J. Chem. Soc., Faraday Trans. 1, 1983, 79, 1471-1482

# Bromination of Fluoroalkanes

Part 5.—Kinetics of Forward and Reverse Reactions in the System  $Br_2+i-C_3F_7H \rightleftharpoons HBr+i-C_3F_7Br$ 

BY BRIAN S. EVANS,<sup>†</sup> IAN WEEKS<sup>‡</sup> AND ERIC WHITTLE<sup>\*</sup>

Chemistry Department, University College, Cardiff CF1 1XL

Received 8th November, 1982

The kinetics of the forward and reverse reactions in the gas-phase system

$$Br_2+i-C_3F_7H \rightleftharpoons HBr+i-C_3F_7Br$$

have been studied. The slow steps for the forward and reverse reactions, respectively, are

$$Br + i - C_3 F_7 H \rightarrow HBr + i - C_3 F_7$$
(2)

$$Br + i - C_3 F_7 Br \rightarrow Br_2 + i - C_3 F_7.$$
 (-3)

The Arrhenius parameters obtained, for the range 421-534 °C, are

log 
$$A_2$$
/cm<sup>3</sup> mol<sup>-1</sup> s<sup>-1</sup> = 12.66 ± 0.34,  $E_2 = 81.2 \pm 3.3$ 

$$\log A_{-3}/\mathrm{cm^3 \ mol^{-1} \ s^{-1}} = 13.80 \pm 0.29, \quad E_{-3} = 86.3 \pm 4.2 \ \mathrm{kJ \ mol^{-1}}$$

The competitive brominations of mixtures of  $i-C_3F_7H + C_2F_5H$  and  $i-C_3F_7H + n-C_3F_7H$  have been studied over the ranges 249–430 and 220–402 °C, respectively. Each system yielded Arrhenius parameters for reaction (2) which are in excellent agreement with those given above. The results lead to the following bond dissociation energies at 298 K:

$$D(i-C_3F_7-H) = 433.3 \pm 2.4 \text{ kJ mol}^{-1}, D(i-C_3F_7-Br) = 273.8 \pm 4.7 \text{ kJ mol}^{-1}.$$

Attempts were made to measure  $D[(CF_3)_3C-H]$  using competitive photobromination and photochlorination. However,  $(CF_3)_3C-H$  is so unreactive that only the approximate result  $D[(CF_3)_3C-H] \approx 456$  kJ mol<sup>-1</sup> was obtained. The trends in C-H and C-Br bond dissociation energies are compared in alkanes, fluoroalkanes and the corresponding bromides.

It is well known that there is a progressive decrease in C—H bond dissociation energy along the series Me—H, Et—H, i-Pr—H and t-Bu—H. The trend could well be different for the analogous series involving perfluoroalkyl groups  $R_F$ . However, values of  $D(R_F$ —H) are known only for  $CF_3$ —H<sup>1</sup> and  $C_2F_5$ —H.<sup>2</sup> We now describe the first determination of  $D(R_F$ —H) for the third member of the series, i- $C_3F_7$ —H. This involves a study of the kinetics of the overall forward reaction,

$$Br_2 + i - C_3 F_7 H \rightleftharpoons HBr + i - C_3 F_7 Br.$$
 (1, -1)

The kinetics of the overall reverse reaction (-1) were also studied and a value of  $D(i-C_3F_7-Br)$  was obtained.

The value of  $D(i-C_3F_7-H)$  was checked by means of competitive brominations of mixtures of  $i-C_3F_7H+C_2F_5H$  and  $i-C_3F_7H+n-C_3F_7H$ .

<sup>†</sup> Present address: Department of Science, Stockport College, Wellington Road South, Stockport, Cheshire.

<sup>&</sup>lt;sup>‡</sup> Present address: Department of Medical Biochemistry, Welsh National School of Medicine, Heath Park, Cardiff CF4 4XN.

## 1472

#### **BROMINATION OF FLUOROALKANES**

We also describe the results of attempts to measure  $D(R_F - H)$  where  $R_F = per-fluoro-t-butyl$ . An approximate value of  $D[(CF_3)_3C - H]$  was obtained.

## **EXPERIMENTAL**

#### MATERIALS

The sources of, or preparations of,  $Br_2$ , HBr,  $C_2F_5H$  and  $n-C_3F_7H$  were as in ref. (3)–(5). i- $C_3F_7H$  was made by photolysis of i- $C_3F_7I$  (Peninsular ChemResearch) in the presence of  $(CH_3)_2CHCH(CH_3)_2$  or  $HBr.^6 C_2F_5Br$  and  $n-C_3F_7Br$  were made by photolysing a large excess of  $Br_2$  with  $C_2F_5H$  or  $n-C_3F_7H$  in our reaction vessel at 200 °C. i- $C_3F_7Br$  was similarly made by photolysis of excess  $Br_2$  with i- $C_3F_7I$  at 200 °C. The products were freed of halogens and HBr by passage through Carbosorb followed by auramine on brick dust. Middle fractions from bulb-to-bulb distillations (-80 to -196 °C) were pure, as indicated by infrared spectroscopy and gas chromatography.

#### APPARATUS AND PROCEDURE

The apparatus was essentially as described in ref. (1). The progress of the thermal reactions (1) and (-1) was monitored by following the decay of Br<sub>2</sub> in forward reactions and the growth in back reactions. Product mixtures were analysed for i-C<sub>3</sub>F<sub>7</sub>H and i-C<sub>3</sub>F<sub>7</sub>Br by gas chromatography using a 5.8 m column of 15% silicone oil (MS200) on Chromosorb P preceeded by a halogen scrubber of auramine on brick dust, both at 0 °C.

In the competitive experiments, mixtures of reactants were irradiated with light from a 250 W Osram medium-pressure mercury lamp. A parallel beam passed through a cobalt-glass filter whose transmission roughly matched the  $Br_2$  absorption spectrum. Details of analysis of products are given later.

## RESULTS

### 1. THERMAL BROMINATION OF $i-C_3F_7H$

The overall thermal bromination of  $i-C_3F_7H$  should be described by reaction (1)

$$Br_2 + i - C_3 F_7 H \rightleftharpoons HBr + i - C_3 F_7 Br.$$
 (1, -1)

In agreement with this, we found no species other than those present in reaction (1) when reaction mixtures were left for much longer periods than those used for kinetic measurements. The expected mechanism of reaction (1) involves the steps

$$Br_{2} \rightleftharpoons^{n_{c}} 2Br$$

$$Br + i - C_{3}F_{7}H \rightleftharpoons HBr + i - C_{3}F_{7} \qquad (2, -2)$$

$$i-C_3F_7+Br_2 \rightleftharpoons i-C_3F_7Br+Br.$$
 (3, -3)

In the early stages reaction (-3) can be ignored. If chain termination occurs only by combination of Br atoms, the above mechanism leads to the rate law

$$-\frac{d[Br_2]}{dt} = \frac{k_2 K_c^{\frac{1}{2}} [Br_2]^{\frac{1}{2}} [i-C_3 F_7 H]}{1+k_{-2} [HBr]/k_3 [Br_2]}.$$
 (4)

The initial rate, when negligible HBr is present, is given by

$$-\frac{d[Br_2]}{dt} = k_2 K_c^{\frac{1}{2}} [Br_2]^{\frac{1}{2}} [i - C_3 F_7 H].$$
(5)

Eqn (5) was first checked by performing runs at 444 °C. Initial rates of removal of  $Br_2$  were obtained from the photometer traces by computer curve-fitting. From 6 runs using 33 Torr i- $C_3F_7H$  and varying  $Br_2$  in the range 4–20 Torr, a plot of log (initial rate) against log  $[Br_2]$  gave an order in  $Br_2$  of  $0.54 \pm 0.04$ . Similarly, from 7 runs with

17 Torr  $Br_2$  and varying i- $C_3F_7H$  in the range 10–67 Torr, we obtained an order in i- $C_3F_7H$  of  $1.07 \pm 0.05$ . Thus eqn (5) is confirmed. Runs were also done at five other temperatures in the range 421–534 °C. The initial pressures of  $Br_2$  and i- $C_3F_7H$  were varied at each temperature. At any given temperature the value of  $k_2K_c^{\frac{1}{2}}$  was independent of these variations. In all, 38 runs were done. Values of  $K_c$  were calculated from data in the Janaf tables,<sup>7</sup> and hence  $k_2$  was obtained from each run. An Arrhenius plot, shown in fig. 1, leads to

$$\log (k_{\rm s}/\rm{cm}^3 \,\rm{mol}^{-1} \,\rm{s}^{-1}) = (12.66 \pm 0.34) - (81\,200 \pm 3300)/\theta \tag{6}$$

where  $\theta = 2.303 \ RT \ J \ mol^{-1}$ . Error limits are one standard deviation.



Fig. 1. Arrhenius plots. Lower curve,  $k_2$ . Upper curve,  $k_{-3}$ . Where several points are close together, the mean value is plotted and the number of runs involved is indicated.

#### 2. THERMAL REACTION BETWEEN $i-C_3F_7Br$ and HBr

The overall reaction (-1) between i-C<sub>3</sub>F<sub>7</sub>Br and HBr is conveniently initiated by Br atoms, as in reaction (-3). The Br atoms are generated by adding Br<sub>2</sub> to the initial HBr+i-C<sub>3</sub>F<sub>7</sub>Br mixture. Assuming that Br and Br<sub>2</sub> are in equilibrium, the early stages of reaction (-1) involve steps (3), (-3) and (-2). The resulting rate law is

$$\frac{\mathrm{d}[\mathbf{Br}_{2}]}{\mathrm{d}t} = \frac{k_{-3}K_{\mathrm{c}}^{\dagger}[\mathbf{Br}_{2}]^{\frac{1}{2}}[\mathbf{i}-\mathbf{C}_{3}\mathbf{F}_{7}\mathbf{Br}]}{1+k_{3}[\mathbf{Br}_{2}]/k_{-2}[\mathbf{HBr}]}.$$
(7)

#### **BROMINATION OF FLUOROALKANES**

Reaction (2) does not become important until later, when the concentration of  $i-C_3F_7H$  becomes substantial.

The measurement of initial rates for the back reaction does not lead to a simpler form of eqn (7), unlike the forward reactions where use of initial rates permitted replacement of eqn (4) by the simpler eqn (5). This is because the back reactions are initiated by adding Br<sub>2</sub> to the HBr+i-C<sub>3</sub>F<sub>7</sub>Br so that the denominator in eqn (7) is never unity. The determination of  $k_{-3}$  using eqn (7) can be made in several ways. For example, a series of runs can be performed at a given temperature using a fixed pressure of i-C<sub>3</sub>F<sub>7</sub>Br and various ratios of Br<sub>2</sub> to HBr. The results can be introduced into a rearranged form of eqn (7) so that a graphical treatment gives  $k_{-3}$  and the ratio  $k_3/k_{-2}$ . Alternatively, values of  $k_3/k_{-2}$  can be obtained by studying the inhibiting effect of HBr on the overall *forward* reaction and then applying eqn (4). The values of  $k_3/k_{-2}$ so obtained are then introduced into eqn (6), which can thus be applied directly to the kinetic results on the back reaction to give  $k_{-3}$ . However, there is a third and better way of obtaining  $k_3/k_{-2}$ , as follows.

Evans and Whittle<sup>2</sup> have described an independent way of measuring ratios of rate constants, such as  $k_3/k_{-2}$ . Weeks and Whittle<sup>8</sup> have applied their technique to reactions (3) and (-2). This involves photolysis of Br<sub>2</sub> in the presence of a mixture of HBr+i-C<sub>3</sub>F<sub>7</sub>I so that i-C<sub>3</sub>F<sub>7</sub> radicals are produced by the reaction

$$Br+i-C_3F_7I \rightarrow IBr+i-C_3F_7$$
.

The radicals then react competitively with HBr and  $Br_2$  by reactions (-2) and (3), respectively. This work yielded

$$\log k_3 / k_{-2} = (0.55 \pm 0.07) + (10900 \pm 600) / \theta.$$
(8)

Eqn (8) was used to find  $k_3/k_{-2}$  at each temperature at which a back reaction was carried out. The result, together with the appropriate initial rate and concentrations of reactants, was introduced into eqn (7) and so  $k_{-3}$  was obtained. 14 runs were done at 5 temperatures in the range 421-534 °C. At each temperature substantial changes in reactant concentrations were made, but the values of  $k_{-3}$  from eqn (7) were constant within experimental error. An Arrhenius plot is shown in fig. 1, from which

$$\log \left( k_{-3} / \text{cm}^3 \,\text{mol}^{-1} \,\text{s}^{-1} \right) = (13.80 \pm 0.29) - (86300 \pm 4200) / \theta. \tag{9}$$

## 3. BROMINATION OF MIXTURES OF $i-C_3F_7H+C_2F_5H$

If a mixture of  $Br_2 + i - C_3F_7H + C_2F_5H$  is irradiated in the vapour phase with blue light, the expected reactions are (2), (3) and

$$Br_2 + h\nu \to 2 \text{ Br}$$

$$Br + C_2F_5H \to HBr + C_2F_5 \tag{10}$$

$$C_2F_5 + Br_2 \rightarrow C_2F_5Br + Br \tag{11}$$

$$Br + Br + M \rightarrow Br_2 + M$$
.

If reactions (3) and (11) are the only sources of  $i-C_3F_7Br$  and  $C_2F_5Br$ , respectively, then

$$\beta = \frac{R(i-C_3F_7Br)}{R(C_2F_5Br)} = \frac{k_2[i-C_3F_7H]}{k_{10}[C_2F_5H]}$$
(12)

where R denotes rate of formation. Eqn (12) should apply irrespective of how Br atoms are formed.

Mixtures of reactants were admitted to the reaction vessel in the order i- $C_3F_7H$ ,  $C_2F_5H$ ,  $Br_2$ . The temperature range used was 249–430 °C. At all but the highest temperature ( $T \le 401$  °C) there was no dark reaction. At 430 °C a slow thermal bromination began as soon as  $Br_2$  was added. This did not affect the results as only short photolysis times were needed at 430 °C.

If eqn (12) is valid, the ratio of the rates of formation of products, denoted by  $\beta$ , should be independent of photolysis time. To check this, samples were removed from each run after various photolysis times and were analysed by gas-solid chromatography (g.s.c.). The values of  $\beta$  were independent of photolysis time. This is rare for competitive brominations and occurs because  $k_2$  and  $k_{10}$  differ by less than a factor of 2. Hence the right-hand side of eqn (12) does not begin to change significantly until substantial conversions of i-C<sub>3</sub>F<sub>7</sub>H and C<sub>2</sub>F<sub>5</sub>H have occurred.

|              | <i>p</i> /Torr  |                                   |           | [i-C <sub>3</sub> F <sub>7</sub> H] <sub>i</sub> | k,                 |  |
|--------------|-----------------|-----------------------------------|-----------|--------------------------------------------------|--------------------|--|
| <i>T/</i> °C | Br <sub>2</sub> | i-C <sub>3</sub> F <sub>7</sub> H | $C_2F_5H$ | $\frac{[C_2F_5H]_i}{[C_2F_5H]_i}$                | $\frac{1}{k_{10}}$ |  |
| 249.4        | 12.7            | 20.8                              | 20.8      | 0.999                                            | 0.542              |  |
| 249.4        | 12.6            | 20.8                              | 21.2      | 0.981                                            | 0.607              |  |
| 249.4        | 17.8            | 41.6                              | 10.2      | 4.08                                             | 0.615              |  |
| 299.1        | 18.8            | 21.0                              | 20.9      | 1.01                                             | 0.516              |  |
| 299.1        | 18.7            | 41.3                              | 10.6      | 3.90                                             | 0.709              |  |
| 351.5        | 19.1            | 21.2                              | 20.6      | 1.03                                             | 0.572              |  |
| 351.2        | 19.3            | 20.7                              | 20.9      | 0.990                                            | 0.598              |  |
| 351.5        | 8.5             | 41.9                              | 20.6      | 2.03                                             | 0.639              |  |
| 351.5        | 19.3            | 41.6                              | 10.5      | 3.98                                             | 0.636              |  |
| 351.2        | 39.0            | 20.9                              | 20.8      | 1.00                                             | 0.617              |  |
| 400.9        | 18.2            | 21.3                              | 20.6      | 1.04                                             | 0.594              |  |
| 400.9        | 17.9            | 42.1                              | 10.3      | 4.07                                             | 0.707              |  |
| 400.9        | 7.9             | 20.9                              | 20.7      | 1.01                                             | 0.583              |  |
| 430.0        | 19.7            | 21.2                              | 22.2      | 0.956                                            | 0.676              |  |

| Table 1 | ۱. ( | Competitive | results f | or | the | system | $Br_{2} +$ | -i-C | $_{3}F_{7}$ | H + | C,F | H, |
|---------|------|-------------|-----------|----|-----|--------|------------|------|-------------|-----|-----|----|
|         |      | 1           |           |    |     |        |            |      |             |     |     |    |

The analysis of the product mixtures by g.s.c. presented difficulties. The column consisted of 40 cm of activated alumina preceded by 35 cm of auramine on brick dust to remove  $Br_2 + HBr$ . The column was at room temperature. The alumina was rapidly deactivated and needed renewal each day. Samples of a standard calibration mixture of  $i-C_3F_7Br+C_2F_5Br$  were injected between run samples to determine sensitivities.

Runs were done at five temperatures in the range 249–430 °C. For each run, the mean value of  $\beta$  was introduced into eqn (12) and the ratio  $k_2/k_{10}$  was calculated. The results are given in table 1. At any given temperature  $k_2/k_{10}$  is independent of the initial ratio [i-C<sub>3</sub>F<sub>7</sub>H]/[C<sub>2</sub>F<sub>5</sub>H] and of the initial pressure of Br<sub>2</sub>. This confirms that eqn (12) is valid. An Arrhenius plot of the data is shown in fig. 2. A least-squares analysis gives

$$\log k_2 / k_{10} = -(0.08 \pm 0.10) - (1530 \pm 1210) / \theta.$$
(13)

4. BROMINATION OF MIXTURES OF  $i-C_3F_7H + n-C_3F_7H$ 

The mechanism of bromination of  $i-C_3F_7H + n-C_3F_7H$  should be similar to that of the previous section except that reaction (10) will be replaced by

 $Br + n - C_3 F_7 H \rightarrow HBr + n - C_3 F_7$ (14)



Fig. 2. Arrhenius plots for competitive results. Lower curve, X = 0.9,  $k_a/k_b = k_2/k_{14}$ . Upper curve, X = 1,  $k_a/k_b = k_2/k_{10}$ . Numbers by points have the same meaning as in fig. 1.

with n-C<sub>3</sub>F<sub>7</sub> radicals being removed by reaction with Br<sub>2</sub>. The analogue of eqn (12) is  $R(I_{-}C \in Br) = k [i_{-}C \in H]$ 

$$\frac{R(I-C_3F_7Br)}{R(n-C_3F_7Br)} = \frac{k_2[I-C_3F_7H]}{k_{14}[n-C_3F_7H]}.$$
(15)

The experimental procedure was essentially as in the previous section with photobromination of mixtures of  $Br_2+i-C_3F_7H+n-C_3F_7H$ . However, we could not find a gas-chromatography column which would satisfactorily separate all four components in the product mixture so analyses were done by i.r. spectroscopy. The ratio [i-C\_3F\_7Br]/[n-C\_3F\_7Br] was determined using the 969 cm<sup>-1</sup> band of i-C\_3F\_7Br and the 847 cm<sup>-1</sup> band of n-C\_3F\_7Br. The latter band was partly overlapped by the 861 cm<sup>-1</sup> band of i-C\_3F\_7H and, to a lesser extent, by the 835 cm<sup>-1</sup> band of n-C\_3F\_7H. This was allowed for as follows.

Two i.r. gas cells were mounted in the sample and reference beams of an i.r. spectrometer and both were connected independently to the vacuum line. Beer's-law plots were constructed for both i-C<sub>3</sub>F<sub>7</sub>Br (969 cm<sup>-1</sup>) and n-C<sub>3</sub>F<sub>7</sub>Br (847 cm<sup>-1</sup>), with the reference cell evacuated. These plots were checked frequently. A run mixture was photolysed for a suitable time and then the contents of the reaction vessel were frozen into the sample cell. Preliminary experiments showed that the Br, in the mixture slowly disappeared, probably by reaction with the picein wax used to seal the NaCl windows on to the i.r. cell. Each reaction mixture was therefore freed from Br<sub>2</sub> and HBr by passing it through a tube of auramine on brick dust before it entered the i.r. gas cell. Blank experiments, with and without this scrubbing, showed that scrubbing did not affect the ratio of bromides. Once the reaction mixture was in the sample cell the i.r. spectrometer was set to the 1037 cm<sup>-1</sup> band of  $n-C_3F_7H$ , and  $n-C_3F_7H$  was then admitted to the reference cell until the absorption was nulled. The spectrometer was then set to the 861 cm<sup>-1</sup> band of  $i-C_3F_7H$  and  $i-C_3F_7H$  was added to the reference cell until the absorption by i- $C_3F_7H$  in the sample cell was cancelled. The spectrum of the products was then scanned to obtain the absorbances needed at 969 and  $847 \text{ cm}^{-1}$ .

Runs were done in the range 220-402 °C. The whole of the products of each run were needed for each analysis, so periodic sampling after different photolysis times, as in the previous section, was not done. However, photolysis times were varied in

## B. S. EVANS, I. WEEKS AND E. WHITTLE 1477

separate runs so that the percentage conversion of the more reactive compound  $(n-C_3F_7H)$  fell in the range 8-31%. The ratio  $k_2/k_{14}$ , obtained using eqn (15), was unaffected at a given temperature. This is expected, since  $k_2/k_{14} \approx 2$  so that the ratio  $[i-C_3F_7H]/[n-C_3F_7H]$  changes little during the photolysis times used. At each temperature the ratio of reactants was varied but this did not effect the calculated value of  $k_2/k_{14}$ . The results were also independent of the order of admission of the reactants to the reaction vessel. In certain runs duplicate analyses were made by dividing the product mixture into two equal samples. Reproducibility was excellent. One experiment at the highest temperature was carried out without photolysis. The percentage conversion in the dark after 158 min was the same as that after a 40 s photolysis. Hence the thermal reaction can be neglected.

|       |                 | <i>p</i> /Torr                    | [i-C <sub>2</sub> F-H]            | k.                                         |                    |
|-------|-----------------|-----------------------------------|-----------------------------------|--------------------------------------------|--------------------|
| T∕°C  | Br <sub>2</sub> | i-C <sub>3</sub> F <sub>7</sub> H | n-C <sub>3</sub> F <sub>7</sub> H | $\frac{1}{\left[n-C_{3}F_{7}H\right]_{i}}$ | $\frac{1}{k_{14}}$ |
| 219.6 | 9.0             | 20.8                              | 20.5                              | 1.01                                       | 0.375              |
| 219.5 | 8.7             | 20.7                              | 20.6                              | 1.00                                       | 0.438              |
| 255.8 | 10.0            | 20.3                              | 19.1                              | 1.06                                       | 0.442              |
| 256.3 | 10.6            | 41.4                              | 9.0                               | 4.60                                       | 0.442              |
| 256.1 | 13.8            | 51.6                              | 5.3                               | 9.68                                       | 0.430              |
| 256.1 | 21.1            | 20.3                              | 19.2                              | 1.06                                       | 0.467              |
| 299.9 | 10.6            | 20.6                              | 19.3                              | 1.06                                       | 0.463              |
| 299.4 | 10.5            | 20.6                              | 19.5                              | 1.06                                       | 0.472              |
| 300.2 | 8.8             | 41.4                              | 10.7                              | 3.88                                       | 0.411              |
| 349.8 | 10.6            | 20.8                              | 19.4                              | 1.08                                       | 0.519              |
| 350.3 | 5.3             | 20.3                              | 19.5                              | 1.04                                       | 0.496              |
| 350.3 | 10.5            | 10.4                              | 19.4                              | 0.537                                      | 0.475              |
| 349.8 | 10.9            | 20.5                              | 9.1                               | 2.25                                       | 0.464              |
| 350.6 | 11.0            | 41.5                              | 8.7                               | 4.78                                       | 0.466              |
| 350.6 | 11.1            | 41.3                              | 3.7                               | 11.3                                       | 0.446              |
| 400.6 | 8.2             | 20.7                              | 20.3                              | 1.02                                       | 0.523              |
| 401.3 | 8.0             | 41.7                              | 10.3                              | 4.06                                       | 0.474              |
| 401.6 | 8.3             | 20.7                              | 20.1                              | 1.03                                       | 0.499              |

**Table 2.** Competitive results for the system  $Br_2 + i-C_3F_7H + n-C_3F_7H$ 

The experimental results are given in table 2. An Arrhenius plot of  $k_2/k_{14}$  is shown in fig. 2. By a least-squares analysis

$$\log k_2 / k_{14} = -(0.09 \pm 0.05) - (2750 \pm 560) / \theta.$$
<sup>(16)</sup>

A comparison of the results in eqn (13) and (16) shows that the standard deviations were less using i.r. analysis than when using g.s.c. analysis.

The competitive data in eqn (13) and (16) can be used to obtain absolute values of  $A_2$  and  $E_2$  as follows. Whittle and coworkers<sup>3, 4</sup> studied the competitive brominations of several fluoromethanes, fluoroethanes and n-C<sub>3</sub>F<sub>7</sub>H. Various cross-checks were applied and the data were shown to be internally consistent. The results were re-evaluated by Amphlett and Whittle<sup>1</sup> using new absolute A and E values for BR+CF<sub>3</sub>H and Br+C<sub>2</sub>F<sub>5</sub>H. They recommended the Arrhenius parameters for reactions (10) (Br+C<sub>2</sub>F<sub>5</sub>H) and (14) (Br+n-C<sub>3</sub>F<sub>7</sub>H) which are given below in table 3.

#### BROMINATION OF FLUOROALKANES

These values can be combined with our present results in eqn (13) and (16), respectively, to give the following Arrhenius parameters for reaction (2).

| source                                | $\log (A_2/\text{cm}^3 \text{ mol}^{-1} \text{ s}^{-1})$ | $E_2/\mathrm{kJ}~\mathrm{mol}^{-1}$ |
|---------------------------------------|----------------------------------------------------------|-------------------------------------|
| $C_2F_5H$ as reference and eqn (13)   | $12.95 \pm 0.10$                                         | $82.30 \pm 1.24$                    |
| $n-C_3F_7H$ as reference and eqn (16) | $12.86 \pm 0.11$                                         | $82.56 \pm 0.81$ .                  |

This excellent agreement supports the various Arrhenius parameters assigned previously<sup>1</sup> and also suggests that the values of  $A_2$  and  $E_2$  from the two sets of results above should be reliable.

## 5. ATTEMPTS TO DETERMINE THE BOND DISSOCIATION ENERGY $D[(CF_3)_3C-H]$

The magnitude of  $D[(CF_3)_3C-H]$  is of particular interest since no bond dissociation energy is known for any compound containing the  $(CF_3)_3C-$  group. Furthermore, nothing is known about the reactivity of  $(CF_3)_3C$  radicals and little is known about the reactivity of compounds of the type  $(CF_3)_3C-X$  where X = H or a halogen.

Preparation of  $(CF_3)_3CH$  was difficult. We used the method of Knunyants and coworkers<sup>9</sup> in which  $(CF_3)_2C=CF_2$  is reacted with water in the presence of triethylamine. Our results differed considerably from those of Knunyants, but  $(CF_3)_3CH$  was eventually made using a modification of the synthesis.<sup>8</sup> Its identity was confirmed by i.r. and n.m.r. spectra.

We first tried to measure  $D[(CF_3)_3C - H]$  by determining the activation energy of the reaction  $Br + (CF_3) C + HBr + (CF_3) C$  (17)

$$Br + (CF_3)_3 CH \rightarrow HBr + (CF_3)_3 C.$$
(17)

It should be possible to find  $A_{17}$  and  $E_{17}$  by a competitive method, as in the previous two sections, provided that a suitable competitor can be found. If  $(CF_3)_3CH$  had a weak C-H bond, as does (CH<sub>3</sub>)<sub>3</sub>C-H, it should be readily brominated. In a preliminary experiment 20 Torr of (CF<sub>3</sub>)<sub>3</sub>CH was mixed with 60 Torr of Br<sub>2</sub> at 360 °C and irradiated with the unfiltered light from the Hg lamp used in the first part of this paper. Over several hours a little Br<sub>2</sub> was consumed and three small product peaks were obtained using g.l.c. analysis. One of these was probably  $(CF_a)_a CBr$ . The mixture was left in the dark for a further 60 h. Little further  $Br_2$  was used up and the peak assigned to  $(CF_a)_3CBr$  hardly changed. The products showed a strong i.r. absorption at ca. 1850 cm<sup>-1</sup> which suggests that a fluoro-olefin was present. The i.r. spectrum also indicated the presence of SiF<sub>4</sub>. These observations indicate the following points. (i)  $(CF_3)_3CH$  is exceptionally resistant to bromination. Under the same conditions  $i-C_3F_7H$  would have been readily brominated yet that compound is itself resistant to bromination. (ii)  $(CF_{3})_{3}CH$  was brominated so slowly that there was time for pyrolysis to occur, giving  $(CF_3)_2C=CF_2+HF$ . The HF would react with the silica reaction vessel to give SiF<sub>4</sub>. The bromination of  $(CF_3)_3CH$  is so slow relative to the pyrolysis that it will probably be impossible to study the competitive bromination of  $(CF_3)_3CH$ even if a suitable competitor can be found.

In view of these complications we turned to photochlorinations, which involve much lower activation energies than photobrominations. Hence it should be possible to use lower temperatures and avoid thermal decomposition of  $(CF_3)_3$ CH. Also, Cl atoms are less selective than Br atoms, so in principle a wider range of competitors is available.

If a mixture of  $(CF_3)_3CH + RH + Cl_2$  is photolysed, the Cl atoms should react as follows  $Cl + (CF_2)_2CH \rightarrow HCl + (CF_2)_2C$  (18)

$$Cl + (CF_3)_3 CH \to HCl + (CF_3)_3 C$$
<sup>(18)</sup>

$$Cl + RH \rightarrow HCl + R.$$
 (19)

If all  $(CF_3)_3C$  and R radicals react with  $Cl_2$  to give the corresponding chlorides (*i.e.* if termination steps involving these radicals are unimportant) then

$$\frac{R\{(CF_3)_3CCl\}}{R(RCl)} = \frac{k_{18}[(CF_3)_3CH]}{k_{19}[RH]}.$$
(20)

Determination of the ratio of chlorides on the left-hand side of eqn (20) would permit calculation of  $k_{18}/k_{19}$  and hence of  $k_{18}$  if  $k_{19}$  were known.

Our first experiment involved photolysis at 240 °C of  $Cl_2$  with a mixture of  $(CF_3)_3CH$  and  $i-C_3F_7H$  in the ratio 22:1. Two products were detected with g.l.c. retention times identical to those of  $(CF_3)_3CCl$  and  $i-C_3F_7Cl$ , respectively. [Impure samples of the chlorides had been made by photolysis of separate mixtures of  $Cl_2 + (CF_3)_3CH$  and  $Cl_2 + i-C_3F_7H$ .] The g.l.c. sensitivities of the chlorides were estimated, so the ratio of the chlorides needed for eqn (20) could be found. This led to  $k_{18}/k_{19} \approx 1/200$ , which corresponds to an activation energy difference  $E_{18} - E_{19} \approx 23$  kJ mol<sup>-1</sup>, assuming  $A_{18} = A_{19}$ .

It is evident that  $(CF_3)_3CH$  is exceptionally resistant to both photobromination and photochlorination. Other competitive photochlorinations were carried out using  $(CF_3)_3CH + CF_3H$ . However, we were unable to achieve a satisfactory g.l.c. separation of  $CF_3H$ ,  $CF_3Cl$  and  $(CF_3)_3CCl$ . An alternative competitior,  $CF_3CH_3$ , was unsuitable, as the primary product,  $CF_3CH_2Cl$ , undergoes rapid secondary chlorination to  $CF_3CHCl_2$  and  $CF_3CCl_3$ . The above competitiors were chosen for their resistance to chlorination. Most other compounds are unsuitable as they are chlorinated so much faster than  $(CF_3)_3CH$  that negligible  $(CF_3)_3CCl$  would be formed.

It is clear that determination of  $D[(CF_3)_3C-H]$  using halogenation methods will be extremely difficult. The inertness of  $(CF_3)_3CH$  to halogenation, relative to compounds such as  $CF_3H$ ,  $CF_3CH_3$  and  $i-C_3F_7H$  which are themselves extremely resistant to halogenation, means that competitive studies require use of a large excess of  $(CF_3)_3CH$ over the other competitor in order to get significant yields of  $(CF_3)_3CCI$  or  $(CF_3)_3CBr$ . Yet  $(CF_3)_3CH$  is difficult to make in quantity, so the use of a large excess presents problems.

## DISCUSSION

#### ARRHENIUS PARAMETERS FOR BROMINATION REACTIONS

The direct bromination of  $i-C_3F_7H$  (section 1) gave the Arrhenius parameters for reaction (2) which are given in eqn (6). The competitive studies (sections 3 and 4) gave two further independent sets of values  $A_2$  and  $E_2$ . Since all three sets agree well, we recommend the mean values

$$\log (A_2/\text{cm}^3 \text{ mol}^{-1} \text{ s}^{-1}) = 12.82 \pm 0.12, \quad E_2 = 82.0 \pm 1.2 \text{ kJ mol}^{-1}.$$

These values are compared with related data in table 3. The A factors are virtually constant along the fluoroalkane series and the same is true for the alkane series, although the mean log A for alkanes is slightly greater than for fluoroalkanes. However, the patterns of reactivity with Br atoms along the two series are entirely different.

The fall in E from  $CH_3$ —H to t-Bu—H is well known and is readily explained in terms of a progressive decrease in C—H bond dissociation energy along the series (see table 4 below). Thus  $CH_4$  is the least reactive and  $(CH_3)_3CH$  is the most reactive. In contrast, the fluoroalkane series reveals much smaller changes in reactivity. There is little difference in E values for  $C_2F_5H$ ,  $n-C_3F_7H$  and  $i-C_3F_7H$ , with  $i-C_3F_7H$  being the least reactive of the trio, whereas  $i-C_3H_7H$  is much the most reactive of the three

| RH                                  | $\log A^a$ | <i>E</i> <sup><i>b</i></sup> | ref. | RH                                  | $\log A^a$ | Eb   | ref. |
|-------------------------------------|------------|------------------------------|------|-------------------------------------|------------|------|------|
| CF <sub>3</sub> —H                  | 13.11      | 93.4                         | 1    | CH <sub>3</sub> —H                  | 13.39      | 77.7 | 1    |
| $C_2F_5 - H$                        | 13.03      | 80.8                         | 1    | C,H,H                               | 13.36      | 57.1 | 1    |
| $n-C_3F_7-H$                        | 12.95      | 79.8                         | 1    | n-C <sub>3</sub> H <sub>2</sub> —H  | (13.36)    | 55.2 | đ    |
| i-C <sub>3</sub> F <sub>7</sub> —H  | 12.82      | 82.0                         | с    | i-C <sub>3</sub> H <sub>2</sub> H   | 13.66      | 43.5 | 1    |
| (CF <sub>3</sub> ) <sub>3</sub> C—H |            | ca. 101                      | 1    | (CH <sub>3</sub> ) <sub>3</sub> Ċ—H | 13.58      | 32.5 | 1    |

**Table 3.** Some Arrhenius parameters for reactions of the type  $Br + RH \rightarrow HBr + R$ 

<sup>a</sup> Per H-atom abstracted, units cm<sup>3</sup> mol<sup>-1</sup> s<sup>-1</sup>. <sup>b</sup> kJ mol<sup>-1</sup>. <sup>c</sup> Present work. <sup>d</sup> Assuming (i) same A factor for attack of Br on primary H in C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub> and n-C<sub>4</sub>H<sub>10</sub> and (ii) same ratio of k (primary)/k(secondary) for C<sub>3</sub>H<sub>8</sub> and n-C<sub>4</sub>H<sub>10</sub>. Then use k(secondary)/k(primary) for n-C<sub>4</sub>H<sub>10</sub> = 82 at 419 K [ref. (17)] together with Arrhenius parameters for attack of Br on s-H in n-C<sub>4</sub>H<sub>10</sub> [ref. (1) and (18)].

corresponding alkanes. The most striking difference is between  $(CH_3)_3CH$ , the most reactive alkane, and  $(CF_3)_3CH$ , the least reactive of the fluoroalkanes.

The reactivity of the fluoroalkanes appears to follow the changes in D(C-H) along the series. These are discussed in the following section.

#### BOND DISSOCIATION ENERGIES

For reactions (2, -2) we may write

$$\Delta H_2^{\ominus} = E_2 - E_{-2} = D(i - C_3 F_7 - H) - D(H - Br).$$
<sup>(21)</sup>

 $E_{-2}$  was not measured, but from eqn (8) we have

$$E_{-2} - E_3 = 10.9 \pm 0.7 \text{ kJ mol}^{-1}$$
.

 $E_3$  is unknown, but Whittle and coworkers<sup>10, 11</sup> obtained  $E_{22} = 2.9 \pm 2.0$  kJ mol<sup>-1</sup> for the analogous reaction

$$CF_3 + Br_2 \rightarrow CF_3Br + Br.$$
 (22)

We shall assume that  $E_3$  has the same value, hence  $E_{-2} = 13.8 \pm 2.1$  kJ mol<sup>-1</sup>. Using  $E_2 = 82.0 \pm 1.2$  kJ mol<sup>-1</sup> recommended above, we have  $\Delta H_2^{\ominus} = 68.2 \pm 2.4$  kJ mol<sup>-1</sup> at a mean temperature of 293 °C. Heat capacities are not available for reaction (2) so we assumed that  $\Delta C_p(2)$  is the same as that for the corresponding reaction involving CF<sub>3</sub>H. Using  $C_p$  data from ref. (7),  $\Delta H_2^{\ominus} = 67.0 \pm 2.4$  kJ mol<sup>-1</sup> at 298 K. Introducing D(H-Br) = 366.3 kJ mol<sup>-1</sup> [ref. (7)] into eqn (21) leads to

$$D(i-C_3F_7-H) = 433.3 \pm 2.4 \text{ kJ mol}^{-1}$$
 at 298 K.

We can calculate  $D(i-C_3F_7-Br)$  in a similar way using

$$\Delta H_{-3}^{\Theta} = E_{-3} - E_3 = D(i - C_3 F_7 - Br) - D(Br - Br).$$
(23)

From eqn (9),  $E_{-3} = 86.3 \pm 4.2$  and we used  $E_3 = 2.9 \pm 2.0$  above, hence  $\Delta H_{-3}^{\ominus} = 83.4 \pm 4.7$  kJ mol<sup>-1</sup> at a mean temperature of 346 °C. Correction to 298 K, as above, leads to  $\Delta H_{-3}^{\ominus} = 80.9 \pm 4.7$ . Using data from ref. (7), D(Br-Br) = 192.9 kJ mol<sup>-1</sup>, hence

$$D(i-C_3F_7-Br) = 273.8 \pm 4.7 \text{ kJ mol}^{-1}$$
 at 298 K.

We next consider  $D[(CF_3)_3C-H]$ . In section 5 we obtained an approximate value of 23 kJ mol<sup>-1</sup> for the difference  $E_{18} - E_{19}$  for the activation energies for attack of Cl atoms on  $(CF_3)_3CH$  and  $i-C_3F_7H$ , respectively. If we assume that the reverse of reactions (18) and (19) have the same activation energy then

$$\Delta H_{18}^{\ominus} - \Delta H_{19}^{\ominus} = (E_{18} - E_{-18}) - (E_{19} - E_{-19}) = E_{18} - E_{19} = 23 \text{ kJ mol}^{-1}$$

but  $\Delta H_{18}^{\ominus} - \Delta H_{19}^{\ominus} = D[(CF_3)_3C - H] - D(i-C_3F_7 - H)$ . Using  $D(i-C_3F_7 - H)$  given above, we have  $D[(CF_3)_3C - H] \approx 456$  kJ mol<sup>-1</sup>. This bond dissociation energy is approximate in view of the assumptions involved in its derivation. It can be used to estimate  $E_{17}$ , the activation energy of abstraction of H from  $(CF_3)_3CH$  by Br. For reaction (17)

$$\Delta H_{17}^{\ominus} = D[(CF_3)_3C-H] - D(H-Br) = E_{17} - E_{-17}$$

Taking<sup>7</sup>  $D(H-Br) = 369 \text{ kJ mol}^{-1}$  at 240 °C and assuming that  $E_{-17} = 14 \text{ kJ mol}^{-1}$ , as for i-C<sub>3</sub>F<sub>7</sub>+HBr, (see section 2), we have  $E_{17} = 101 \text{ kJ mol}^{-1}$ . This is the origin of the result given in table 3.

In table 4 we compare the above bond dissociation energy with other related values. The values quoted need some comment. The D(C-H) for the alkane series are taken from a review by McMillen and Golden.<sup>12</sup> However, there is evidence<sup>13-15</sup> that some of their values other than  $D(CH_3-H)$  may be slightly low. If these D(R-H) were raised, this would lead to corresponding increases in D(R-Br) for alkyl bromides. The values of D(R-H) and D(R-Br) for the perfluoroalkyl series are based on much inter-linked kinetic and equilibrium data including links to  $D(CH_3-H)$ . McMillen and Golden recommended a higher value of  $D(CH_3-H)$  than has been used until recently. If accepted, this suggests that the results in columns 2 and 4 of table 4 may need reassessment. However, this is not practicable here in view of the complexity of

| R                                 | D(R—H)      | ref. | D(R-Br) | ref. |
|-----------------------------------|-------------|------|---------|------|
| CF <sub>3</sub>                   | 445         | 1    | 291     | d    |
| C,F,                              | 429         | 2    | 288     | е    |
| n-C <sub>3</sub> F <sub>2</sub>   | 432         | с    | 279     | f    |
| i-C <sub>3</sub> F <sub>7</sub>   | 433         | b    | 274     | Ď    |
| (CF <sub>a</sub> ) <sub>a</sub> C | 456         | b    | ·       | _    |
| ČH,                               | 440         | g    | 297     | g    |
| C,H,                              | <b>41</b> 1 | g    | 284     | g    |
| n-C <sub>3</sub> H,               | 410         | g    | 286     | g    |
| i-C <sub>3</sub> H,               | 398         | g    | 286     | g    |
| (CH <sub>3</sub> ) <sub>3</sub> C | 390         | g    | 282     | g    |
|                                   |             |      |         |      |

**Table 4.** Some bond dissociation energies<sup>a</sup></sup>

<sup>a</sup> kJ mol<sup>-1</sup>. <sup>b</sup> Present work. <sup>c</sup> For the reactions  $Br+n-C_3F_7H \rightleftharpoons HBr+n-C_3F_7$ , *E* (forward) = 79.8 from ref. (1). Assume *E* (back) is same as for  $i-C_3F_7+HBr$ , *i.e.* 13.8 (see discussion, present work). Hence, using analogue of eqn (21),  $D(n-C_3F_7-H) = 432$  kJ mol<sup>-1</sup>. <sup>d</sup> Derived from  $D(CF_3-H)$  in column 1 and  $D(CF_3-H)-D(CF_3-Br)$  from equilibrium work.<sup>19</sup> <sup>e</sup> Mean of two results: first from  $D(C_2F_5-H)$  from column 1 and  $D(C_2F_5-H) = 288$  kJ mol<sup>-1</sup>. Second value is  $D(C_2F_5-Br) = 287$  kJ mol<sup>-1</sup> from ref. (21). <sup>f</sup> Derived as in (d) but using data from ref. (19). <sup>g</sup> D(R-H) from ref. (12). D(R-Br) based on  $\Delta H_f^{\ominus}(R)$  from ref. (12) and  $\Delta H_f^{\ominus}(RH)$  from ref. (22). Note that D(R-H) other than  $D(CH_3-H)$  may be a little low – see discussion of present work.

#### **BROMINATION OF FLUOROALKANES**

the links between the data. Any changes would be to higher values but would probably be small since several of the determinations are independent of  $D(CH_3-H)$ .

The progressive decrease in D(C-H) from  $CH_3$ —H to t-Bu—H is well known and is usually explained in terms of increased stability of the radical caused by increased opportunities for hyperconjugation. Our new results for the perfluoroalkyl series show that this effect is completely absent when  $CH_3$  groups are replaced by electronwithdrawing  $CF_3$  groups. Indeed,  $D[(CF_3)_3C-H]$  appears to be greater than  $D(CF_3-H)$  by *ca.* 11 kJ mol<sup>-1</sup>.

Our result for  $D[(CF_3)_3C-H]$  is admittedly approximate, but if the value is correct this is probably the strongest known C-H bond in a saturated organic compound. The values of D(R-H) for the perfluoroalkyl series have implications for the reactivities of the R radicals involved. In abstraction reactions of the type

$$R + SH \to RH + S \tag{24}$$

a trend in  $E_{24}$  usually, although not invariably, parallels a trend in  $\Delta H_{24}^{\ominus}$ . This suggests that  $(CF_3)_3C$  will probably be the most reactive of the fluoroalkyl radicals. The i- $C_3F_7$  radical should also be reactive, and unpublished work in our laboratory<sup>16</sup> suggests that its reactivity is about the same as that of  $CF_3$ .

It has long been known that D(C-Br) for the alkyl bromide series shows much less variation than does D(C-H) for the corresponding alkanes. There could well be even less variation if the  $\Delta H_f^{\ominus}(\mathbf{R})$  in ref. (12) are too low. Thus if we use  $\Delta H_f^{\ominus}(t-Bu)$ recently recommended by Canosa and Marshall<sup>14</sup> we obtain D(t-Bu-Br) =289 kJ mol<sup>-1</sup>. Our new data on  $D(\mathbf{R}-\mathbf{Br})$  for perfluoroalkyl bromides show that from CF<sub>3</sub> to i-C<sub>3</sub>F<sub>7</sub>, both D(C-H) and D(C-Br) follow a similar trend. No value of  $D[(CF_3)_3C-Br]$  is available.

We are currently attempting to obtain more information on bond dissociation energies of the type  $D[(CF_3)_3C-X]$ .

We thank Drs Golden and McMillen for communicating results prior to publication. We also thank the S.E.R.C. for grants to B.S.E. and I.W.

- <sup>1</sup> J. C. Amphlett and E. Whittle, Trans. Faraday Soc., 1968, 64, 2130.
- <sup>2</sup> B. S. Evans and E. Whittle, Int. J. Chem. Kinet., 1981, 13, 59.
- <sup>3</sup> P. Corbett, A. M. Tarr and E. Whittle, Trans. Faraday Soc., 1963, 59, 1609.
- <sup>4</sup> A. M. Tarr, J. W. Coomber and E. Whittle, Trans. Faraday Soc., 1965, 61, 1182.
- <sup>5</sup> J. W. Coomber and E. Whittle, Trans. Faraday Soc., 1966, 62, 1553.
- <sup>6</sup> I. Weeks and E. Whittle, to be published.
- <sup>7</sup> JANAF Thermochemical Tables (NSRDS-NBS 37) (National Bureau of Standards, Washington D.C., 1971).
- <sup>8</sup> I. Weeks, Ph.D. Thesis (University College, Cardiff, 1980).
- <sup>9</sup> S. T. Kocharyan, E. M. Rokhlin and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 1967, 1847.
- <sup>10</sup> B. G. Tucker and E. Whittle, Trans. Faraday Soc., 1965, 61, 866.
- <sup>11</sup> J. C. Amphlett and E. Whittle, Trans. Faraday Soc., 1966, 62, 1662.
- <sup>12</sup> D. F. McMillen and D. M. Golden, Annu. Rev. Phys. Chem., 1982, in press.
- <sup>13</sup> W. Tsang, Int. J. Chem. Kinet., 1978, 10, 821.
- <sup>14</sup> C. E. Canosa and R. M. Marshall, Int. J. Chem. Kinet., 1981, 13, 303.
- <sup>15</sup> A. L. Castelhano, P. R. Marriott and D. Griller, J. Am. Chem. Soc., 1981, 103, 4263.
- <sup>16</sup> C. Stock, Ph.D. Thesis (University College, Cardiff, 1978).
- <sup>17</sup> P. C. Anson, P. S. Fredricks and J. M. Tedder, J. Chem. Soc., 1959, 918.
- <sup>18</sup> G. C. Fettis, J. H. Knox and A. F. Trotman-Dickenson, J. Chem. Soc., 1960, 4177.
- <sup>19</sup> J. W. Coomber and E. Whittle, Trans. Faraday Soc., 1967, 63, 608.
- <sup>20</sup> G. S. Buckley, W. G. F. Ford and A. S. Rodgers, Thermochim. Acta, 1981, 49, 199.
- <sup>21</sup> K. C. Ferguson and E. Whittle, J. Chem. Soc., Farday Trans. 1, 1972, 68, 306; 641.
- <sup>22</sup> J. D. Cox and G. Pilcher, *Thermochemistry of Organic and Organometallic Compounds* (Academic Press, London, 1970).