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3-Chloro-4-(dichloromethyl)-5-hydroxy-5H-furan-2-one (mutagen X, MX) was synthesized in six steps
from commercially-available and inexpensive starting materials (27% overall yield). This synthesis
enables the preparation of MX analogs and does not require the use of chlorine gas, as do previously
reported methods.

� 2012 Elsevier Ltd. All rights reserved.
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Introduction

Halogenated organic substances containing vinyl chloride and
chlorinated hydroxyfuranone functionalities such as mucochloric
acid (1) and mutagen X (2, MX) are contaminants in chlorinated
water and industrial chemical waste (Fig. 1).1 Compounds 1 and
2 were discovered in the late 1970s, and shown to be mutagenic
in the Ames assay.2 MX was isolated initially from chlorine-
bleached pulp mill effluents in 1979.3 One fraction among the dif-
ferent concentrates showed consistent mutagenicity in Salmonella
typhimurium strain TA100. Later the mutagenic compound was
identified as MX.4 These halogenated compounds were also iso-
lated from chlorine-disinfected or treated drinking water.5 They
are formed by the reaction of Cl2 with humic acids derived from
microorganisms present in soil and water.6 MX was shown to be
present in detectable limits in these drinking water sources and
at levels as high as 310 ng/L.4 Though the concentration of MX in
drinking water is typically 100- to 1000-fold lower than other
common chlorinated by-products of concern such as trihalome-
thanes, it is believed that MX is more mutagenic. Smeds et al.
analyzed drinking water samples from 35 locations and reported
that MX accounted for up to 67% of the overall mutagenicity
(S. typhimurium TA100).7 Similar results were also obtained by
Wright et al. among 88 samples taken from 36 towns in Massachu-
setts (USA).8
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MX, in some model systems, was particularly potent relative to
other halogenated compounds in inducing DNA damage and alter-
ing pathways involved in cell growth.4 MX was also found to be
mutagenic in mammalian cell assays in vitro and in vivo.9 In stud-
ies performed by Komulainen et al. MX was found to be a potent
carcinogen in rodents.10 There has been speculation that MX reacts
directly with the aminopurine functionality of adenosines.5 Be-
cause we observed that MX reacted covalently with the active site
lysine of an enzyme in heme biosynthesis that we are investigat-
ing, we sought to prepare larger quantities of MX to explore its
chemical reactivity and stability.

Two distinct methods have been reported to synthesize MX. The
first, by Padmapriya et al. in 1985, involved five steps starting from
tetrachloroacetone (3, Scheme 1).11 In 1995, Franzén et al. modi-
fied Padmapriya’s synthesis by the addition of H2SO4 to the metal
catalyst in the olefin chlorination of 4 to give 5, and Jinqu et al. la-
ter used UV-light instead of a metal catalyst in the chlorination
procedure.12 We found that the methods for the chlorination of
olefin 4 were not generally reproducible, even repeating exactly
the methods and stoichiometry of reagents used. The second
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Figure 1. Mucochloric acid (1) and Mutagen X (2).
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Scheme 2. Reagents and conditions: (a) NaH, THF, 0 �C; or n-BuLi, �78 �C.
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Scheme 1. Reagents and conditions: (a) Ph3P = CHCO2Me, THF, 84%; (b) (i) Cl2 gas, FeCl3. (ii) Et3N, 80%; (c) (i) LiOH, quantitative. (ii) KHCO3, 65%; (d)(i) PCC. (ii) PCl5, 60%; (e)
(i) Cl2 gas, FeCl3. (ii) Et3N, 48%; (f) (i) NBS, light. (ii) Hg(OAc)2, H2O, acetone, 20%.
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Figure 2. MX in ring-closed (A) and open chain (B) forms.
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general procedure for the preparation of MX was reported by
Lalonde et al., in 1990.13 Key intermediate 4-(hydroxymethyl)-
2(5H)-furanone (6), made in two steps, was utilized to assemble
MX in eight steps going through olefin 7 and vinylchloride 8 with
an overall yield of 4%. In our work, we sought to improve the over-
all yield and reduce the number of chemical steps, while removing
the use of chlorine gas altogether.

Our initial concept was to utilize triethyl-2-chloro-2-phospho-
noacetate (9) in a Horner–Wadsworth–Emmons (HWE) reaction14

to install the chlorine in the desired a-position. Compound 315 was
reacted with 9 under basic conditions but reaction was not ob-
served to give 10 (Scheme 2), which we attributed to competition
between deprotonation of the acidic hydrogens and quenching of
the reactivity of 3 with deprotonation of phosphonoacetate 9.

Installation of the a-chlorine on the olefin was achieved first by
the HWE reaction of 9 with 1,3-diacetoxyacetone (11) to yield a-
chloroester 12 in 80% yield (Scheme 3),16 followed by treatment
of 12 with catalytic PTSA under reflux conditions17 in EtOH to fur-
nish lactone 13 in 85% yield.18 Primary alcohol 13 was oxidized
using PCC and then treated with PCl5 to afford dichloromethyl
compound 8 in 80% yield.19 Bromination of 13 at the anomeric cen-
ter was achieved with refluxing in CCl4, with 2 equiv of N-bromo-
succinimide (NBS) and a catalytic amount of azobisisobutyronitrile
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Scheme 3. Reagents and conditions: (a) (EtO)2P(O)CH(Cl)CO2Et (10), NaH, THF, 80%; (b) P
(ii) HCl, dioxane, 50% over two steps.
(AIBN). The crude reaction mixture was then treated with HCl/
dioxane in water under reflux conditions to hydrolyze the anomer-
ic bromide to the corresponding alcohol, thus affording 2 in 50%
yield over the two steps.20 The use of HCl/dioxane did not result
in the formation of appreciable side products, and purification
was relatively straight-forward.

Evaluation of the 1H NMR (300 MHz) of MX in CDCl3, D2O, and
DMSO-d6 confirmed the dependency of solvent on the equilibrium
of the open-chain and the ring-closed forms of MX (Fig. 2). MX ex-
ists as a 1:1 ratio of the ring-closed (A) and the open-chain forms
(B) in DMSO-d6 at ambient temperature, and in CDCl3 and D2O
the predominant form observed was the ring closed form at
ambient temperature. In contrast to this previous report,21 we
observed that the only form of MX at pH of 7.4 in D2O was the
closed ring lactone A. In fact, in all tested acidic and neutral
solutions of D2O, MX existed as the closed ring lactone.

There are three sites in MX that can react with nucleophiles
such as amines, namely the lactone carbonyl, hemiacetal carbon,
and the dichloromethyl substituent. When MX was treated with
3-phenylpropylamine under conditions of reductive amination,22

five membered ring lactam 14 was isolated in 50% yield.23 Forma-
tion of these lactams was similar to the reductive amination of
mucochloric acid as previously reported.24 These results suggested
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Figure 3. Reductive amination of MX with phenylpropylamine.
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that in biological systems, 1 or 2 could react with nucleophiles
(DNA or aminoacids) to form a Schiff base as the first step followed
by subsequent modifications (Fig. 3).25

In conclusion a facile synthesis of MX has been developed with
an overall yield of 27% in six steps, starting with 9. A favorable as-
pect of the synthetic route presented is that a variety of MX ana-
logs can be prepared, without the use of chlorine gas.
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