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ABSTRACT: Asymmetric intramolecular 
hydrofunctionalization of tertiary allylic alcohols is 
described. This metal hydride-mediated catalytic radical-
polar crossover reaction delivers corresponding epoxides 
in good to high enantioselectivity and constitutes the 
first example of asymmetric hydrogen atom transfer-
initiated process. A series of modified cobalt salen 
complexes has proven optimal for achieving good 
efficiency and asymmetric induction. Experimental data 
suggest that cationic cobalt complexes may be involved 
in the enantio-determining step, where cation–π  
interactions in the catalyst contribute to the asymmetric 
induction.

Metal hydride-initiated radical reactions serve as a 
highly chemoselective means for Markovnikov 
hydrofunctionalization of alkenes under mild 
conditions.1,2 The intermediate carbon-centered radicals 
generated upon hydrogen atom transfer (HAT)3 to a 
carbon-carbon double bond can react with atom and 
group transfer reagents,4 undergo addition to multiple 
bonds,5 and participate in cross-coupling reactions6 to 
introduce new functional groups and structural motifs. 
However, corresponding stereoselective processes are 
represented almost exclusively by the instances of 
stereochemical relay, including examples of auxiliary-
controlled hydration and hydrohydrazination of ,-
unsaturated amides.2,7 These limitations are not 
surprising due to the inherent challenge associated with 
enantiodifferentiation in prochiral alkyl radical 
intermediates.8 In this context, early reports of a highly 
selective cis addition of putative cobalt(III) hydride 
intermediates9 to 1,2-disubstituted alkenes involving 
rapid collapse of a radical pair in a solvent cage 
constitute the only relevant instances of efficient 
stereocontrol.10,11 Here we show the first example of a 
highly enantioselective HAT-initiated 
hydrofunctionalization (Figure 1). This radical-polar 
crossover process is catalyzed by a series of modified 
cobalt salen complexes and allows for conversion of 

tertiary allylic alcohols to the corresponding 
enantioenriched epoxides. We present data suggesting 
that cationic cobalt complexes may be involved in the 
enantio-determining step,
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Figure 1. Catalysis by alkylcobalt(IV) complexes allows 
for efficient asymmetric induction in HAT-initiated 
hydrofunctionalizations.

where cation– interactions in the catalyst contribute to 
the asymmetric induction. We also demonstrate the 
application of this chemistry in a formal Markovnikov 
hydrofunctionalization of tertiary allylic alcohols for 
enantioselective installation of trisubstituted 
stereocenters including those bearing amine, sulfide, and 
nitrile functionalities. 

Building on the earlier work in the field,12 we recently 
reported HAT-initiated radical-polar crossover reactions 
of tertiary allylic alcohols that afforded corresponding 
epoxides and semipinacol rearrangement products.13 In 
that setting, the outcome of the hydrofunctionalization 
event was under strong catalyst control, which suggested 
participation of alkylcobalt complexes as electrophilic 
intermediates.14 We reasoned that a proper choice of a 
scalemic chiral catalyst would allow for efficient 
enantioinduction provided that generation of the product 
could be limited to the putative alkylcobalt-based 
pathway. Initial experiments with tetrahydropyran 
derivative 1 and enantioenriched complex 4, which had 
previously proven competent in the HAT-initiated 
synthesis of epoxides,13 delivered product 2 with low but 
measurable enantiomeric excess (Table 1). Extensive 
experimentation with modifications in the 
ethylenediamine-derived fragment led to identification 
of a series of o-biaryl-substituted complexes that 
delivered the desired product with improved levels of 
asymmetric induction. Thus, application of complex 5 
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delivered epoxide 2 with moderate enantioenrichment. 
Introduction of extended aromatic motifs in the o-biaryl 
substituent (e.g., complexes 6 and 7) allowed for 
significant enhancement of enantioselectivity and a 
complementary increase in the efficiency. Ultimately, 
dibenzofuran-containing complex 8 
Table 1. Effect of the Catalyst Structure on the 
Enantioenrichment and Yield of Epoxide 2a,b

aReaction time was 18 h, catalysts 4–8 were ≥95% ee; 
see SI for details. bYields were based on internal 
standard and determined by 1H NMR, see SI for details. 
cReaction with 0.5 mol% of catalyst 8 afforded 51% 
yield (65% conversion of alcohol 1) after 48 h.

demonstrated optimal performance among the evaluated 
catalysts.15 The process could also be conducted at low 
catalyst loadings without detrimental effects on the 
enantioselectivity, but required extended reaction times 
to achieve appreciable conversion of alcohol 1.

Brief exploration of the substrate scope identified a
Table 2. Preliminary Substrate Scope of the HAT-Initiated 
Enantioselective Hydrofunctionalizationa

a0.05 M of allylic alcohol; see SI for details. bReaction 
time was 18 h. cYields were based on internal standard 
and determined by 1H NMR. dYield of isolated material 
for characterization purposes was 48%. eAbsolute 
configuration was determined by X-ray crystallographic 
analysis. fReaction time was 48 h. gAt –60 °C. hYield of 
isolated material for characterization purposes was 38%. 
iEpoxide was not observed.

series of cyclic dialkyl(vinyl)carbinols that successfully 
participated in our enantioselective HAT-initiated 
hydro-functionalization.  Thus, derivatives of 
tetrahydropyran and piperidine (products 2, Table 1, and 
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9–11, Table 2) and their bicyclic counterparts (products 
12 and 13) underwent conversion to the corresponding 
epoxides with good to high levels of asymmetric 
induction. Single-crystal X-ray analysis of product 11 
established the absolute configuration of the newly 
formed stereocenter to be R, which is likely shared with 
other enantioenriched epoxides obtained in this study. 
Similarly good performance was observed with various 
functionalized cyclohexanes (products 14–20). Simple 
cyclohexanes including those containing only alkyl 
substituents (products 21–23) produced low to moderate 
degrees of enantioinduction. Application of acyclic 
substrates was unsuccessful (e.g., product 24). 
Attempted reactions of cycloalkanols containing five- 
and seven-membered rings led to the corresponding 
semipinacol rearrangement products (e.g., 25 and 26),16 
which were produced with low levels of stereocontrol. 

Analysis of the differential activation parameters in 
the hydrofunctionalization of allylic alcohol 1 in the 
presence of catalysts 5–8 revealed that enantioselectivity 
was enthalpically controlled and the magnitude of 
differential enthalpy correlated positively with the 
expanse of the aromatic moieties (Table 3).17 This 
enthalpic gain 
Table 3. Eyring Analysis of Enantioselectivity in the 
Hydrofunctionalization of Allylic Alcohol 1a

aBased on six data points per catalyst, T = 233–292 K, 
see SI for details.

was attenuated by the corresponding increase in the 
differential entropy terms observed across the series of 
catalysts 5–8. These data are in principle consistent with 
a simple steric explanation that increasing the size of the 
arene fragment leads to destabilization of the minor 
transition state assembly in the enantio-determining step. 
However, current understanding of the electronic 
structure of relevant cobalt complexes also suggests an 
intriguing possibility for the role of stabilizing non-
covalent interactions in the observed effects. Previous 
spectroscopic and computational studies of 
alkylcobalt(IV) glyoximates, porphyrins, and corrins as 
well as cobalt(III) salen derivatives indicate that radical 
cations resulting from ligand-to-metal charge transfer 
can contribute to the electronic structure.18,19 We 

therefore proposed that cationic cobalt complexes may 
experience cation– interactions between the radical 
cation of the salen motif and the biaryl substituents of 
the ethylenediamine-based fragment (Figure 2).20 In this 
setting, extension of the participating arenes would lead 
to more stabilizing interactions and their energetic 
benefits would be manifested enthalpically.21 We found 
that enantioselectivity correlated strongly with both the 
polarizability and the quadrupole moment of the 
aromatic hydrocarbons correspon-
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Figure 2. Representation of a radical cation of the putative 
alkylcobalt(IV) intermediate derived from catalyst 8 and 
substrate 1 (L is likely to be solvent). Red dotted lines 
indicate the proposed cation– interactions between the 
radical cation of the salen motif and the biaryl substituents.

ding to the varied substituents in complexes 5–7.22 Since 
the strength of cation– interactions should primarily be 
a function of electrostatic and dispersion forces,23,24 the 
observed correlations between the underlying physical 
properties and the degree of asymmetric induction 
suggest that cation– interactions contribute to the 
improved stereochemical outcomes. Should the effect of 
the substituents be largely steric in nature, such 
significant correlations would not be expected.17,25 This 
proposal is also consistent with the observation that 
introduction of electron-rich arenes results in additional 
enhancement of enantioselectivity (e.g., compare 
complexes 7 and 8).26 We note that continued expansion 
of the aromatic moieties (e.g., introduction of pyrenyl 
and triphenylenyl groups) becomes detrimental to the 
performance of the catalyst. We attribute this effect to 
increasing steric interactions between the biaryl 
fragments and the bulky tert-butyl substitutents of the 
hydroxynaphthaldehyde-derived motif, which could lead 
to disruption of the cation– interactions.

Analysis of structural features found in the well-
performing allylic alcohols (see Table 2) revealed 
additional correlations. The presence of properly 
positioned heteroatom-containing substituents appears to 
result in superior enantioselectivity during the epoxide 
formation. For example, functionalized epoxides 18–20 
were produced with good enantioselectivities.27 In 
contrast, epoxides 21–23 were obtained with 
significantly lower asymmetric induction under identical 
conditions, suggesting that steric factors are not the sole 
determinant in enantioselectivity. The superior outcomes 
observed with products 18–20 may stem from additional 
stabilizing interactions between the functionalized 
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cyclohexane fragment and the radical cation of the 
cobalt salen motif in the enantio-determining step. 
Similar considerations should be applicable in the cases 
of products 2, 9–17.28

Taken all together, these observations suggest 
involvement of cationic cobalt complexes in the 
enantiodetermining step. For example, diastereomeric 
alkylcobalt(IV) intermediates may undergo kinetic 
resolution29 during the intramolecular nucleophilic 
displacement (see equation 1). In this scenario, an 
increase in the cation– interactions in the catalyst 
would stabilize the electrophiles, leading to a later 
transition state and enhanced 
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enantioselectivity. Additional interactions between the 
heteroatom-containing substituents of the well-
performing substrates and the radical cation of the salen 
motif would have a similar effect on the displacement. 
Diastereomeric alkylcobalt(IV) intermediates may 
interconvert upon epimerization of the stereocenter 
bearing the homolytically-labile carbon-cobalt bond.30 
Relevant rearrangements of alkyl substituents in 
organocobalt complexes were previously demonstrated 
to proceed via a radical chain mechanism.31 Formation 
of alkylcobalt(IV) intermediates may involve oxidation 
of the corresponding alkylcobalt(III) complexes,14 which 
can be generated via HAT from the putative cobalt(III) 
hydride intermediates to alkenes followed by radical pair 
collapse.32,33 An alternative scenario may involve 
enantio-determining diffusion of alkyl radicals into the 
solvent cage during the capture by cationic cobalt(III) 
complexes en route to the corresponding alkylcobalt(IV) 
intermediates.34–36 Both scenarios are also consistent 
with the superior performance of polar solvents: 
cyclization of allylic alcohol 1 in the presence of catalyst 
8 produces epoxide 2 only in 26% ee when acetone is 
replaced with dichloromethane.

Combination of our HAT-initiated cyclization of 
dialkyl(vinyl)carbinols with the well-established 
reactivity of trisubstituted epoxides in SN2 reactions 
provides an entry into a formal enantioselective 
hydrofunctionalization of tertiary allylic alcohols with 
Markovnikov selectivity. Thus, reaction of epoxide 11 
with Boc-protected piperazine produced aminoalcohol 
27 in high yield (Scheme 1). Related structural motifs 
previously found 
Scheme 1. Derivatization of Epoxide 11

application in medicinal chemistry efforts.37 Similar 
displacements with a thiolate, an allyl Grignard 
reagent,and Nagata’s reagent delivered corresponding 
sulfide 28, alkene 29, and nitrile 30, respectively, with 
good efficiency. In all cases, excellent levels of 
stereoinversion were observed, demonstrating potential 
of this approach in the enantioselective synthesis of 
polyfunctional building blocks.

In summary, we show the first example of a highly 
enantioselective HAT-initiated hydrofunctionalization 
catalyzed by a series of new cobalt salen complexes. Our 
observations are consistent with the proposed 
participation of alkylcobalt(IV) complexes, which 
accounts for strong catalyst control and allows for direct 
conversion of dialkyl(vinyl)carbinols to the 
corresponding scalemic epoxides. The experimental data 
suggest that cationic cobalt complexes may be involved 
in enantio-determining step, where cation– interactions 
in the catalyst contribute to the superior asymmetric 
induction obtained with the new cobalt salen derivatives. 
The radical-polar crossover reactivity described herein is 
expected to serve as a starting point for overcoming the 
challenges of absolute stereocontrol in the development 
of asymmetric HAT-initiated processes and for future 
studies of the mechanistic underpinnings associated with 
this fascinating class of chemical transformations.38 

ASSOCIATED CONTENT 

Experimental procedures, characterization data for new 
compounds, and CIF file for compound 11. This material is 
available free of charge via the Internet at 
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