionalities were thus synthesized in yields ranging

926 Org. Lett., Vol. 10, No. 5, 2008

⁽¹⁵⁾ For leading references dealing with the Cu(II)-catalyzed coupling of bromoalkynes with carbamates, see: (a) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanove, I. K.; Shen, L.; Tracey, M. R. *J. Org. Chem.* **2006**, *71*, 4170–4177. (b) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. *Org. Lett.* **2004**, *6*, 1151–1154. (c) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. *J. Am. Chem. Soc* **2003**, *125*, 2368–2369. (d) Dunetz, J. R.; Danheiser, R. L. *Org. Lett.* **2003**, *5*, 4011–4014.

⁽¹⁶⁾ Hashmi, A. S. K.; Salathé, R.; Frey, W. *Synlett* **2007**, 1763–1766. For another gold-catalyzed transformation of alkynylamides, see: Couty, S.; Meyer, C. Cossy, J. *Angew. Chem., Int. Ed.* **2006**, *45*, 6726–6730.

⁽¹⁷⁾ The reaction reported by Hashmi and coworkers (ref 16) was limited to the use of substrates 3 bearing a hydrogen or a silyl group on the akyne and another electron-withdrawing group (Boc, Ts, Piv) on the nitrogen atom.

Table 1. Cu(II)-Catalyzed Formation of *N*-Alkynyl *tert*-Butyloxycarbamates^a

entry	1	2	time (h)	product	yield (%)
1	1a	2a	40	3a	80
2	1a	2 b	16	3b	65
3	1a	2c	18	3c	68
4	1a	2d	16	3 d	48
5	1a	2e	48	3e	22
6	1a	2g	48	3f	62
7	1a	2h	36	3g	70
8	1a	2i	48	3h	23
9	1b	2a	38	3i	24
10	1c	2 a	52	3 j	75
11	1c	2g	48	3k	69
12	1d	2 a	67	31	72
13	1d	2c	67	3m	80
14	1d	2h	67	3n	50
15	1e	2 a	65	3o	55
16	1e	2f	48	3p	49
17	1e	2g	72	3q	49
18	1e	2h	62	$3\mathbf{r}$	48
19	1f	2 a	45	3s	88
20	1f	2g	62	3t	72
21	1g	2 a	48	3u	74
22	1g	2f	48	3v	65

 a Reaction conditions: 1 (1 equiv), 2 (1.2 equiv), CuSO₄·5H₂O (0.2 equiv), 1,10-phenanthroline (0.4 equiv), K₃PO₄ (2.4 equiv) in toluene (0.33 M based on 1) at 80 °C. b Isolated yield.

from 22% to 88%.¹⁸ To the best of our knowledge, this procedure represents the first general entry into synthesizing such compounds.

Having in hands an efficient procedure for the formation of **3**, we next focused our attention on the second step of the sequence, using carbamate **3j** as a model substrate (Table 2). While Ph₃PAuNTf₂¹⁹ proved to be efficient in the procedure reported by Hashmi and co-workers, ¹⁶ poor results were obtained in our case with 1 mol % of this catalyst (entry 1).

The use of the more electrophilic $(pCF_3Ph)_3PAuNTf_2^{19}$ improved the conversion, but the yield of the desired oxazolone **4j** remained modest (40-52%, entries 2-3). Finally, the cationic $[Ph_3P-Au-(NCCH_3)]^+SbF_6^{-20}$ complex, developed by Echavarren and co-workers, proved to be the catalyst of choice (entries 4-5). Under optimal conditions $(1 \text{ mol } \% \text{ of } [Ph_3P-Au-(NCCH_3)]^+SbF_6^- \text{ in dichloromethane}$ at $40 \, ^{\circ}\text{C}$), oxazolone **4j** could be isolated in 74% yield. In the light of these preliminary results, experimental conditions as mentioned in entry 5 were retained for the study of the scope of this transformation.²¹

Table 2. Optimization of the Catalytic System^a

entry	catalyst	$\underset{(^{\circ}C)}{\text{temp.}}$	time	$\operatorname*{convrsn.}_{(\%)^b}$	yield (%)
1	PPh ₃ AuNTf ₂	20	7 h	63	28^c
2	(pCF ₃ Ph) ₃ PAuNTf ₂	20	72 h	85	52^d
3	$(pCF_3Ph)_3PAuNTf_2$	40	2.5 h	100	40^d
4	[Ph ₃ P-Au-(NCCH ₃)]+SbF ₆	20	4.5 h	100	69^d
5	$[Ph_3P\text{-}Au\text{-}(NCCH_3)]^+SbF_6^-$	40	30 min	100	74^c

^a Reaction conditions: 0.5 M substrate in CH₂Cl₂. ^b Estimated by ¹H NMR. ^c Isolated yield. ^d Estimated by ¹H NMR on the crude reaction mixture.

The reaction proved to be quite general, and various N-alkynyl tert-butyloxycarbamate $3\mathbf{a} - \mathbf{v}$ reacted using 1 mol % of $[\mathrm{Ph_3P-Au-(NCCH_3)}]^+\mathrm{SbF_6}^-$ as the catalyst to furnish the corresponding oxazolones $4\mathbf{a} - \mathbf{v}$ in generally good yields (38-94%) (Table 3). The time required to reach completion

Table 3. Au(I)-Catalyzed Formation of Oxazolones^a

entry	substrate	e R ₁	R_2	time	product	yield b
1	3a		Ph	25 min	4a	83%
2	3b		<i>p-</i> FPh	10 min	4b	88%
3	3с	Ph	p-CIPh	10 min	4c	88%
4	3d		<i>p</i> -BrPh	10 min	3d	83%
5	3e		2,4(OMe) ₂ Ph	16 h	4e	85%
6	3f		Bn	16 h	4f	78%
7	3g		CH ₂ CO ₂ Et	12 h	4g	93%
8	3h		ર્ફ CO₂Me	8 h	4h	94%
9	3i	<i>t</i> -Bu	Ph	2 h	4i	58%
10	3 <u>j</u>	<i>n</i> -C ₅ H ₁₁	Ph	30 min	4j	74%
11	3k		Bn	40 min	4k	50%
12	31	ţ.	Ph	30 min	41	78%
13	3m		p-CIPh	10 min	4m	94%
14	3n		CH ₂ CO ₂ Et	5 h	4n	70%
15	3о	ϟ∕ OAc	Ph	40 min	40	71%
16	3р		2-Napht	45 min	4р	88%
17	3q		Bn	20 min	4q	50%
18	3r		CH ₂ CO ₂ Et	20 min	4r	49%
19	3s ₂	OTIPS	Ph	1 h	4s	69%
20	3t ^ર		Bn	40 min	4t	38%
21	3u ွ	^	Ph	30 min	4u	71%
22	3v ે	<u> </u>	2-Napht	3 h	4v	80%

 $[^]a$ Reaction conditions: 3 (1 equiv), [(Ph₃P)Au(NCMe)]SbF₆ (0.01 equiv) in refluxing CH₂Cl₂ (0.5 M). b Isolated yield. c Yield determined by 1 H NMR on the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard.

Org. Lett., Vol. 10, No. 5, 2008

⁽¹⁸⁾ The poor yields obtained in the case of **3e** and **3h** may be attributed to a greater steric hindrance around the nitrogen center.

⁽¹⁹⁾ Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133-4136.

⁽²⁰⁾ Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez-Núñez, E.; Echavarren, A. M. *Chem. Eur. J.* **2006**, *11*, 5916–5923.

was in most cases shorter than 2 h. Various substituted aryl, benzyl, or acetyl groups were tolerated on the nitrogen atom. The experimental conditions were also compatible with a variety of commonly used functionnal groups such as a propargylic acetate (3o-r), a silyl ether (3s,t), or an alkene (3l-n and 3u,v). Substrates possessing a benzyl group on the nitrogen atom (3k, 3q, and 3t) furnished the desired products in moderate yields (38-50%),²² but surprisingly, these proved to be instable and could not be isolated.

In the cases where the formation of the oxazolone was rapid enough (substrates $3\mathbf{a} - \mathbf{d}$), we attempted to run the reaction using 5 mol % of AgNTf₂ as the catalyst (eq 3). We were delighted to see that the corresponding oxazolones $4\mathbf{a} - \mathbf{d}$ could be obtained in excellent yields (88–96%). These conditions were, however, not general. Substrate $3\mathbf{o}$ led, for instance, to a poor 36% yield of oxazolone $4\mathbf{o}$ (eq 4).

To account for these observations, a mechanism for the formation of the oxazolones is proposed in Scheme 2. Gold-(I) activation of the triple bond in *N*-alkynyl *tert*-butyloxy-carbamate 3 promotes the formation of the stabilized cationic species 6. Fragmentation of the C-O bond of the *tert*-butyloxy group in 6 then leads to the formation of the neutral

Scheme 2. Proposed Mechanism

Boc

O
O
O

vinyl—gold species **7**, which is subsequently protonated to finally furnish oxazolone **4**.

In summary, we have developed an efficient two-step sequence for the synthesis of oxazolones from readily available bromoalkynes and *tert*-butyloxycarbamates. The Cu(II)-catalyzed cross-coupling reaction proved to be a general and efficient method for the preparation of various *N*-alkynyl *tert*-butyloxycarbamates. These were converted under mild conditions into a range of diversely substituted oxazolones by using a low loading of a gold(I) catalyst. Further studies related to the gold-catalyzed isomerization of other *N*-alkynyl carbamates are underway and will be reported in due course.

Acknowledgment. We thank Prof. S. Z. Zard (CNRS/Ecole Polytechnique) for helpful discussions and Rhodia Chimie Fine for a gift of HNTf₂.

Supporting Information Available: Experimental procedures and spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org. OL703077G

928 Org. Lett., Vol. 10, No. 5, 2008

⁽²¹⁾ Brønsted acid (HNTf₂) did not promote the reaction and led to extensive decomposition of the substrate. Silver salts (AgNTf₂, AgSbF₆) did promote the reaction (53%, 64%) but their efficiency proved limited to a few substrates (see eqs 1 and 2).

⁽²²⁾ The yield was determined by ¹H NMR on the crude reaction mixture.