ARTICLE IN PRESS

Tetrahedron xxx (2017) 1-6

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Sulfonylative alkoxyhydroxylation of 2-arylpropenes

Huei-Sin Wang, Yan-Shin Wu, Meng-Yang Chang*

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Hostiptal, Kaohsiung Medical University, Kaohsiung, 807, Taiwan

ARTICLE INFO

Article history: Received 15 August 2017 Received in revised form 18 September 2017 Accepted 26 September 2017 Available online xxx

Keywords: Sulfonylative alkoxyhydroxylation 2-Arylpropenes 1,2,3-Tricarbofunctionalization

ABSTRACT

One-pot three-step sulfonylative alkoxyhydroxylation of 2-arylpropenes **1** affords oxygenated sulfonylcumenes **4** in moderate yields via a sequential route: (i) NBS-mediated allylic bromination of 2arylpropenes **1** in CH₂Cl₂, (ii) sodium sulfinates **2**-promoted nucleophilic substitution of the resulting styryl bromides in a co-solvent of alcohol and water, and (iii) V_2O_5/H_2O_2 mediated alkoxyhydroxylation of corresponding styryl sulfones **3** in alcohol. The synthetic route provides a highly effective protocol for the 1,2,3-tricarbofunctionalization of 2-arylpropenes **1** via two carbon-oxygen and one carbon-sulfur bond formations.

© 2017 Elsevier Ltd. All rights reserved.

Tetrahedro

1. Introduction

During the past decade, much attention has been paid to the vicinal difunctionalization of olefinic arms on styrene (vinylarene) via transition-metal,¹ non-metallic peroxide² or iodoarenecontaining oxidant,³ and organocatalyst⁴ promoted carbonheteroatom or carbon-carbon formations. Based on recent reports, transition-metal ions such as Ni(II),^{1a} Pd(II)/Cu(II),^{1b} or Pd(II)^{1c} promoting one-step 1,2-dicarbofunctionalization of substituted styrenes with substituted stannanes, boronic acids, or triflates, have been major pathways (Scheme 1). Among these routes, we find that selenium-based compounds (selenocycteine^{2a} or SeO₂^{2b-c}) containing H₂O₂ mediated direct dihydroxylation or alkoxyhydroxylation of double bonds on styrene synthons provide some facile accesses to substituted vicinal diols or alkoxyalcohols.

Oxidative functionalization of styrene derivatives has great relevance in organic fields. Despite remarkable advances in the functionalization of alkenes, new transition metal promoted synthetic designs of sulfone-based building blocks still represent a continuing demand in the organic field, especially those that allow one-pot regioselective well-defined operations. Compared with commercially available substituted styrenes, few reports have been documented for synthetic application of α -methylstyrene (2arylpropene, cumene).⁵ Notably, no reports for one-pot 1,2,3tricarbofunctionalization of the propenyl group on 2arylpropenes have been presented. In our ongoing research in the applications of sodium sulfinates,⁶ we turn the synthetic aim to the 1,2,3-tricarbofunctionalization from 2-arylpropenes to oxygenated sulfonylcumenes via three regioselective bond formations of 2 carbon-oxygen (C-O) and 1 carbon-sulfur (C-S).

In Scheme 2, we describe a facile one-pot synthetic route of oxygenated sulfonylcumenes **4**, including (i) NBS-mediated allylic bromination of 2-arylpropenes **1** in CH_2Cl_2 , (ii) sodium sulfinates (**2**, YSO₂Na)-promoted nucleophilic substitution of the resulting styryl bromides in a co-solvent of alcohol and water, and (iii) V_2O_5/H_2O_2 mediated alkoxyhydroxylation of the corresponding styryl sulfones **3** in alcohol.⁷ According to a report from Desbordes and Euvrard (Rhone-Poulenc Agrochimie company),⁸ a series of dihydroxyl sulfonylcumenes performed highly effective herbicidal activity.

2. Results and discussion

To initiate our work, allylic bromination of model substrate **1a** (1.0 mmol) with NBS (1.05 equiv) in CH₂Cl₂ (5 mL) at reflux for 2 h followed by nucleophilic substitution of the resulting allylic bromide with TolSO₂Na (**2a**, 1.07 equiv) in MeOH (10 mL) at reflux for 2 h provided **3a** in a nearly quantitative yield. By the one-pot two-step transformation from **1a** to **3a**, the sulfonyl group was efficiently installed into the α -methyl position of **1a** via a C-S bond formation. Without further purification, **4a** produced an 82% yield with the addition of V₂O₅ (0.3 equiv) and H₂O₂ (35%, 0.5 mL) to the resulting reaction mixture at reflux for 2 h via two C-C bond formations.⁹ The one-pot three-step regioselective process showed sulfonylative methoxyhydroxylation (Table 1, entry 1). With the results in mind, different metal oxides (e.g. MeReO₃, MoO₅)^{10,11} and

^{*} Corresponding author. Tel.: +886 7 3121101x2220; fax: +886 7 3125339. *E-mail address:* mychang@kmu.edu.tw (M.-Y. Chang).

2

ARTICLE IN PRESS

H.-S. Wang et al. / Tetrahedron xxx (2017) 1–6

Scheme 1. Difunctionalization of olefin motif on styrenes.

Scheme 2. Trifunctionalization of olefin motif on styrenes.

Table 1Reaction Conditions.^a

^a Reactions were run on a 1.0 mmol scale with **1a**, NBS (187 mg, 1.05 equiv), CH_2Cl_2 (5 mL), reflux, 2 h; TolSO₂Na (**2a**, 190 mg, 1.07 equiv), MeOH (10 mL), reflux, 2 h; oxides, H_2O_2 (35% in H_2O , 0.5 mL).

^b Isolated yields.

^c No reaction.

 $^{\rm d}~$ **3a** was recovered as the major product.

non-metal oxides (e.g. SeO₂, TeO₂)^{2b-c,-12} were also examined for the one-pot process. When the resulting **3a** was treated with MeReO₃, TeO₂, MoO₅, or SeO₂ or at a reflux for 2 h, no isolation of **3a** was observed (for entries 2–3); and **4a** was isolated in low (for entry 4, 10%) and moderate yields (for entry 5, 61%), respectively. By increasing or decreasing the amounts of V₂O₅ (0, 0.1 or 1.0 equiv), the yield of **4a** was poorer than for the 1.1 equiv (entries 6–8, 0%, 48% or 81%). Therefore, V₂O₅ (0.3 equiv) was chosen as the oxidant for scanning the reaction conditions. When the reaction temperature was decreased (65 \rightarrow 25, entry 9), only <10% yield of **4a** was obtained. Next, by elongating the reaction time (2 \rightarrow 10 h), the yield of **4a** was slightly decreased to 75% (entry 10). On the basis of a higher yield and activity, we believe that V₂O₅ could be an optimal oxidant for the formation of **4a**.

The structural framework and relative regiochemistry of **4a** were determined from ¹H NMR and *J* coupling analysis. In the ¹H NMR spectrum, the equatorial proton showed a doublet with a

coupling constant of 12.0 Hz at δ 4.36 ppm and 12.0 Hz at δ 4.29 ppm, which indicates that one methylene group (for the sulfonyl arm) and the other methylene group (for the hydroxyl arm) is doublet with a coupling constant 15.2 Hz at δ 3.75 ppm and 15.2 Hz at δ 3.73 ppm. The structure of **4a** with *three arms* (one hydroxyl, one methoxy, and one sulfonyl group) was determined by single-crystal X-ray analysis (see Fig. 1).¹³ To our best knowledge, there is currently no experimental report on V₂O₅/H₂O₂-mediated methoxyhydroxylation. On the basis of experimental results, a possible reaction mechanism is shown in Scheme 3. The mechanism should be initiated to form NBS-mediated bromination of 1a. By the involvement of 2a, 3a is yielded. In the presence of MeOH (2 equiv), V₂O₅ forms methyl peroxyvanadate (2 equiv) under the H₂O₂ mediated oxidation condition. After the coordination of **3a** with the corresponding peroxy species, intermediate A with a sixmembered ring conformation is provided. Then, by the removal of in situ generated VO₂, **3a** is produced. Finally, V₂O₅ is recovered via the complexation of VO_2 and H_2O_2 .

According to the above reaction conditions, we explored the substrate scope, and the results are shown in Table 2. To adjust the Ar group of **2a-f**, a Y group of **3a-m** and an R group of alcohols, **4a-v** (Ar = Ph, 4-NO₂C₆H₄, 3-FC₆H₄, 4-CF₃C₆H₄, 4-ClC₆H₄, 3,4-Cl₂C₆H₃; Y = Tol, Ph, Me, *n*Bu, 4-FC₆H₄, 4-MeOC₆H₄, 3-MeC₆H₄, 4-EtC₆H₄, 4-*i*PrC₆H₄, 4-*n*BuC₆H₄, 4-*t*BuC₆H₄, 4-BrC₆H₄, 4-ClC₆H₄, ; R = Me, Et, *n*Bu, *i*Pr, *t*Bu) were provided in a range of 5%–86% yields, as shown in entries 1–22. For the uses of Ar and Y substituents, the phenyl ring with an electron-donating group, electron-neutral group, and electron-withdrawing group (besides entry 14, Ar = 4-nitrophenyl group) were well tolerated. For the R group, the primary and secondary alphabetic substituents performed well.

Especially, when reaction of **2b** (Ar = 4-NO₂C₆H₄) and **3a** was treated with the optimal combination, only trace amounts of **4n** (5%) was observed and **4n-1** was isolated in a 34% yield (entry 14). From the results, we believed that the key nitro group promoted the removal of methoxy group of **4n** to generate the stable tertiary carbocation such that the epoxide ring was formed by an intramolecular annulation of primary hydroxyl group. However, with the use of tBuOH as the solvent (entry 22), only diol **4v-1** was isolated in a 74% yield via the introduction of H₂O. During the process, only water was involved into tertiary carbon center and no *t*-butyl substituent was installed due to the bulky steric hindrance of *t*-Bu group. When the reaction of **2a** (Ar = Ph) was treated with **3n** (Y = CF₃) in MeOH, complex products was detected under the optimal condition (entry 23). Furthermore, when Ar was a 2-furyl

Fig. 1. X-ray structure of 4a.

ARTICLE IN PRESS

H.-S. Wang et al. / Tetrahedron xxx (2017) 1–6

Table 2 Synthesis of 4.^a

Entry	1 , Ar =	2 , Y =	ROH	4 (%) ^b
1	2a , Ph	3a , Tol	MeOH	4a , 82
2	2a , Ph	3b , Ph	MeOH	4b , 80
3	2a , Ph	3c , Me	MeOH	4c , 70
4	2a , Ph	3d , <i>n</i> Bu	MeOH	4d , 70
5	2a , Ph	3e , 4-FC ₆ H ₄	MeOH	4e , 83
6	2a , Ph	3f , 4-MeOC ₆ H ₄	MeOH	4f , 80
7	2a , Ph	3g , 3-MeC ₆ H ₄	MeOH	4g , 82
8	2a , Ph	3h , 4-EtC ₆ H ₄	MeOH	4h , 78
9	2a , Ph	3i , 4- <i>i</i> PrC ₆ H ₄	MeOH	4i , 80
10	2a , Ph	3j , 4- <i>n</i> BuC ₆ H ₄	MeOH	4 j, 84
11	2a , Ph	3k , 4- <i>t</i> BuC ₆ H ₄	MeOH	4k , 86
12	2a , Ph	31, 4-BrC ₆ H ₄	MeOH	4l , 80
13	2a , Ph	3m , 4-ClC ₆ H ₄	MeOH	4m , 81
14	2b , 4-NO ₂ C ₆ H ₄	3a , Tol	MeOH	4n , 5 ^c
15	2c , 3-FC ₆ H ₄	3a , Tol	MeOH	40 , 62
16	2d, 4-CF ₃ C ₆ H ₄	3a , Tol	MeOH	4p , 60
17	2e , 4-ClC ₆ H ₄	3a , Tol	MeOH	4q , 78
18	2f, 3,4-Cl ₂ C ₆ H ₃	3a , Tol	MeOH	4r , 72
19	2a , Ph	3a , Tol	EtOH	4s , 80
20	2a , Ph	3a , Ph	nBuOH	4t , 72
21	2a , Ph	3a , Ph	iPrOH	4u , 58
22	2a , Ph	3a , Ph	tBuOH	4v , - ^d
23	2a , Ph	3n , CF ₃	MeOH	4w , - ^e
24	2g , 2-furyl	3a , Tol	MeOH	4 x, - ^e
25	2h , 4-MeOC ₆ H ₄	3a , Tol	MeOH	4y , - ^e
26	2i , 4-MeC ₆ H ₄	3a , Tol	MeOH	4z , - ^e

 a Reactions were run on a 1.0 mmol scale with 1a, NBS (187 mg, 1.05 equiv), CH₂Cl₂ (5 mL), reflux, 2 h; YSO₂Na (2, 1.07 equiv), ROH (10 mL), reflux, 2 h; V₂O₅ (60 mg, 0.3 equiv), H₂O₂ (35% in H₂O, 0.5 mL).

^b Isolated yields.

^c 34% of **4n-1** was isolated.

^d 74% of **4v-1** was isolated.

^e Complex products were isolated.

(for **2g**, a heterocyclic ring), 4-methoxyphenyl (for **2h**, an electrondonating group) or 4-methylphenyl substituent (for **2i**, a benzylic position), complex mixture were still observed in entries 24–26. From the results, we found that 2-furyl, 4-MeOC₆H₄ and 4-MeC₆H₄ groups could be affected in the first bromination step. The reasonable explanation should be NBS triggered **2g-i** to produce inseparated bromoarenes (e.g., bromofurans, oxygenated bromobenzenes, or benzylic bromides) in converting into complex mixture. Moreover, when 1.18 g of **1a** (10.0 mmol) was treated with the combination, 2.33 g of **4a** was isolated in a 73% yield. This route can be enlarged to gram scale.

3. Conclusion

In summary, we have developed a one-pot three-step synthesis of oxygenated **4** via a sequential route: (i) NBS-mediated allylic bromination of **1** in CH₂Cl₂, (ii) sodium sulfinate-promoted nucle-ophilic substitution of the resulting styryl bromides in a co-solvent of alcohol and water, and (iii) V_2O_5/H_2O_2 mediated alkoxyhydroxylation of **3** in alcohol. The synthetic route provides a highly effective protocol for the 1,2,3-tricarbofunctionalization of 2-arylpropenes **1** via two carbon-oxygen and one carbon-sulfur bond formations. The plausible mechanism has been discussed and proposed.

4. Experimental section

4.1. General

All reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry air with magnetic stirring. Products in organic solvents were dried with anhydrous magnesium sulfate before concentration in vacuo. Melting points were determined with a SMP3 melting apparatus. Infrared spectra were recorded with a Perkin–Elmer 100 series FTIR spectrometer. ¹H and ¹³C NMR spectra were recorded on a Varian INOVA-400 spectrometer operating at 400 and at 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) and the coupling constants (*J*) are given in Hertz. High resolution mass spectra (HRMS) were measured with a mass spectrometer Finnigan/Thermo Quest MAT 95XL. X-ray crystal structures were obtained with an Enraf-Nonius FR-590 diffractometer (CAD4, Kappa CCD).

4.1.1. 1-Methyl-4-(2-phenylallylsulfonyl)benzene (3a)

NBS (N-bromosuccinimide, 187 mg, 1.05 mmol) was added to a solution of 2-phenylpropene (1a, 118 mg, 1.0 mmol) in CH₂Cl₂ (5 mL) at rt. The reaction mixture was stirred at reflux for 2 h. The reaction mixture was cooled to 25 °C and a solution of sodium toluenesulfinates 2 (2a, TolSO₂Na, 190 mg, 1.07 mmol) in MeOH (10 mL) at rt. Then, the reaction mixture was stirred at reflux for 2 h. The reaction mixture was cooled to 25 °C and the solvent was concentrated. The residue was diluted with water (10 mL) and the mixture was extracted with CH_2Cl_2 (3 \times 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 8/1-4/1) afforded **3a**. Yield = ~100% (270 mg); Colorless solid; mp = 96-97 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3102, 3023, 2985, 1503, 1123, 956, 783 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₆H₁₇O₂S 273.0949, found 273.0948; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.4 Hz, 2H), 7.28-7.20 (m, 7H), 5.59 (s, 1H), 5.21 (s, 1H), 4.25 (s, 2H), 2.39 (s, 3H); ^{13}C NMR (100 MHz, CDCl_3): δ 144.56, 138.84, 136.57, 135.42, 129.46 (2x), 128.64 (2x), 128.32 (2x), 127.89, 126.20 (2x), 121.70, 62.12, 21.54.

A representative synthetic procedure of skeleton **4** is as follows: NBS (*N*-bromosuccinimide, 187 mg, 1.05 mmol) was added to a solution of 2-phenylpropene (**1a**, 118 mg, 1.0 mmol) in CH₂Cl₂ (5 mL) at rt. The reaction mixture was stirred at reflux for 2 h. The reaction mixture was cooled to 25 °C and a solution of sodium toluenesulfinates (**2a**, TolSO₂Na, 190 mg, 1.07 mmol) in alcohols (10 mL) at rt. The reaction mixture was stirred at reflux for 2 h. The reaction mixture was cooled to 25 °C. Without further purification, V₂O₅ (60 mg, 0.3 mmol) and H₂O₂ (35% in H₂O, 0.5 mL) were added to the resulting mixture at rt. Then, the reaction mixture was stirred at reflux for 2 h. The residue was diluted with water (10 mL) and the

Please cite this article in press as: Wang H-S, et al., Sulfonylative alkoxyhydroxylation of 2-arylpropenes, Tetrahedron (2017), https://doi.org/ 10.1016/j.tet.2017.09.047 mixture was extracted with CH₂Cl₂ (3 \times 20 mL). The combined organic layers were washed with brine, dried, filtered and evaporated to afford crude product under reduced pressure. Purification on silica gel (hexanes/EtOAc = 8/1-4/1) afforded **4**.

4.1.2. 2-Methoxy-2-phenyl-3-(toluene-4-sulfonyl)propan-1-ol (4a)

Yield = 82% (262 mg); Colorless solid; mp = 107–109 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3606, 2985, 1521, 1145 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₇H₂₁O₄S 321.1161, found 321.1162; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.33–7.24 (m, 7H), 4.36 (d, *J* = 12.0 Hz, 1H), 4.29 (d, *J* = 12.0 Hz, 1H), 3.74 (d, *J* = 1.6 Hz, 2H), 2.98 (s, 3H), 2.91 (br s, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.40, 139.43, 137.64, 129.53 (2x), 128.51 (2x), 128.06, 127.80 (2x), 126.39 (2x), 80.16, 64.39, 61.26, 50.45, 21.48. Single-crystal X-Ray diagram: crystal of compound **4a** was grown by slow diffusion of EtOAc into a solution of compound **4a** in CH₂Cl₂ to yield colorless prisms. The compound crystallizes in the monoclinic crystal system, space group C 2/c, *a* = 32.603(4) Å, *b* = 5.7618(6) Å, *c* = 16.0111(16) Å, *V* = 3005.1(6) Å³, *Z* = 8, *d*_{calcd}= 1.354 g/cm³, *F*(000) = 1296, 2*θ* range 1.250–26.398°, R indices (all data) R1 = 0.0948, wR2 = 0.2174.

4.1.3. 3-Benzenesulfonyl-2-methoxy-2-phenylpropan-1-ol (4b)

Yield = 80% (245 mg); Colorless solid; mp = 93–95 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3611, 2987, 1525, 1144 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₆H₁₉O₄S 307.1004, found 307.1008; ¹H NMR (400 MHz, CDCl₃): δ 7.82–7.79 (m, 2H), 7.59–7.55 (m, 1H), 7.48–7.44 (m, 2H), 7.33–7.23 (m, 5H), 4.37 (d, *J* = 11.6 Hz, 1H), 4.32 (d, *J* = 12.0 Hz, 1H), 3.80 (d, *J* = 14.4 Hz, 1H), 3.75 (d, *J* = 14.4 Hz, 1H), 3.10 (br s, 1H), 2.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.54, 139.22, 133.39, 128.93 (2x), 128.55 (2x), 128.18, 127.77 (2x), 126.40 (2x), 80.12, 64.26, 61.20, 50.43.

4.1.4. 3-Methanesulfonyl-2-methoxy-2-phenylpropan-1-ol (4c)

Yield = 70% (172 mg); Colorless oil; IR (CHCl₃): 3613, 2982, 1522, 1141 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₁H₁₇O₄S 245.0848, found 245.0845; ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.31 (m, 5H), 4.38 (d, *J* = 12.0 Hz, 1H), 4.28 (d, *J* = 12.4 Hz, 1H), 3.58 (d, *J* = 15.2 Hz, 1H), 3.51 (d, *J* = 15.2 Hz, 1H), 3.16 (s, 3H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.56, 128.90 (2x), 128.44, 126.25 (2x), 79.40, 63.61, 62.41, 50.87, 43.38.

4.1.5. 3-(Butane-1-sulfonyl)-2-methoxy-2-phenylpropan-1-ol (4d)

Yield = 70% (200 mg); Colorless oil; IR (CHCl₃): 3605, 2982, 1522, 1144 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{14}H_{23}O_4S$ 287.1317, found 287.1312; ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.30 (m, 5H), 4.40 (d, *J* = 12.4 Hz, 1H), 4.27 (d, *J* = 12.0 Hz, 1H), 3.60 (br s, 1H), 3.54 (d, *J* = 15.2 Hz, 1H), 3.42 (d, *J* = 15.2 Hz, 1H), 3.15 (s, 3H), 3.07–2.90 (m, 2H), 1.81–1.73 (m, 2H), 1.45–1.35 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.80, 128.82 (2x), 128.35, 126.21 (2x), 79.48, 63.55, 60.48, 54.92, 50.82, 23.77, 21.53, 13.40.

4.1.6. 3-(4-Fluorobenzenesulfonyl)-2-methoxy-2-phenylpropan-1ol (**4e**)

Yield = 83% (269 mg); Colorless solid; mp = 125-127 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3606, 2979, 1521, 1143 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₆H₁₈FO₄S 325.0910, found 325.0911; ¹H NMR (400 MHz, CDCl₃): δ 7.80–7.76 (m, 2H), 7.29–7.24 (m, 5H), 7.13–7.08 (m, 2H), 4.32 (s, 2H), 3.81 (d, *J* = 14.4 Hz, 1H), 3.75 (d, *J* = 14.8 Hz, 1H), 2.97 (s, 3H), 2.63 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 165.47 (d, *J* = 254.7 Hz), 138.95, 136.60 (d, *J* = 3.0 Hz), 130.73 (d, *J* = 9.1 Hz, 2x), 128.58 (2x), 128.24, 126.42 (2x), 116.12 (d, *J* = 22.8 Hz, 2x), 79.90, 63.88, 61.43, 50.36.

4.1.7. 2-Methoxy-3-(4-methoxybenzenesulfonyl)-2-phenylpropan-1-ol (**4f**)

Yield = 80% (269 mg); Colorless oil; IR (CHCl₃): 3608, 2980, 1522, 1151 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{17}H_{21}O_5S$ 337.1110, found 337.1108; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 9.2 Hz, 2H), 7.33–7.24 (m, 5H), 6.91 (d, *J* = 9.2 Hz, 2H), 4.35 (d, *J* = 12.0 Hz, 1H), 4.30 (d, *J* = 12.0 Hz, 1H), 3.85 (s, 3H), 3.73 (d, *J* = 2.0 Hz, 2H), 2.98 (s, 3H), 2.82 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 163.52, 139.48, 132.08, 130.04 (2x), 128.56 (2x), 128.13, 126.39 (2x), 114.14 (2x), 80.15, 64.43, 61.49, 55.62, 50.47.

4.1.8. 2-Methoxy-2-phenyl-3-(toluene-3-sulfonyl)propan-1-ol (4g)

Yield = 82% (262 mg); Colorless solid; mp = 106–108 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3611, 2984, 1525, 1149 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₇H₂₁O₄S 321.1161, found 321.1162; ¹H NMR (400 MHz, CDCl₃): δ 7.62–7.60 (m, 1H), 7.56 (s, 1H), 7.36 (s, 1H), 7.34–7.24 (m, 6H), 4.37 (d, *J* = 12.0 Hz, 1H), 4.33 (d, *J* = 11.8 Hz, 1H), 3.78 (d, *J* = 14.4 Hz, 1H), 3.72 (d, *J* = 14.4 Hz, 1H), 3.00 (s, 3H), 2.61 (br s, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.36, 139.24, 139.18, 134.21, 128.84, 128.49 (2x), 128.17, 128.08, 126.44 (2x), 124.85, 80.15, 64.20, 61.25, 50.46, 21.17.

4.1.9. 3-(4-Ethylbenzenesulfonyl)-2-methoxy-2-phenylpropan-1-ol (**4h**)

Yield = 78% (261 mg); Colorless solid; mp = 100–102 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3612, 2984, 1524, 1143 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{18}H_{23}O_4S$ 335.1317, found 335.1321; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.31–7.22 (m, 7H), 4.34 (d, *J* = 11.6 Hz, 1H), 4.30 (d, *J* = 12.0 Hz, 1H), 3.78 (d, *J* = 14.4 Hz, 1H), 3.73 (d, *J* = 14.8 Hz, 1H), 2.97 (s, 3H), 2.82 (br s, 1H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.42, 139.24, 137.70, 128.43 (2x), 128.35 (2x), 128.02, 127.83 (2x), 126.37 (2x), 80.06, 64.17, 61.06, 50.36, 28.70, 15.02.

4.1.10. 3-(4-Isopropylbenzenesulfonyl)-2-methoxy-2-phenylpropan-1-ol (**4i**)

Yield = 80% (278 mg); Colorless solid; mp = 107–109 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3608, 2984, 1523, 1147 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₉H₂₅O₄S 349.1474, found 349.1480; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.31–7.20 (m, 7H), 4.35 (d, *J* = 12.0 Hz, 1H), 4.32 (d, *J* = 12.0 Hz, 1H), 3.79 (d, *J* = 14.4 Hz, 1H), 3.73 (d, *J* = 14.4 Hz, 1H), 2.99–2.90 (m, 1H), 2.98 (s, 3H), 2.62 (br s, 1H), 1.23 (d, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 154.96, 139.18, 137.71, 128.44 (2x), 128.05, 127.85 (2x), 126.99 (2x), 126.39 (2x), 80.04, 64.09, 61.06, 50.36, 34.06, 23.49, 23.46.

4.1.11. 3-(4-Butylbenzenesulfonyl)-2-methoxy-2-phenylpropan-1ol (**4j**)

Yield = 84% (304 mg); Colorless solid; mp = 90–92 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3611, 2988, 1526, 1139 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{20}H_{27}O_4S$ 363.1630, found 363.1633; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.28–7.19 (m, 7H), 4.31 (d, *J* = 12.0 Hz, 1H), 4.29 (d, *J* = 12.0 Hz, 1H), 3.74 (d, *J* = 14.4 Hz, 1H), 3.69 (d, *J* = 14.4 Hz, 1H), 2.93 (s, 3H), 2.82 (br s, 1H), 2.61 (t, *J* = 8.0 Hz, 2H), 1.58–1.50 (m, 2H), 1.33–1.26 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.19, 139.30, 137.70, 128.89 (2x), 128.45 (2x), 128.04, 127.77 (2x), 126.39 (2x), 80.09, 64.24, 61.10, 50.37, 35.40, 33.01, 22.06, 13.70.

4.1.12. 3-(4-tert-Butylbenzenesulfonyl)-2-methoxy-2-

phenylpropan-1-ol (**4k**)

Yield = 86% (311 mg); Colorless solid; mp = $115-117 \circ C$ (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3615, 2985,

1529, 1143 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₀H₂₇O₄S 363.1630, found 363.1635; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.32–7.23 (m, 5H), 4.37 (d, *J* = 12.4 Hz, 1H), 4.34 (d, *J* = 12.0 Hz, 1H), 3.78 (d, *J* = 14.8 Hz, 1H), 3.72 (d, *J* = 14.8 Hz, 1H), 2.99 (s, 3H), 2.61 (br s, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 157.32, 139.29, 137.42, 128.52 (2x), 128.14, 127.62 (2x), 126.46 (2x), 125.96 (2x), 80.15, 64.20, 61.27, 50.44, 35.12, 30.96 (3x).

4.1.13. 3-(4-Bromobenzenesulfonyl)-2-methoxy-2-phenylpropan-1-ol (**4l**)

Yield = 80% (307 mg); Colorless solid; mp = 126–128 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3610, 2985, 1530, 1148 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₆H₁₈BrO₄S 385.0109, found 385.0115; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 7.30–7.25 (m, 5H), 4.32 (br s, 2H), 3.80 (d, *J* = 14.8 Hz, 1H), 3.74 (d, *J* = 14.4 Hz, 1H), 2.97 (s, 3H), 2.86 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 139.46, 138.80, 132.12 (2x), 132.10, 129.38 (2x), 128.59 (2x), 128.24, 126.42 (2x), 79.84, 63.76, 61.36, 50.38.

4.1.14. 3-(4-Chlorobenzenesulfonyl)-2-methoxy-2-phenylpropan-1-ol (**4m**)

Yield = 81% (275 mg); Colorless solid; mp = $122-124 \circ C$ (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3605, 2983, 1528, 1152 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₆H₁₈ClO₄S 341.0614, found 341.0618; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 7.28 (br s, 5H), 4.33 (s, 2H), 3.80 (d, J = 14.8 Hz, 1H), 3.74 (d, J = 14.8 Hz, 1H), 2.98 (s, 3H), 2.80 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 140.08, 139.01, 138.92, 129.37 (2x), 129.18 (2x), 128.65 (2x), 128.30, 126.44 (2x), 79.92, 63.91, 61.56, 50.43.

4.1.15. 2-(4-Nitrophenyl)-2-(toluene-4-sulfonylmethyl)oxirane (**4n-1**)

Yield = 34% (113 mg); Colorless solid; mp = 114–116 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3113, 3092, 2933, 1512, 1315, 1023, 892 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₆H₁₆NO₅S 334.0749, found 334.0752; ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.8 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 3.90 (d, *J* = 14.8 Hz, 1H), 3.68 (d, *J* = 14.8 Hz, 1H), 3.28 (d, *J* = 4.8 Hz, 1H), 2.82 (d, *J* = 4.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.61, 145.37, 144.41, 136.67, 129.88 (2x), 128.09 (2x), 127.19 (2x), 123.57 (2x), 61.90, 54.93, 54.79, 21.60.

4.1.16. 2-(3-Fluorophenyl)-2-methoxy-3-(toluene-4-sulfonyl) propan-1-ol (**40**)

Yield = 62% (210 mg); Colorless solid; mp = 90–92 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3628, 2986, 1530, 1149 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₇H₂₀FO₄S 339.1066, found 339.1068; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.29–7.24 (m, 3H), 7.14–7.10 (m, 1H), 7.03 (dt, *J* = 2.4, 10.4 Hz, 1H), 6.94 (dt, *J* = 2.4, 8.0 Hz, 1H), 4.34 (d, *J* = 12.0 Hz, 1H), 4.26 (d, *J* = 12.0 Hz, 1H), 3.70 (d, *J* = 1.6 Hz, 2H), 3.00 (s, 3H), 2.70 (br s, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 162.90 (d, *J* = 244.9 Hz), 144.66, 142.41 (d, *J* = 6.8 Hz), 137.42, 130.12 (d, *J* = 7.6 Hz), 129.62 (2x), 127.83 (2x), 122.08 (d, *J* = 2.3 Hz), 115.08 (d, *J* = 20.5 Hz), 113.73 (d, *J* = 22.7 Hz), 79.88, 64.24, 61.18, 50.60, 21.51.

4.1.17. 2-Methoxy-3-(toluene-4-sulfonyl)-2-(4trifluoromethylphenyl)propan-1-ol (**4p**)

Yield = 60% (233 mg); Colorless solid; mp = 131–133 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3621, 2994, 1537, 1155 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{18}H_{20}F_3O_4S$

389.1034, found 389.1035; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.36 (s, 2H), 3.77 (d, J = 14.8 Hz, 1H), 3.70 (d, J = 14.4 Hz, 1H), 3.03 (s, 3H), 2.84 (br s, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.76, 143.49, 137.25, 130.34 (d, J = 31.9 Hz), 129.68 (2x), 127.80 (2x), 127.08 (d, J = 262.3 Hz), 127.05 (2x), 125.47 (g, J = 3.8 Hz, 2x), 79.84, 63.86, 61.21, 50.64, 21.50.

4.1.18. 2-(4-Chlorophenyl)-2-methoxy-3-(toluene-4-sulfonyl) propan-1-ol (**4q**)

Yield = 78% (276 mg); Colorless solid; mp = 103–105 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3612, 2989, 1535, 1151 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{17}H_{20}ClO_4S$ 355.0771, found 355.0776; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.22 (br s, 4H), 4.29 (s, 2H), 3.75 (d, J = 14.8 Hz, 1H), 3.67 (d, J = 14.4 Hz, 1H), 2.97 (s, 3H), 2.91 (br s, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.57, 137.71, 137.30, 134.10, 129.56 (2x), 128.60 (2x), 128.00 (2x), 127.73 (2x), 79.61, 63.67, 61.03, 50.35, 21.50.

4.1.19. 2-(3,4-Dichlorophenyl)-2-methoxy-3-(toluene-4-sulfonyl) propan-1-ol (**4r**)

Yield = 72% (279 mg); Colorless solid; mp = 128–130 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3612, 2985, 1532, 1151 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₇H₁₉Cl₂O₄S 389.0381, found 389.0383; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.33–7.31 (m, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.18–7.11 (m, 2H), 4.28 (d, *J* = 12.0 Hz, 1H), 4.26 (d, *J* = 12.0 Hz, 1H), 3.75 (d, *J* = 14.8 Hz, 1H), 3.65 (d, *J* = 14.8 Hz, 1H), 3.02 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.81, 139.50, 136.98, 132.76, 132.41, 130.40, 129.59 (2x), 128.87, 127.69 (2x), 126.02, 79.21, 63.30, 60.91, 50.49, 21.54.

4.1.20. 2-Ethoxy-2-phenyl-3-(toluene-4-sulfonyl)propan-1-ol (4s)

Yield = 80% (267 mg); Colorless oil; IR (CHCl₃): 3603, 2982, 1525, 1147 cm⁻¹; HRMS (ESI, M⁺+1) calcd for $C_{18}H_{23}O_4S$ 335.1317, found 335.1318; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.35–7.25 (m, 7H), 4.35 (d, *J* = 12.0 Hz, 1H), 4.31 (d, *J* = 12.0 Hz, 1H), 3.77 (d, *J* = 14.8 Hz, 1H), 3.73 (d, *J* = 14.8 Hz, 1H), 3.24–3.17 (m, 1H), 3.10–3.02 (m, 1H), 2.98 (br s, 1H), 2.42 (s, 3H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.35, 140.27, 137.80, 129.49 (2x), 128.53 (2x), 128.02, 127.95 (2x), 126.22 (2x), 79.76, 64.80, 62.10, 57.99, 21.52, 15.08.

4.1.21. 2-n-Butoxy-2-phenyl-3-(toluene-4-sulfonyl)propan-1-ol (4t)

Yield = 72% (261 mg); Colorless oil; IR (CHCl₃): 3619, 2993, 1530, 1149 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₂₀H₂₇O₄S 363.1630, found 363.1634; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.31–7.20 (m, 7H), 4.32 (d, *J* = 12.0 Hz, 1H), 4.28 (d, *J* = 12.4 Hz, 1H), 3.73 (d, *J* = 14.4 Hz, 1H), 3.68 (d, *J* = 14.8 Hz, 1H), 3.10–3.05 (m, 1H), 3.00 (br s, 1H), 2.95–2.90 (m, 1H), 2.38 (s, 3H), 1.26–1.18 (m, 2H), 1.17–1.04 (m, 2H), 0.75 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.29, 140.19, 137.84, 129.49 (2x), 128.49 (2x), 128.01, 127.90 (2x), 126.33 (2x), 79.48, 64.60, 62.31, 62.14, 31.84, 21.50, 19.04, 13.84.

4.1.22. 2-Isopropoxy-2-phenyl-3-(toluene-4-sulfonyl)propan-1-ol (4u)

Yield = 58% (202 mg); Colorless solid; mp = 110–112 °C (recrystallized from hexanes and EtOAc); IR (CHCl₃): 3608, 2988, 1528, 1143 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₉H₂₅O₄S 349.1474, found 349.1478; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.40–7.38 (m, 2H), 7.27–7.23 (m, 5H), 4.51–4.47 (m, 1H), 4.36 (d, *J* = 12.0 Hz, 1H), 3.84 (d, *J* = 14.8 Hz, 1H), 3.65 (d, *J* = 14.8 Hz, 1H),

6

H.-S. Wang et al. / Tetrahedron xxx (2017) 1-6

3.40–3.34 (m, 1H), 3.00 (br s, 1H), 2.41 (s, 3H), 0.97 (d, J = 6.4 Hz, 3H), 0.78 (d, I = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.20, 139.96, 137.81, 129.43 (2x), 128.21 (2x), 128.18, 127.92 (2x), 127.03 (2x), 80.16, 65.99, 63.71, 63.38, 24.45, 24.12, 21.52.

4.1.23. 2-Phenyl-3-(toluene-4-sulfonyl)propane-1.2-diol (4v-1)

Yield = 74% (226 mg); Colorless solid; mp = 138-140 °C (recrystallized from hexanes and EtOAc): IR (CHCl₃): 3612, 3498. 2976, 1523, 1138, 978 cm⁻¹; HRMS (ESI, M⁺+1) calcd for C₁₆H₁₉O₄S 307.1004, found 307.1007; ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, I = 8.0 Hz, 2H), 7.25–7.23 (m, 2H), 7.18–7.14 (m, 3H), 7.11 (d, I = 8.4 Hz, 2H), 4.91 (s, 1H), 3.95 (d, I = 14.8 Hz, 1H), 3.73 (d, J = 14.8 Hz, 1H), 3.64 (s, 2H), 2.64 (br s, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, $CDCl_3$): δ 144.58, 140.34, 136.92, 129.62, 128.27 (2x), 127.55 (4x), 125.14 (2x), 75.73, 70.40, 61.76, 21.52.

Acknowledgments

The authors would like to thank the Ministry of Science and Technology of the Republic of China for its financial support (MOST 106-2628-M-037-001-MY3).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.tet.2017.09.047.

References

- 1. Transition-metal promoted 1,2-dicarbofunctionalization of olefinic arm on the skeleton of styrene, for Ni(II), see: (a) Garcia-Dominguez A, Li Z, Nevado C. J Am Chem Soc. 2017;139:6835. For Pd(II)/Cu(II), see: (b) Urkalan KB, Sigman MS. Angew Chem Int Ed. 2009;48:3146. For Pd(II), see;
- c) Kung Z, Yangm K, Song Q. Org Lett. 2017;19:2702.
- 2. Peroxides-mediated dihydroxylation or alkoxyhydroxylation, for selenocysteine/H2O2, see: (a) Santi C, di Lorenzo R, Tidei C, Bagnoli L, Wirth T. Tetrahedron. 2012;68:10530. For SeO₂/H₂O₂, see;
 - (b) Gogoi P, Sharma SD, Konwar D. Lett Org Chem. 2007;4:249;

(c) Chang M-Y, Lin C-H, Chen Y-L. Tetrahedron Lett. 2010;51:1430.

- 3. Aertker K, Rama RJ, Opalach J, Muniz K. Phl(OAc)₂-mediated vicinal difunctionalizations. see Adv Synth Catal. 2017;359:1290.
- Li J, Li Z, Zhang X, Xu B, Shi Y. (DHQD)₂PHAL-mediated vicinal bromohydroxvlation. see Org Chem Front. 2017;4:1084.
- 5. For vicinal difunctionalization of 2-arylpropenes, for t-BuO₂H, see: (a) Li X, Xu X, Zhou C. Chem Commun. 2012;48:12240. For I₂, see;
 - (b) Sawangphon T, Katrun P, Chaisiwamongkhol K, et al. Synth Commun. 2013:43:1642. For NaBO3. see:
 - (c) Gupton JT, Duranceau SJ, Miller JF, Kosiba ML. Synth Commun. 1988;18:937. For mCPBA, see:

(d) Monk KA, Duncan NC, Bauch EA, Garner CM. Tetrahedron. 2008;64:8605. For other, see:

- (e) O'Neill PM. Mukhtar A. Ward SA. et al. Org Lett. 2004;6:3035.
- 6. For recent synthetic applications of sodium sulfinates by the authors, see: (a) Chang M-Y, Chen Y-C, Chan C-K. Tetrahedron. 2014;70:8908: (b) Chang M-Y, Cheng Y-J, Lu Y-J. Org Lett. 2014;16:6252;
 (c) Chang M-Y, Lu Y-J, Cheng Y-C. Tetrahedron. 2015;71:1192;
 (d) Chang M-Y, Cheng Y-J. Org Lett. 2016;18:608.
- 7. For synthesis of allylic sulfones, see: (a) Jiang L, Lei Q, Huang X, Cui H-L, Zhou X, Chen Y-C. Chem Eur I. 2011:17:9489: (b) Gembus V, Postikova S, Levacher V, Briere J-F. J Org Chem. 2011;76:4194; (c) Diez D, Garcia P, Marcos IS, et al. Org Lett. 2003;5:3687; (d) Taniguchi T, Sugiura Y, Zaimoku H, Ishibashi H. Angew Chem Int Ed. 2010;49:
 - 10154
- (e) Taniguchi T, Idota A, Ishibashi H. Org Biomol Chem. 2011;9:3151. 8. For herbicides, see: Desbordes P.; Euvrard M. US patent 5,100,460, 1992.
- 9
- For V₂O₅, see: (a) Madesclaire M. Tetrahedron. 1986;42:5459; (b) Ohta Ch, Shimizu H, Kondo A, Katsuki T. Synlett. 2002:161;
 - (c) Gopinath G, Patel B. Org Lett. 2000;2:577;
 - (d) Zhang W, Yamamoto H. J Am Chem Soc. 2007;129:286; (e) Velusamy S, Punniyamurthy T. Org Lett. 2004;6:217.

fax: 44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk).

- 10. For MeReO₃, see: (a) Vetter AH, Berkessel A. Tetrahedron Lett. 1998;39:1741; (b) Bringsma J, La Crois R, Feringa BL, Donnoli MJ, Rosini C. Tetrahedron Lett. 2001;42:4049;
- (c) Espenson JH. Chem Commun. 1999:479.
- 11. For MoO₅, see Bonchio M, Carofiglio T, Di Furia F, Fornasier R. J Org Chem. 1995.60.5986
- 12. For TeO₂, see: (a) Kim KS, Hwang HJ, Cheong Ch S, Hahn Ch S. Tetrahedron Lett. 1990;31:2893;
- (b) Ganem B, Heggs RP, Biloski AJ, Schwartz DR. Tetrahedron Lett. 1980;21:685. 13. CCDC 1539888 (4a) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK;