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Abstract: A simple eight-membered dialkoxysilane
(E)-1 prepared from 2-pentene-1,5-diol, showed remark-
ably stable planar chirality along with high reactivity
toward epoxidation, Diels–Alder reaction, and cycloaddi-
tion reaction with azide.

Functionalization of alkenes with discrimination of the stereo-
topic faces is one of the most fundamental and efficient ap-
proaches in asymmetric synthesis, and hence, numerous dia-
stereoselective and enantioselective methods have been devel-
oped so far.[1] Basically, an alkene has no chiral element; there-
fore, introduction of an external chiral element such as an sp3

carbon chirality into the adjacent position of the alkene or into
the reagent is necessary to discriminate between the stereo-
topic faces of the alkene. In contrast, if an alkene having inher-
ent chirality is available, unique and efficient asymmetric syn-
thesis can be performed without the aid of external chiral ele-
ment.[2, 3]

To create an “inherent chiral alkene,” we envisioned the
transformation of a conventional achiral alkene i into
a medium-sized cyclic molecule ii via ring formation with a de-
tachable “buckle Z” (Figure 1). The resulting ii should have
planar chirality because of its conformational constraint.

To realize this concept, we designed new eight-membered
olefinic dialkoxysilanes (E)-1 (� ii, m and n = 1, Y = O, Z = SiR2),
in which silicon acts as the buckle to connect both side of
1,5-diol.[4] Conformational analysis by DFT (density functional
theory) calculation suggests that the alkene moiety of
(E)-1 forms stereogenic planes in the most stable conforma-
tion, as shown in Figure 2.[5] Furthermore, estimated barrier to
racemization is high enough to isolate an enantiomer (see
below). Herein, we describe the detailed synthesis, stereo-
chemical behavior, and reaction of dialkoxysilanes (E)-1.[6, 7]

An ideal approach to (E)-1 is assembling achiral diol (E)-2-
pentene-1,5-diol [(E)-2] and dichlorosilane, however, the en-
tropically unfavorable cyclization of (E)-2 might be difficult.
Therefore, we carried out a detour-route synthesis involving
the photochemical isomerization of (Z)-1, as illustrated in
Scheme 1. At the outset, we prepared (Z)-1 a (R = Ph) and
(Z)-1 b (R = tBu) from (Z)-2 and commercially available dichloro-
silanes. The reaction of (Z)-2 and R2SiCl2 (R = Ph or tBu) in the

Figure 1. Introduction of chirality and high reactivity in achiral alkene i.

Figure 2. Most stable conformers of (E)-1.

Scheme 1. Synthesis of (E)-1 a,b. Reagents and conditions: a) R2SiCl2, AgNO3,
N,N-dimethylformamide, 0 8C, (Z)-1 a : 71 %, (Z)-1 b : 77 %. b) Grubbs’ 1st gen-
eration catalyst (5 mol %), CH2Cl2, RT, (Z)-1 a : 87 %, (Z)-1 b : 72 %. c) dimethyl
isophthalate (20 mol %), hn : 280 nm, CH3CN, RT, (E)-1 a : 25 %, (E)-1 b : 31 %.
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presence of AgNO3 under high-dilution conditions afforded
(Z)-1 a and (Z)-1 b in 71 % and 77 % yields, respectively.[8]

An alternative approach, the RCM (ring-closing olefin meta-
thesis) of 3 a and 3 b, was also efficient, and (Z)-1 a and (Z)-1 b
were obtained in 87 % and 72 % yields, respectively.[9, 10] Photo-
chemical isomerization of (Z)-1 a, b was performed by irradia-
tion with 280 nm UV light in the presence of dimethyl iso-
phthalate (sensitizer) in acetonitrile, and 1 a and 1 b were ob-
tained as 25:75 and 33:67 E/Z mixtures, respectively.[11] Pure
(E)-1 a, b were successfully isolated by AgNO3-impregnated
silica gel chromatography.[12, 13] The existence of isolable enan-
tiomers of (E)-1 a was revealed by HPLC analysis using a chiral
stationary column equipped with a CD (circular dichroism) de-
tector. As shown in Scheme 2, both enantiomers of (E)-1 a

were separated: the first eluate was the (�)-isomer (½a�20
D =

�65.4, c 1.66, CHCl3) and the second eluate was the (+)-isomer
(½a�21

D = + 63.6, c 1.61, CHCl3).[14] Further, the remarkable stereo-
chemical stability of (E)-1 a was revealed. Namely, the enantio-
purity of the isolated enantiomer of (E)-1 a was almost un-
changed in toluene solution at ambient temperature for two
months or at 80 8C for at least two weeks.

Because straightforward determination of the absolute con-
figuration of non-crystalline (E)-1 a was difficult, we decided to
prepare Pt-complexes of the enantiomers by our previously de-
veloped method.[15] Reaction of (�)-(E)-1 a with PtCl2(2,4,6-
trimethylpyridine)(CH2=CH2) (4) in CH2Cl2 at RT afforded the de-
sired 5 a in 95 % yield, as crystals suitable for X-ray analysis.
The analysis results showed that the absolute configuration of
(�)-(E)-1 a is (S) (Scheme 3).[16]

In contrast to the case of (E)-1 a, direct separation of the
enantiomers of (E)-1 b using a chiral stationary column was un-
successful. Hence, we examined for the Pt-complex derivatiza-
tion method. As shown in Scheme 4, Pt-complex 5 b was pre-
pared in racemic form from rac-(E)-1 b and 4, and both enan-

tiomers of 5 b were successfully separated by HPLC using
a chiral stationary column. Removal of the Pt moiety from
(+)-and (�)-5 b using PPh3 afforded (�)-(E)- and (+)-(E)-1 b, re-
spectively.[17] The enantiopurity of the isolated enantiomers of
1 b was almost unchanged in toluene at 80 8C for two weeks.

Elucidation of the detailed stereochemical stability of (E)-1 a
and (E)-1 b by measuring the change in the optical purity is dif-
ficult owing to their remarkable reactivity of the E-alkene
moiety.[18] Therefore, we estimated the racemization energy by

Scheme 2. Stereochemical behavior of (E)-1 a. [a] CHIRALCEL OJ-H
(4.6 � 250 mm), hexane/iPrOH = 90:10, flow rate: 0.5 mL min�1, CD 254 nm,
UV: 254 nm.

Scheme 3. Synthesis and X-ray analysis of (E)-5 a and ORTEP drawing of
(S)-5 a (50 % probability ellipsoids).

Scheme 4. Transformation of (E)-1 b into 5 b and separation of the enantio-
mers. [a] CHIRALPAK AD-H (4.6 � 250 mm), hexane/iPrOH = 95:5, flow rate:
0.5 mL min�1, CD: 254 nm, UV: 300 nm. Reagents and conditions: a) semi-
preparative HPLC: CHIRALPAK AD-H (25 � 250 mm), hexane/iPrOH = 95:5,
flow rate: 4.0 mL min�1, UV: 300 nm, b) PPh3, CH2Cl2, 0 8C, (�)-(E)-1 b : 57 %,
(+)-(E)-1 b : 90 %.
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DFT calculations: (E)-1 a is much more stable than (E)-1 b
[DE�

(298 K) = 32.6 and 28.7 kcal mol�1 for (E)-1 a and (E)-1 b, re-
spectively] .[5] From these data, the half-lives of the optical ac-
tivity (t1/2) of (E)-1 a and (E)-1 b at 25 8C were calculated as
1,375 years and 1.9 years, respectively. These results mean that
the synthesis of remarkably stable planar chiral alkene was re-
alized by the simple transformation of acyclic olefinic diol into
cyclic dialkoxysilane and that the stereochemical stability of
the resulting (E)-1 can be adjusted by appropriate choice of
the substituent R on the silylbuckle Z.

The obtained (E)-1 is unique in that it is a highly reactive
chiral alkene. As shown in Scheme 5, the reaction of (S)-(E)-1 a
with mCPBA (1.2 equiv) in CH2Cl2 at 0 8C proceeded to comple-
tion within 1 h to afford epoxide (R,R)-6 quantitatively in a ste-
reospecific manner (>98 % d.r. , >98 % ee).[19] In general, a con-

ventional (Z)-alkene is more reactive toward epoxidation than
is an (E)-alkene.[20] However, a similar epoxidation reaction of
(Z)-1 was rather slow, taking approximately 24 h for comple-
tion. The observed significantly high reactivity of (E)-1 would
be attributable to the distorted structure of the olefinic bond.
The silyl buckle moiety could be removed from 6 by treatment
with TBAF to quantitatively afford epoxide 7 having an acyclic
skeleton. The stereochemical purity of 7 (>98 % d.r. ,>98 % ee)
was reconfirmed by HPLC analysis of bromobenzoate deriva-
tive 8 using a chiral stationary column.

(E)-1 a showed very high reactivity for Diels–Alder reactions
as well. The reaction of (R)-(E)-1 a with 1,3-diphenyl isobenzo-
furan proceeded to completion within 2.5 h even at RT to
afford the cycloaddition product 9 in 90 % yield as a diastereo-
meric mixture (d.r. = 69:31), as shown in Scheme 6.[21] The ste-
reochemistry of the diastereomers of 9 was unambiguously de-
termined as (1R,8S,9S,10R) and (1S,8R,9S,10R) by X-ray analy-
sis.[16] Optically pure diols (1R,8S,9S,10R)-10 and (1S,8R,9S,10R)-
10 were afforded from 9 by removal of the silyl buckle moiety.
In sharp contrast, a similar reaction of (Z)-1 a did not proceed
under the similar conditions:[22] the reaction of an equimolar
mixture of (E)-1 a, (Z)-1 a, and excess 1,3-diphenyl isobenzofur-
an at RT for 4 h gave only 9 (quant.), and (Z)-1 a was recovered
almost intact (94 %).

The Diels–Alder reactivity of (E)-1 a was higher than that of
trans-cyclooctene (11), which is the well-known highly strained
and reactive alkene.[23] As shown in Scheme 7-(1), the reaction
of an equimolar mixture of rac-(E)-1 a, rac-11, and 1,3-diphenyl

isobenzofuran at RT for 20 h provided 9 (d.r. = 61:39) and 12 in
79 % and 19 % yields, respectively; this result meant that (E)-1 a
has 4.2 times greater reactivity than does 11.[24] Furthermore,
(E)-1 a showed greater reactivity than did 11 for the [3+2] cy-
cloaddition reaction [Scheme 7-(2)] .[25] Namely, a similar com-
petitive reaction of (E)-1 a and 11 with benzyl azide at RT for
48 h afforded 13 (13 a/13 b = 52:48) and 14 in 67 % and 31 %
yields, respectively.[26–29]

In conclusion, we have developed a simple and efficient ap-
proach to introduce chirality and enhance reactivity to conven-
tional achiral alkenes. The resulting novel alkene shows re-
markably stable chirality as well as high reactivity toward epox-
idation, Diels–Alder reaction, and cycloaddition reaction with
azides. Further studies to extend the concept of introducing

Scheme 5. Epoxidation of enantioenriched (E)-1 a. Reagents and conditions:
a) mCPBA (1.2 equiv), CH2Cl2, 0 8C, 1 h, quant. ; b) TBAF, THF, RT, quant. ;
c) pBrC6H4COCl, Et3N, N,N-dimethyl-4-dimethylaminopyridine (cat.), CH2Cl2,
0 8C, 97 %. mCPBA = meta-chloroperbenzoic acid, TBAF = tetrabutylammoni-
um fluoride.

Scheme 6. Diels–Alder reaction of (E)-1 a and 1,3-diphenyl isobenzofuran. Re-
agents and conditions: a) 1,3-diphenylisobenzofuran (1.5 equiv), toluene, RT,
2.5 h, 90 %; b) TBAF, THF, 0 8C, 75 %.

Scheme 7. Competitive reactions of (E)-1 a and trans-cyclooctene (11).

Chem. Eur. J. 2014, 20, 7598 – 7602 www.chemeurj.org � 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim7600

Communication

http://www.chemeurj.org


chirality and reactivity in alkenes, along with investigations of
the synthetic applications of the inherent chiral alkene, are in
progress.
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