

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

A Facile Synthesis of 7,8-DI Aryl Coumarino and Flavano Benzo-Thiophenes

G. V. P. Chandramouli^a, B. Prasanna^a, P. Naveen Kumar^a & P. Vijayakumar Reddy^a ^a Department of Chemistry, Regional Engineering College, Warangal, 506 004, India Version of record first published: 27 Oct 2010.

To cite this article: G. V. P. Chandramouli, B. Prasanna, P. Naveen Kumar & P. Vijayakumar Reddy (2002): A Facile Synthesis of 7,8-DI Aryl Coumarino and Flavano Benzo-Thiophenes, Phosphorus, Sulfur, and Silicon and the Related Elements, 177:2, 511-522

To link to this article: http://dx.doi.org/10.1080/10426500210246

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A FACILE SYNTHESIS OF 7,8-DI ARYL COUMARINO AND FLAVANO BENZO-THIOPHENES

G. V. P. Chandramouli, B. Prasanna, P. Naveen Kumar, and P. Vijayakumar Reddy Department of Chemistry, Regional Engineering College, Warangal 506 004, India

(Received April 10 2001.)

The key step for the synthesis of 7-hydroxy 2,3-diarylsubstituted benzothiophenes **5a–f**, by starting from substituted 2-aryl-2-((2-methoxy phenyl)thio)acetophenones **3a–f** as an intermediate, consists of a Friedel-Crafts cyclization followed by demethylation by Lewis acids like BF_3OEt_2 and $AlCl_3$ in DCM.

Keywords: Benzopyranones; benzothiophenes; condensation; demethylation; Friedel crafts cyclization

Substituted benzothiophenes are of interest in many pharmaceutical areas. They exhibit a variety of biological properties such as antiallergic¹ and occular hypotensive activities.² In addition, they also to serve as bioisosters of indoles.³ Recently Reloxifene (Ly 139481 HCl)^{4,**} a polysubstituted-2-aryl benzothiophene was approved for the prevention of osteoporosis in postmenopausal women. Substituted Coumarino benzothiophenes were known to exhibit antiinflammatory,⁵ analgesic,⁶ and antipyretic activities.⁷ There are relatively few methods^{8,9} for the preparation of 3-aryl benzothiophenes reported in literature. In this communication, we report a convenient procedure for the preparation and demethylation of substituted 2-aryl-2-{{2-methoxyphenyl}thio}acetophenones **3a-f** with Lewis acids like borontrifloride-etherate and aluminium chloride at room temperature.

Initially, we attempted the cyclization of **3a–f** with alcoholic KOH refluxed for 14–15 h which gave 7-methoxy-2,3-diarylbenzothiophenes

Address correspondence to G. V. P. Chandramouli, Department of Chemistry, Regional Engineering College, Warangal 506 004, India.

 $^{^{\}ast\ast}$ Raloxifene was approved by the FDA in Jan. 1998, and is marketed as Evista by Eli Lilley.

4a–f with low yield (20-25%). Then followed by demethylation by a known procedure¹⁰ gave the corresponding compounds **5a–f** with lower yields. These compounds were later condensed with ethylacetoacetate in the presence of polyposphoric acid¹¹ to produce the corresponding coumarino benzothiophenes **6a–f** about 30% yield.

Finally, after some experimentation, we synthesised the compounds **5a-f** and **6a-f** by a convenient route by using a Lewis acid. The closure of the benzothiophene ring was accomplished by treatment of **3a-f** with borontrifluoride-etherate (BF₃OEt₂) at room temperature, which afforded 7-methoxy-2,3-diarylbenzothiophenes **4a-f** in considerable yield. By the reaction of **4a-f** with aluminium chloride in the presence of DCM at room temperature, demethylation¹² took place producing the corresponding 7-hydroxy2,3-diarylbenzothiophenes **5a-f** in acceptable to good yields when these compounds were condensed with etylacetoacetate in the presence of AlCl₃, in DCM at room temperature the corresponding coumarino benzothiophenes **6a-f** were obtained.

SCHEME 1

Substituted 7-hydroxybenzothiophenes 5a-f were acetylated with acetyl chloride in the presence the of AlCl₃ in dry DCM. The acyl compounds 7a-f were later condensed with benzaldehyde in the presence of alcoholic KOH(40%) to give rise to the corresponding flavano benzothiophenes 8a-f.

SCHEME 2

In conclusion, a convergent procedure for the preparation of Pharmacologically valuable 7,8-diarylcoumarinobenzothiophenes 6a-f via a common intermediate 3a-f has been developed. These intermediates may also provide a synthetic entry to a variety of flavano benzothiophenes 8a-f.

EXPERIMENTAL

All melting points were uncorrected. The elementary analysis was carried out by CARLO ERBA STUMENTAZOINE, Itali Model 1108 and IR spectra (νcm^{-1}) were recorded on Perkin Elmer-282 instrument.

The ¹H NMR spectra were recorded on a varian 200MHz spectrometer using tetramethyl silane as internal standard. Chemical shift values are expressed in δ ppm. Mass spectra were scanned on a Jeol-JMS-300 spectrometer at 70 eV. The purity of compound were monitered by TLC performed on a silicagel plates (merck) using ethylacetate and pet.ether.

FIGURE 1 A facile synthesis of 7,8-di aryl coumarino and flavano benzothiophenes.

13
20
April
28
06:25
] at
Arizona
of
/ersity
Univ
7
.ط
oaded
Jownle

6.78-6.91 (dd, 4H, Ar-CH₃), 7.13-7.34 (m, 5H, Ar-H), 7.61-7.91 (dd, 2H, Ar-H), HNMR (200 MHz, CDCl₃), δ (ppm) 2.42 (s, 6H, 2 × CH₃), 6.54 (s, 1H, coumarino-H), HNMR (200 MHz, CDCl₃), δ (ppm) 2.44 (s, 6H, 2 × CH₃), 6.58 (s, 1H, coumarino-H), 6.9–7.2 (dd, 4H, Ph—CH₃), 6.80–6.95 (m, 5H, Ar—H), 7.04–7.26 (dd, 2H, Ar—H), 6.76-6.89 (m, 5H, Ar-H), 7.00-7.16 (m, 5H, Ar-H), 7.45-7.52 (dd, 2H, Ar-H), 7.45-7.52 (dd, 2H, Ar-H)HNMR (200 MHz, CDCl₃), δ (ppm) 2.38 (s, 3H, CH₃), 6.50 (s, 1H, coumarino-H), HNMR (200 MHz, CDCl₃), δ (ppm) 2.40 (s, 3H, CH₃), 6.45 (s, 1H, coumarino-H), HNMR (200 MHz, CDCl₃), δ (ppm) 2.42 (s, 3H, CH₃), 6.52 (s, 1H, coumarino-H), ¹HNMR (200 MHz, CDCl₃), δ (ppm) 2.44 (s, 3H, CH₃), 6.52 (s, 1H, coumarino-H), 6.9-7.0 (s, 1H, Ar-H), 7.2-7.3 (dd, 2H, Ar-H), 7.44-7.72 (dd, 4H, Ar-CH₃), 6.70–7.0 (m, 5H, Ar—H), 7.63–7.54 (dd, 2H, Ar—H), 7.7–7.8 (s, 1H, Ar—H), [R (cm⁻¹): 3105, 2905 (C-H), 1712 (Lactone, C=0), 1608 (C=C), 750 (C-S) [R (cm⁻¹): 3105, 2900 (C−H), 1708 (Lactone, C=O), 1605 (C=C), 750 (C−S) 7.1–7.2 (s, 1H, Ar–H), 7.3–7.5 (dd, 2H, Ar–H), 7.6–7.9 (dd, 4H, Ar–Br), $(R (cm^{-1}): 3105, 2905 (CH), 1710 (Lactone, C=0), 1605 (C=C), 750 (C-S)$ R (cm⁻¹): 3098, 2905(CH), 1712 (Lactone, C=O), 1605 (C=C), 750 (C=S) $(R (cm^{-1}): 3100, 2910 (CH), 1710 (Lactone, C=0), 1605 (C=C), 750(C=S)$ IR (cm⁻¹): 3100, 2900 (CH), 1710 (Lactone,C=O), 1600 (C=C), 750 (C-S) 7.92–8.2 (dd, 2H, Ar—H), mass (m/z): M⁺ 481, 453, 372 7.84–7.9 (dd, 2H, Ar—H), mass (m/z): M⁺ 443, 415 Spectroscopic data **TABLE I** Spectroscopic Data of Substituted Coumarino Benzothiophenes **6a-f** mass (m/z): M⁺ 381, 366, 338 mass (m/z): M⁺ 367, 341 mass (m/z): M⁺ 446, 381 $m.p.^{\circ}C$ 216 - 217212 - 213207-208 237-238 242 - 243222 - 223% yield 55 52595460 57 Product 6a \mathbf{g} 6d6e **6**c 6f

7.89-7.92 (dd, 2H, Ar-H), mass (m/z): M⁺ 417, 389, 374

	1	I	
Product	% yield	m.p.°C	Spectroscopic data
8a	61	106–108	IR (cm ⁻¹): 3110, 2910 (C—H), 1695 (C=O), 1610 (C=C), 750(C=S) ¹ HNMR (200 MHz, CDCl ₃), δ (ppm) 7.12 (s, 1H, flavano-H), 7.15–7.24 (m, 5H, Ar—H), 7.28–7.36 (m, 5H, Ar—H), 7.50–7.60 (m, 2H, Ar—H), 7.72–7.91 (m, 5H, Ph—H), mass (m/z): M ⁺ 429, 410, 326
8b	60	120–122	IR (cm ⁻¹): 3109, 2905 (C—H), 1697 (C—O), 1612 (C—C), 750 (C—S) ¹ HNMR (200 MHz, CDCl ₃), δ (ppm) 7.14 (s, 1H, flavano-H), 7.18–7.21 (m, 4H, Ph—Br), 7.26–7.31 (m, 5H, Ar—H), 7.40–7.52 (m, 2H, Ar—H), 7.75–7.82 (m, 5H, Ph—H), mass (m/z): M ⁺ 508, 480, 403
8c	58	113–115	IR (cm ⁻¹): 3112, 2910 (C—H), 1698 (C=O), 1612 (C=C), 750 (C=S) 1 HNMR (200 MHz, CDCl ₃), δ (ppm) 2.42 (s, 3H, CH ₃), 7.2 (s, 1H, flavano-H), 7.25-7.34 (m, 4H, Ph-CH ₃), 7.36-7.45 (m, 5H, Ar—H), 7.47-7.55 (m, 2H, Ar—H), 7.9-8.1 (m, 5H, Ph-H), mass (m/2): M ⁺ 437, 410, 333
8d	57	109–111	IR (cm ⁻¹): 3114, 2910 (C H), 1698 (C=O), 1615 (C=C), 750 (C–S) ¹ HNMR (200 MHz, CDCl ₃), 8 (ppm) 7.23 (s, 1H, flavano-H), 7.26–7.32 (m, 5H, ArH), 7.41–7.50 (dd, 2H, ArH), 7.52–7.53 (s, 1H, ArH), 7.61–7.72 (m, 2H, ArH), 7.8–7.94 (m, 5H, ArH), mass (m/z): M ⁺ 493, 465, 388
8e	55	125–127	IR (cm ⁻¹): 3109, 2908 (C ^{-H}), 1698 (C ^{-O}), 1614 (C ^{-C}), 750 (C ^{-S}) ¹ HNMR (200 MHz, CDCl ₃), 8 (ppm) 7.22 (s, 1H, flavano-H), 7.30–7.41 (m, 4H, Ph–Br), 7.44–7.51 (dd, 2H, Ar–H), 7.52–7.54 (s, 1H, Ar–H), 7.64–7.78 (m, 2H, Ar–H), 7.81–7.92 (m, 5H, Ar–H), mass (m/z): M^+ 573, 545, 468, 387
8f	59	117–119	IR (cm ⁻¹): 3112, 2909 (C—H), 1698 (C—O), 1615 (C—C), 750 (C—S) 1 HNMR (200 MHz, CDCl ₃), δ (ppm) 2.45 (s, 3H, CH ₃), 7.25 (s, 1H, flavano-H), 7.36–7.42 (m, 4H, Ph–CH ₃), 7.43–7.51 (dd, 2H, Ar—H), 7.52–7.54 (s, 1H, Ar—H), 7.64–7.81 (m, 2H, Ar—H), 7.88–8.1 (m, 5H, Ar—H), mass (m/z): M ⁺ 497, 469, 392

TABLE II Spectroscopic Data of Substituted Flavano Benzothiophenes 8a-f

					Ι	Elemental analy	sis-calcd (found)		
Compound	${\rm R_1}$	${ m R}_2$	${ m R}_3$	C	Н	0	S	Br	Ч
6a	Η	Η	Η	78.24(78.20)	4.38(4.35)	8.68 (8.66)	8.70 (8.69)	Ι	I
6b	Η	Η	$_{\mathrm{Br}}$	$64.44 \ (64.41)$	3.38(3.35)	7.15(7.12)	7.17(7.10)	17.86(17.81)	
6c	Η	Η	CH_3	78.51(78.39)	4.74(4.70)	8.37 (8.34)	8.38(8.36)	I	I
6d	ы	Ŀ	Н	71.28(71.26)	3.49(3.48)	7.91 (7.80)	7.93(7.88)	I	9.39(9.35)
6e	ы	۲ų	Br	59.64(59.62)	2.71(2.68)	6.62~(6.60)	6.63(6.61)	$16.53\ (16.51)$	7.86 (7.82)
6f	Ŀ	ы	CH_3	71.76 (71.63)	3.85(3.81)	7.65(7.63)	7.66(7.64)	I	9.08 (9.02)

Data of 6a-f
Analytical
Π
TABLE

m
1
0
ລັ
<u> </u>
÷ 🖻 -
5.
7
<,
8
Ô.
10
21
9
0
÷
а
_
a
Ę.
g
<u>.</u>
9
<
5
č
\mathbf{P}
-=
\mathbf{S}
Ð
5
·=
E.
\mathbf{i}
_
>
ف.
2
Ä
ğ
ö
ĭ
E.
3
6
ň

of 8a-f
Data
Analytical
Ν
TABLE

					Π	Elemental analy	sis-calcd (found)		
Compound	${\rm R_{1}}$	${ m R}_2$	${ m R}_3$	С	Η	0	S	Br	F
8a	Н	Η	Н	80.91(80.88)	4.21(4.20)	7.43(7.41)	7.45(7.43)	I	I
$\mathbf{8b}$	Η	Η	$_{\mathrm{Br}}$	$68.38 \ (68.36)$	3.36(3.35)	6.28(6.26)	6.29(6.27)	$15.69\ (15.66)$	I
8c	Η	Η	CH_3	$81.05\ (81.03)$	4.53(4.51)	7.20(7.17)	7.21(7.19)	I	
$\mathbf{8d}$	Бц	Бц	Η	$74.67\ (74.65)$	3.46(3.42)	6.86(6.84)	6.87 (6.85)	I	8.14(8.10)
8e	Бц	Б	$_{\mathrm{Br}}$	63.86~(63.84)	2.77(2.74)	5.87 (5.85)	5.88(5.86)	$14.65\ (14.62)$	6.97 (6.94)
8f	ы	Ŀ	CH_3	74.99(74.97)	3.78(3.74)	6.66(6.63)	$6.67 \ (6.65)$		7.91 (7.88)

TABLE V S	Spectral Dat	a of Compou	nds 3a-f , 4a-f , 5a-f , and 7a-f
Compound	% Yield	b.p.(°C)	Spectroscopic data
3a	50	104–105	IR (cm ⁻¹): 3100, 2890 (C—H), 1689 (C=O), 1610 (C=C), 750 (C—S) ¹ H NMR (δ ppm): 6.92–7.10 (5H, m, Ar—H), 7.24–7.52 (5H, m, Ar—H), 7.55–7.91 (4H, m, Ph—OCH ₂), 4.62 (1H. s. S—CH). 3.92 (3H. s. —OCH ₂). mass (m/z): 334 (M ⁺¹)
3b	55	116–117	IR (cm ⁻¹): 3105, 2895 (C ⁻ H), 1690 (C=O), 1610 (C=C), 750 (C ⁻ S) ¹ H NMR (δ ppm): 6.96–7.12 (4H, dd, Ph–Br), 7.21–7.52 (5H, m, Ar–H), 7.59–7.90 (4H, m, Ph–OCH ₂), 460 (1H, s. S–CH), 3.33 (3H. s. $-OCH_2$), mass (m/z): 413 (M ⁺¹)
30	50	125–127	IR (cm ⁻¹): 3105, 2890 (C ⁻ H), 1692 (C=O), 1610 (C=C), 750 (C–S) ¹ H NMR (δ ppm): 6.8–6.91 (4H, dd, Ph–CH ₃), 7.1–7.3 (5H, m, Ar–H), 7.37–7.95 (4H, m, Ph–OCH ₃), 4.62 (1H, s, –S–CH), 3.92 (3H, s, –OCH ₃), 2.49 (3H, s, CH ₃), mass (m/z): 348 (M ⁺¹)
3d	52	108–110	IR (cm ⁻¹): 3100, 2895 (C–H), 1690 (C=O), 1610 (C=C), 750 (C–S) 1 H NMR (δ ppm): 6.92–7.14 (5H, m, Ar–H), 7.26–7.34 (2H, dd, Ar–H), 7.38–7.42 (1H, s, Ar–H), 7.52–7.94 (4H, m, Ph–OCH ₃), 4.61 (1H, s, –S–CH), 3.90 (3H, s, –OCH ₃), mass (m/z): 378 (M ⁺¹)
3e	60	122–123	IR (cm ⁻¹): 3095, 2892 (C—H), 1698 (C=O), 1612 (C=C), 750 (C—S) ¹ H NMR (δ ppm): 6.98–7.14 (4H, dd, Ph—Br), 7.36–7.46 (2H, dd, Ar—H), 7.49–7.52 (1H, s, Ar—H), 7.55–7.93 (4H, m, Ph—OCH ₃), 4.62 (1H, s, —S—CH), 3.90 (3H, s, OCH ₃), mass (m/s): 489 (M+1)
3f	57	119–121	IR (cm ⁻¹) 3100, 2000 (C—H), 1697 (C=O), 1610 (C=C), 750 (C—S) ¹ H NMR (δ ppm): 7.04–7.13 (4H, dd, Ph—CH ₃), 7.26–7.32 (2H, dd, Ar—H), 7.36–7.41 (1H, s, Ar—H), 7.53–7.92 (4H, m), Ph—OCH ₃), 4.61 (1H, s, —S—CH), 3.93 (3H, s, OCH ₃), 2.49 (3H s, CH ₃) mass (m/z), 424 (M ⁺¹)
4a	66	115–116	IR (cm ⁻¹): 3105, 2839, cm, primer (C=C), 750 (C=S) ¹ H NMR (δ ppm): 6.80–7.08 (5H, m, Ar—H), 7.12–7.28 (5H, m, Ar—H), 7.24–7.51 (3H, m, Ph—OCH ₀). 3.92 (3H, s. —OCH ₀). mass (m/z): 316 (M ⁺¹)
4b	65	125–127	IR (cm ⁻¹): 3107, 2896 (C—H), 1610 (C=C), 750 (C—S) ¹ H NMR (δ ppm): 6.79–7.02 (4H, dd, Ph—Br), 7.04–7.15 (5H, m, Ar—H), 7.29–7.53 (3H, m, Ph—CH ₃), 3.93 (3H, s, -0 CH ₃), mass (m/z): 395 (M ⁺¹)

e.
Т
4
~
5
É
ົລ
ب
1
0
10
4
4
Р
e.
۳,
4
~
۰.
U.
5
F
Ξ
ē
Ē
Ċ
Ε
ĴĆ
4
Ċ
~
1
ъ.
ĉ
-
-
22
÷
Ċ
٩
5
U,
. 7
⊳
-
Ē
pr
1
È

8 April 2013
8
at 06:25
Arizona
Эf
versity o
÷Ē
5
l by
eq
ownload
Ц

[09 IR (cm ⁻¹): 3109, 2892 (C-H), 1612 (C=C), 750 (C-S) ¹ H NMR (δ ppm): 6.78–6.84 (4H, dd, Ph-CH ₃), 6.90–7.15 (5H, m, Ar-H), 7.26–7.60 (3H, m Ph-CH ₉). 3.90 (3H. sOCH ₉). 2.45 (3H. s. CH ₉). mass (m/z): 346 (M ⁺¹)	[20 IR (m^{-1}): 3102, 2900 (C) H), 1610 (C=C), 750 (C=S) ¹ H NMR (δ ppm): 7.10-7.24 (5H, m, Ar-H), 7.29-7.34 (2H, dd, Ar-H), 7.39-7.42 (1H, s, Ar-H), 7.49-7.85 (M+m), 2300 (3H, m^{-1}), 3.90 (3H, m^{-2}), mass ($m^{2/3}$, 392 (M+ ¹)	113 IR (m^{-1}): 3108, 2902 (CD-H), 1612 (CD-C), 750 (CD-S) ¹ H NMR (5 ppm): 7.12-7.25 (4H, dd, Ph-Br), 7.30-7.39 (2H, dd, Ar-H), 7.40-7.43 (1H, s, Ar-H) 7.49-7.84 (3H m Ph-OCH), 3.99 (3H s. OCH), mass (m/r): $471 (M^{+1})$	[23 IR (m^{-1}): 3115, 2904 (CH), 1612 (C=C), 750 (C-S) ¹ H NMR (3 pµm): 7.15–7.26 (4H, dd, Ph-CH ₃), 7.29–7.35 (2H, dd, Ar-H), 7.39–7.42 (1H, s Ar-H), 7.52–7.91 (3H, m, Ph-OCH ₃), 3.91 (3H, s, OCH ₃), 2.43 (3H, s, CH ₃), mass (m/r): 422 (M ⁺¹)	[31 IR (m^{-1}): 3452 (br, Ph $^{-}$ OH), 3050, 2900 (C $^{-}$ H), 1610 (C $^{-}$ C), 750 (C $^{-}$ S) ¹ H NMR (δ ppm): 6.79–6.94 (5H, m, Ar $^{-}$ H), 7.02–7.31 (5H, m, Ar $^{-}$ H), 7.40–7.82 (3H, m, Ph $^{-}$ OH) 10.52 (1H, hr. s. $^{-}$ OH) mass ($m_{7}^{>1}$): 938 (M $^{+1}$)	[15 IR (cm ⁻¹): 3452 (br, Ph-OH), 3053, 2905 (C-H), 1610 (C=C), 750 (C-S) ¹ H NMR (δ ppm): 6.77-6.92 (4H, dd, Ph-Br), 7.06-7.32 (5H, m, Ar-H), 7.43-7.84 (3H, m, Ph-OH) 10.53 (1H hr s. OH) mass (m/z): 331 (M ⁺¹)	[12] IR (cm ⁻¹): 3452 (br, Ph-OH), 3050, 2905 (C-H), 1612 (C=C), 750 (C-S) ¹ H NMR (<i>b</i> ppm): 6.78–6.92 (4H, dd, Ph-CH ₃), 7.06–7.35 (5H, m, Ar-H), 7.49–7.85 (3H, m Ph-OH), 10.52 (1H, hr. s. OH), 2.45 (3H, s. CH ₃) mass (m/z); 316 (M ⁺¹)	[25 IR (m^{-1}): 3452 (br, Ph-OH), 3053, 2905 (C ⁻ H), 1613 (C ⁻ C), 750 (C ⁻ S) ¹ H NMR (δ ppm): 7.10–7.26 (5H, m, Ar ⁻ H), 7.31–7.42 (2H, dd, Ar ⁻ H), 7.52–7.60 (1H, s, Ar ⁻ H) 7 (59–7.93 (H ⁺¹) mass (m/z): 378 (M ⁺¹)	 IR (cm⁻¹): 3452 (br, Ph-OH), 3050, 2905 (C-H), 1612 (C=C), 750 (C-S) ¹H NMR (δ ppm): 7.12-7.24 (4H, dd, Ph-Br), 7.30-7.45 (2H, dd, Ar-H), 7.50-7.61 (1H, s, Ar-H), 7.69-7.92 (3H, m, Ph-OH), 10.52 (1H, br, s, OH), mass (m/z): 457 (M⁺¹)
108–10	119–12	112–11	122–12	129–13	114-11	110-11	124–12	131–13
68	72	73	75	56	57	60	62	65
4c	4d	4e	4f	5 a	5b	5c	5d	5e

April 2013
25 28
t 06:2
na] a
Arizo
of 7
versity
Uni
Ē.
ą
oaded
luwor

	ореситат лан		11us 3a-1 , 4a-1 , 3a-1 , allu 1a-1 (<i>Continueu)</i>
Compound	% Yield	b. p.(°C)	Spectroscopic data
5f	64	119–120	IR (cm ⁻¹): 3450 (br,Ph–OH), 3052, 2900 (C–H), 1610 (C=C), 750 (C–S) ¹ H NMR (δ ppm): 7.13–7.28 (4H, dd, Ph–CH ₃), 7.31–7.44 (2H, dd, Ar–H), 7.49–7.62 (1H, s, Ar–H), 7.72–7.95 (3H, m, Ph–OH), 10.50 (1H, br, s, OH), 2.43 (3H, s, CH ₃), mass (m/z): 392 (M ⁺¹)
7a	50	125–126	IR (cm ⁻¹): 3450 (br, Ph–OH), 3050, 2900 (C–H), 1685 (C=O), 1610 (C=C), 750 (C–S) ¹ H NMR (δ ppm): 6.92–7.13 (5H, m, Ar–H), 7.21–7.32 (5H, m, Ar–H), 7.39–7.45 (2H, m, Ph–OH), 10.53 (1H, br, s, –OH), 2.41 (3H, s, –CH ₃), mass (m/z): 346 (M ⁺¹)
7b	55	137–138	IR (cm ⁻¹): 3452 (br, Ph–OH), 3052, 2905 (C–H), 1688 (C=O), 1610 (C=C), 750 (C–S) ¹ H NMR (δ ppm): 6.90–7.12 (4H, dd, Ph–Br), 7.22–7.35 (5H, m, Ar–H), 7.37–7.45 (2H, m, Ph–OH), 10.52 (1H, br, s, OH), 2.41 (3H, s, –CH ₃), mass (m/z): 425(M ⁺¹)
7c	60	153–155	IR (cm ⁻¹): 3450 (br, Ph–OH), 3053, 2900 (C–H), 1690 (C=O), 1610 (C=C), 750 (C–S) ¹ H NMR (δ ppm): 6.92–7.14 (4H, dd, Ph–CH ₃), 7.19–7.31 (5H, m, Ar–H), 7.39–7.47 (2H, m, Ph–OH), 10.52 (1H, br, s, OH), 2.41 (3H, s, CH ₃), 2.45 (3H, s, CH ₃), mass (m/z): 358 (M ⁺¹)
7d	62	144–146	IR (cm ⁻¹): 3452 (br, Ph–OH), 3050 , 2905 (C–H), 1688 (C=O), 1610 (C=C), 750 (C–S) ¹ H NMR (δ ppm): $7.12-7.21$ (5H, m, Ar–H), $7.25-7.32$ (2H, dd, Ar–H), $7.39-7.43$ (1H, s, Ar–H), $7.46-7.53$ (2H, m, Ph–OH), 10.52 (1H, br, s, OH), 2.41 (3H, s, CH ₃), mass (m/z): 422 (M ⁺¹)
7e	59	165–166	IR (cm ⁻¹): 3450 (br, Ph–OH), 3054, 2902 (C–H), 1690 (C=O), 1612 (C=C), 750 (C–S) ¹ H NMR (δ ppm): 7.14–7.27 (4H, dd, Ph–Br), 7.31–7.42 (2H, dd, Ar–H), 7.49–7.52 (1H, s, Ar–H), 7.55–7.62 (2H, m, Ph–OH), 10.52 (1H, br, s, OH), 2.41 (3H, s, CH ₃), mass (m/z): 501 (M ⁺¹)
7f	53	140-141	IR (cm ⁻¹): 3450 (br, Ph–OH), 3050, 2905 (C–H), 1692 (C=O), 1612 (C=C), 750 (C–S) ¹ H NMR (δ ppm): 7.12–7.24 (4H, dd, Ph–CH ₃), 7.30–7.45 (2H, dd, Ar–H), 7.48–7.53 (1H, s, Ar–H), 7.59–7.68 (2H, m, Ph–OH), 10.52 (1H, br, s, OH), 2.41 (3H, s, CH ₃), 2.45 (3H, s, CH ₃), mass (m/z): 434 (M ⁺¹)

TARLE V. Sneetral Data of Communds 32-f 42-f 52-f and 72-f (Continued)

Substituted 2-aryl-2-((2-methoxy phenyl)thio) Acetophenones 3a-f

To a suspension of anhydrous K_2CO_3 (13.8 g, 0.1 mol) in 100 ml of dry acetone, a solution of 2-methoxy benzene thiol (0.01 mol) was added. Later a solution of desyl bromide^{13,14} (0.01 mol) in 5 ml of dry acetone was also added slowly. The resulting mixture was refluxed for 12–14 h, cooled, poured into 100 ml ice water, and extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed in vacuo, and the resulting oil was purified by column chromatography (EtOAc\pet.ether 1:9) to give **3a–f** (50–60%).

Substituted 7-methoxy-2,3-diaryl Benzo(b)thiophenes 4a-f

A solution of **3a–f** (0.01 mol) and $BF_3OEt_2^{15}$ (10 ml) was stirred at room temperature under N₂ atmosphere for 14–15 h. The resulting mixture was poured into NaHCO₃ stirred for 10 min, and extracted with DCM. The organic layer was washed with brine (2 × 50 ml) and dried over Na₂SO₄. The solvent was removed under vacuum. The residue was purified by column chromatography (EtOAc\pet.ether 2:8) to result in the formation of **4a–f** (65–75%).

Substituted 7-Hydroxy-2,3-diaryl Benzo(b)thiophenes 5a-f

A finely powdered anhydrous $AlCl_3(13.0 \text{ g}, 0.1 \text{ mol})$ in 5 ml of dry DCM was added at room temperature to a solution of **4a-f** (0.01 mol) in 10 ml of dry DCM under N₂ atmosphere. The resulting mixture was stirred at room temperature for 4–5 h, poured into 100 ml ice water, acidified, and extracted with DCM. The organic layer was washed with brine $(2 \times 50 \text{ ml})$ and dried over Na₂SO₄. The solvent was removed in vacuo, and residue was 7-hydroxy-2,3-diaryl benzo(b)thiophenes **5a-f**: purified by column chromatography (EtOAc\pet.ether 1:9) to give **5a-f** (55–65%).

7,8-Diaryl-4-methyl Coumarino Benzo(b)thiophenes 6a-f

A mixture of **5a–f** (0.01 mol) and ethylacetoacetate (1.18 g, 0.01 mol) in 20 ml of dry DCM was added to a solution of anhydrous $AlCl_3$ in 5 ml of dry DCM, at room temperature under N₂ atmosphere. The solution was then stirred at room temperature for 6–8 h. This solution was acidified

and extracted with DCM. The organic layer was washed with brine $(2 \times 15 \text{ ml})$ and dried over Na₂SO₄. The solution was concentrated in vacuo and the compound was purified by Column chromatography (EtOAc\pet.ether 1:9) to produce compounds **6a–f** (52–60%).

7,8-Diaryl Flavano Benzo(b)thiophenes 8a-f

Compounds **4a–f** (0.01 mol) were acylated with acetyl chloride in the presence of $AlCl_3$ in dry DCM to produce the corresponding compounds **7a–f**.

A mixture of **7a–f** (0.01 mol) and benzaldehyde (0.01 mol) was taken in a solution of ethanol and 40% KOH. The solution was stirred at room temperature for 5 h, then left at room temperature. The resulting mixture was acidified with conc. H_2SO_4 and extracted with DCM (2 × 50 ml). The solvent was concentrated in vacuo, the precipitate was filtered, then purified by recrystallization from methanol to give **8a–f** (56–61%).

REFERENCES

- [1] D. T. Connor, W. A. Cetenko, et al., J. Med. Chem., 35, 958 (1992).
- [2] S. L. Graham, K. L. Shepard, et al., J. Med. Chem., 32, 2548 (1989).
- [3] E. Campaigne, Comprehensive Heterocyclic Chemistry (Pergamon Press, Oxford, 1984), vol. 4, p. 863.
- [4] T. A. Grese and J. A. Dodge, Annual Reports in Medicinal Chemistry (Academic Press, New York, 1996), vol. 31, p. 181.
- [5] N. K. Sangwan, K. S. Dhindsa, O. P. Malik, and M. S. Malik, *China Acta Turca*, 11(I), 65–72 (1983).
- [6] E. J. Gaughan, Chemical Abstr., 95, P25056X (1981).
- [7] A. Attia and M. Michael, *Pharmazie*, 37, 118, 551–553 (1982).
- [8] S. Cabiddu, D. Cancellu, C. Floris, G. Gelli, and S. Melis, Synthesis, 888 (1988).
- [9] I. D. Kersey, C. W. G. Fishwick, J. B. C. Findlay, and P. Ward, *Tetrahedron*, **51**, 6819 (1995).
- [10] S. Ray, P. K. Grover, and N. Anand, Indian. J. Chem., 8, 962 (1970).
- [11] A. G. Osborne, Tetrahedron, 37, 2021 (1981).
- [12] T. I. Gray, A. Pelter, and R. S. Ward, Tetrahedron, 35, 2539-2543 (1979).
- [13] C. F. H. Allen and W. B. Barker, Organic Synthesis, 2.
- [14] A. Lespagnol, A. Mercier, J. Betrand, and J. Mercier, Ann. Pharm. Franc., 8, 241 (1950).
- [15] S. Kim, J. Yang, and F. Di Ninno, Tetrahedron Letters, 40, 2909–2912 (1999).