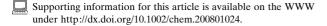
DOI: 10.1002/chem.200801024

Total Synthesis and Determination of the Absolute Configuration of Guadinomines B and C_2

Tomoyasu Hirose, Toshiaki Sunazuka,* Satoshi Tsuchiya, Toshiaki Tanaka, Yasuhiro Kojima, Ryuma Mori, Masato Iwatsuki, and Satoshi Ōmura*[a]

Abstract: This article describes the determination of the absolute configurations of the guadinomines, which are novel cyclic guanidyl natural products that are inhibitors of the type III secretion system (TTSS) of bacteria. Any compound that interrupts the TTSS of bacteria is potentially an ideal anti-infectious drug. The reliable asymmetric synthesis of guadinomines has revealed

their absolute configurations, which could not have been defined without this synthetic approach. Our report not only describes the asymmetric total


Keywords: configuration determination • guadinomines • natural products • total synthesis • type III secretion system

synthesis of the title compounds, but also demonstrates the novel concise synthesis of tri-substituted piperazinone cores as optically pure forms. The novel feature of our method is an intramolecular $S_{\rm N}2$ cyclization that uses PPh₃ and I_2 to construct the unique 5-membered cyclic guanidine substructure.

Introduction

Extracts from culture broths of *Streptomyces* sp. K01-0509 have been recognized for their ability to inhibit the type III secretion system (TTSS) of bacteria. The property has been traced to the novel guadinomines A to D (1–5), and three of them, 1, 2, and 5, have been identified as being selective inhibitors of the TTSS. In the process of isolation, a new compound, guadinomic acid (K01–0509 B) 6, was detected, which occurred as a biosynthetic intermediate. The TTSS is expressed by many Gram-negative pathogens, including enteropathogenic *Escherichia coli* (EPEC), and terohemoragic *E. coli* (EHEC), *Pseudomonas aeruginosa*, *Salmonella* spp., and *Shigella* spp. The infection process. Consequently, guadinomines may prove to be novel anti-infectious drugs.

[a] Dr. T. Hirose, Prof. Dr. T. Sunazuka, Dr. S. Tsuchiya, T. Tanaka, Y. Kojima, R. Mori, M. Iwatsuki, Prof. Dr. S. Ōmura Kitasato Institute for Life Science Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo, 108-8641 (Japan) Fax: (+81)3-5791-6340 E-mail: sunazuka@lisci.kitasato-u.ac.jp

omuras@insti.kitasato-u.ac.jp

Original structural analysis was mainly carried out by NMR spectroscopic methods to elucidate the novel cyclic guanidine natural products.[3] However, the relative and absolute configurations of guadinomines 1 to 5 remained undetermined, except for the peptide moiety. It is difficult to determine exact configurations, even with highly advanced spectroscopic methods, especially for linear portions that include consecutive stereocenters for 1,2-diamine or piperazinone and polyol. Moreover, work was hampered by insufficient quantities of the natural products. These difficulties encouraged establishment of the configurations of guadinomines by chemical synthesis. Our previous research demonstrated the asymmetric preparation of 6, which allowed the determination of the configuration of two stereocenters.[8] The stereo information of 6 suggested that the configuration of C7 (or C2') and C4' (or C4") in 1 to 5 should be related to C5 and C4' in 6, respectively. Nevertheless, other configurations of 1 to 5 remained unclear. Herein, we report the total assignment of the configuration of 2 (B) and 4 (C₂), through the first asymmetric total synthesis of these natural products.

Results and Discussion

In our synthetic strategy, we made an intuitive assumption that the prediction of the relative and absolute configuration for C5 and C6 with C3 in 4 would be more conclusively ac-

C₂ (4) (epimer at C3)

complished by comparison with piperazinone simple pounds.[9] Moreover, evidence for the syn-relationship between C3 and C6 in 4 was conclusive because of the observation of an NOE between H-5' and CH₂-3 detailed analysis of its ¹H NMR spectra.^[10] Therefore, our first aim was to elucidate the relative and absolute configuration of the piperazinone moiety of 4 by comparing 4 with simple piperazinone model compounds, which contain the peptide moiety (7, 8; Scheme 1).

Guadinomines C₁ (3)

Retrosynthetic analysis of piperazinone core: Our retrosynthetic analysis of piperazinone model compounds, as shown in Scheme 1, involved installing the stereogenic centers from optically active reagents in a reliable fashion. To avoid any doubt about the configurations, optically active 2-bromopropionic acid (10) and *syn*-chlorohydrin (14) were selected as chiral sources. We envisaged that it would be efficient to construct

each stereocenter by S_N2 cyclization for C3 and regioselective azidolysis of aziridine^[11] for the C5 and C6 positions. The optically active aziridine could be prepared from 1,2-hydroxylamine (12), derived from 14 by epoxide chemistry.^[12] Additionally, the C3, C6-epi model compound 8 could be

constructed in a similar fashion to **7** from *trans*-epoxide **15**, which can also be generated from **14**.^[12]

Synthesis of the 5,6-trans-piperazinone 7: The route to (3S,5R,6S)-5,6-trans-3,6-syn-piperazinone 7 (Scheme 2) commenced with (R)-oxazolidinone ((R)-16), which was subjected to the Evans aldol reaction [13] with valeraldehyde, followed by hydrolytic removal of the auxiliary, which afforded α -chloro- β -hydroxy acid 18 as a single enantiomer. Condensation with the known peptide section $(NH_2$ -L-Ala-L-Val-OtBu) 19 and subsequent epoxide formation

Guadinomic Acid (6)

(K01-0509 B)

ONH-L-Ala-L-Val-OH

NBu

(2R,3S)-syn-chlorohydrin (14)

Similar reaction sequence as 7

NBu

(2R,3S)-syn-chlorohydrin (14)

Epoxide formation by epimerization

trans-epoxide (15)

Scheme 1. Retrosynthetic analysis of model compounds 7 and 8.

under mild basic conditions afforded *cis*-epoxide **20** as a single form. Azidolysis of **20** followed by reduction of the azide gave 1,2-hydroxylamine, which led to *cis*-Ns-aziridine **21** (Ns=2-nitrobenzenesulfonyl) as a single form upon the formation of an Ns-aziridine via ring closure of the N,O-bis-

Bn,
$$O = R^2$$
 $O = R^2$ $O = R^2$

Scheme 2. Reagents and conditions: a) valeraldehyde, nBu_2BOTf , iPr_2NEt , CH_2Cl_2 , -78 to $0^{\circ}C$, 1 h, 72% (dr > 20:1); b) LiOH, H_2O_2 , THF/H_2O (5/1), $0^{\circ}C$, 25 min; c) bromotrispyrrolidinophosphonium hexafluorophosphate (PyBrop), iPr_2NEt , H_2N -L-Ala-L-Val-OiBu 19, CH_2Cl_2 , $0^{\circ}C$ to RT, 1 h, 82% (2 steps); d) K_2CO_3 , H_2O , DMF, RT, 2.5 h, 100%; e) NaN₃, NH₄Cl, MeOH/H₂O (20:1), $70^{\circ}C$, 56 h, 91% (predominantly the β -N₃ isomer); f) 10%Pd/C, H_2 , EtOAc, RT, 9 h; g) p-nitrobenzenesulfonyl chloride (NsCl) (3 equiv), Et_3N (3 equiv), 4-(dimethylamino)pyridine (0.05 equiv), CH_2Cl_2 , RT, 12 h, 91% (2 steps); h) NaN₃, DMF, $0^{\circ}C$ to RT, 2.5 h, 91%; i) PPh₃, H_2O , THF, $45^{\circ}C$, 20 h, 85%; j) (R)-10, 1-hydroxybenzotriazole (HOBt), N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDCl), $0^{\circ}C$, 1 h, 91%; k) iPr₂NEt, MeCN, $60^{\circ}C$, 19 h, then PhSH, $60^{\circ}C$, 21 h, 100%; l) TFA/H₂O (3:1), RT, 3 h, 100%.

Ns intermediate. [14] Regioselective azidolysis of **21** gave only the β -azide, which upon reduction by Staudinger amination followed by condensation with (R)-2-bromopropionic acid ((R)-**10**) and intramolecular S_N2 cyclization, ended with formation of the piperadinone ring. This reaction proceeded without any epimerization and subsequent elimination of the Ns group gave piperadinone compound **23** as a single isomer. Final deprotection of the t-butyl group yielded the desired model compound **7**. [15]

Synthesis of the 5,6-cis-pipera**zinone 8**: The route (3R,5R,6R)-5,6-cis-3,6-syn-piperazinone (8, Scheme 3) commenced from 17 in similar reaction sequence to the preparation of 7. The requisite epoxy geometry was installed through a modified Azerad protocol^[12] under harsh basic conditions in EtOH, involving in situ ester preparation and isomerization at the α position of the ester followed by ring closure due to the fast cyclization rate of the anti isomer. This gave the desired trans-epoxy ester 24 as a major isomer (5.4:1). The selectivity was critical for our planned formation of the C5,C6 cispiperazinone. Subsequent cisaziridine formation was accomplished by Staudinger ring clo-

sure^[16] via azidolysis of the epoxide. Azidolysis of 24 gave us a mixture of α and β azido products, leading to the same chiral product 25. The Ns group was introduced to activate aziridine followed by azidolysis of the resulting Ns-aziridine to the inseparable regioisomers of azidoamine, which upon elimination of the Ns group, yielded separable isomers 26 and 27 with moderate selectivity (26/ 27=3.7:1). Azido 26 was condensed with (S)-2-bromopropionic acid ((S)-10), which upon intramolecular S_N2 cyclization through Staudinger amination, yielded the desired piperazinone core 28. tert-Butoxycarbonyl (Boc) protection of 28, followed by hydrolysis, and condensation with peptide 19, finally led to the target model piperazinone 8[15] by total deprotection.

Comparison of ¹H NMR spectra of natural 3 and the model compounds: The respective NMR spectra of the synthetic piperazinone compounds were compared to naturally occurring 3 and 4. Clearly, the coupling constants between $H_{a'}$ and $H_{b'}$ of 8 (J=4.5 Hz in 1% trifluoroacetic acid (TFA)/

17 a)
$$nBu$$
 CO_2Et nBu CO_2Et nBu CO_2Et nBu CO_2Et nBu CO_2Et nBu CO_2Et nBu nBu

Scheme 3. Reagents and conditions: a) NaH, EtOH, 0°C, 20 min, 98% (as a mixture of *trans/cis*-epoxide; predominantly the *trans* isomer; 5.4:1); b) NaN₃, NH₄Cl, 1,4-dioxane/H₂O (1:1), 60°C, 40 h, 55%; c) PPh₃, dehydrated MeCN, 80°C, 89% as only the *trans*-isomer; d) NsCl, Et₃N, 4-(dimethylamino)pyridine (0.1 equiv), CH₂Cl₂, RT, 20 h; e) NaN₃, DMF, 0°C to RT, 0.5 h; f) PhSH, *i*Pr₂NEt, MeCN, RT, 2.5 h, 53% for **26**, 14% for **27** (3 steps); g) (*S*)-**10**, (benzotriazol-1-yloxy)trispyrrolidinophosphonium hexafluorophosphate (PyBOP), *i*Pr₂NEt, RT, 80 min, 94%; h) PPh₃, Et₃N, MeCN, RT, 1 h; then H₂O, 60°C, 1.5 h, 73%; i) Boc₂O, EtOAc, 80°C, 20 min, 73%; j) LiOH, MeOH/THF/H₂O (2:2:1), RT, 85 min; k) PyBOP, *i*Pr₂NEt, H₂N-L-Ala-L-Val-O*t*Bu **19**, CH₂Cl₂, RT, 1 h, 67% (2 steps); l) TFA/H₂O (3/1), RT, 2.5 h, 98%.

D₂O) confirmed the structures of guadinomine Cs (**3** and **4**; both 4.2 Hz for *J* values; Schemes 2 and 3). Therefore, it was convincing that the *cis*-conformation of the 5,6 position of piperazinone is an essential part of natural **3** and **4**. To indicate the absolute configuration of the piperazinone moiety of **4**, NH-D-Ala-D-Val-OH derivative **31** (Figure 1), which can be likened to the (3*S*,5*S*,6*S*)-analogue containing the L-peptide, *ent-***31**, used to compare **4** with **31**, was concisely

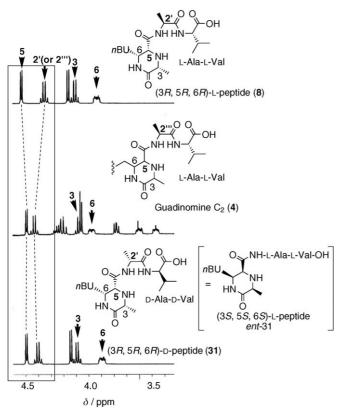


Figure 1. Comparison between ¹H NMR spectra of 4, 8, and 31.

prepared from piperazinone ester **29** in the same manner.

As can be seen in Figure 1, the correlation between H-5 $(\delta = 4.49 \text{ ppm} (d, J = 4.5 \text{ Hz}))$ and H-2' ($\delta = 4.40 \text{ ppm}$ (q, J =7.2 Hz)) of **31** in the ¹H NMR spectra recorded in 1% TFA/ D₂O show better agreement with natural 4 ($\delta = 4.50$ ppm (d, $J = 4.2 \, \text{Hz}$ for H-5; 4.44 ppm (q, J=7.2 Hz) for H-2''') than **8** ($\delta = 4.53$ ppm (d, J =4.5 Hz) for H-5; $\delta = 4.35 \text{ ppm}$ (q, J=7.2 Hz) for H-2'). H-2' in the peptide moiety for this NMR spectrum observation is situated closest to the piperazinone core. Therefore, the relationship between H-5 and H-2' should be the most affected signals in the diastereomers (8 and 31). The ¹³C NMR spectroscopy data are also in good agreement with the natural structures. ^[17] From these observations described and prior work on guadinomine E (6), the absolute configuration of guadinomine C₂ (4) was envisaged and narrowed down to two stereoisomers, as shown in Scheme 4, from the 2⁶ possible stereoisomers (six stereocenters exist). However, the absolute configuration for C3' remained undetermined. To verify the absolute structure of 4, and to facilitate the discovery of novel analogues with advantageous pharmaceutical profiles, we executed the first asymmetric total synthesis of both key stereoisomers of 4.

Retrosynthetic analysis of 4: Our targets were both C3'-epimers of **4** (Scheme 4), which can be crafted from syn- (33) and anti-diol (34) derivatives through a sequence that involves the introduction of a piperazinone core, by applying the protocol described in Scheme 3, and the construction of a cyclic guanidine possessing a carbamoyl function, as established in our earlier preparation of $\mathbf{6}$.

Preparation of *anti***-diol 33**: The route to (3'*R*)-4 began with the preparation of protected *anti*-diol **33** (Scheme 5). Chiral alcohol **35**, prepared from (*R*)-benzylglycidol with vinylmagnesium bromide by Boinin's protocol, [18] was subjected to hydroboration and oxidation with protection chemistry to give aldehyde **36**. A construction of the *anti*-diol unit, the diastereoselective vinylation of **36**, proceeded with a diastereomeric ratio (dr) of 5:1, but the resulting isomers could not be separated. After removal of the bis-TBS (TBS = *tert*-butyldimethylsilyl) groups, protection of the diol with a cyclic acetal and the primary alcohol with a benzyl group gave **38** as a single diastereomer after chromatographic separation. [19,20] Sequential hydroboration and oxidation with protection techniques gave the desired *anti*-diol product *anti*-**33**.

Scheme 4. Proposed structure and retrosynthetic analysis of 4.

Scheme 5. Reagents and conditions: a) BH₃·Me₂S, THF, 0°C to RT, 2 h; then aqueous H₂O₂, 4 N aqueous NaOH, RT, 2 h, 87%; b) TBSCl, imidazole, DMF, RT, 2 h, 95%; c) H₂, Pd(OH)₂/C, EtOAc, RT, 20 min, 96%; d) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, 0°C, 15 min; e) CH₂=CHMgBr, Et₂O, -78°C, 35 min, 84% (2 steps) (dr = 5:1); f) 4 N HCl in dioxane, RT, 20 min, 94%; g) 2,2-dimethoxypropane, TsOH·H₂O (TsOH=p-toluenesulfonic acid), acetone, RT, 15 min, 92%; h) BnBr, tetrabutylammonium iodide (TBAI), NaH, THF, 70°C, 6.5 h, 85% (dr > 20:1); i) BH₃·Me₂S, THF, 0°C to RT, 2 h; then NaBO₃, 4 N aqueous NaOH, 50°C, 1.5 h, 69%; j) *tert*-butyldiphenylsilyl chloride (TBDPSCl), imidazole, DMF, RT, 40 min; k) H₂, Pd(OH)₂, EtOAc, RT, 2.5 h, 78% (2 steps); l) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, 0°C, 20 min.

Preparation of syn-diol unit 34: Synthesis of syn-diol **34** (Scheme 6) began with the introduction of a stereocenter at the α position of aldehyde **39**^[21] by an α -aminooxylation de-

Scheme 6. Reagents and conditions: a) D-proline, nitrosobenzene, CHCl₃, 0°C, 105 min; then NaBH₄, EtOH, 0°C, 0.5 h; b) H₂, 10% Pd/C, EtOAc, RT, 4 h, 40% (2 steps), >98% ee; c) PMB(OMe)₂ (PMB=p-methoxybenzyl), pyridinium p-toluenesulfonate (PPTS), CH₂Cl₂, 0°C, 100 min, 92%; d) DIBAL-H, CH₂Cl₂, -78°C, 1 h, 93%; e) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, 0°C, 15 min; f) 1-ethylthio-1-trimethylsilyloxyethene, TiCl₃-(OiPr), CH₂Cl₂, -78°C, 2 h, 64% (>99% de); g) LiBH₄, THF, -10°C, 2 h, 88%; h) TBDPSCl, Et₃N, 4-(dimethylamino)pyridine, CH₂Cl₂, RT, 3.5 d; i) Pd(OH)₂/C, H₂, RT, 2 h, 90% (2 steps); j) 2,2-dimethoxypropane, TsOH·H₂O, acetone, RT, 5 min, 97%; k) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, 0°C, 15 min.

veloped by McMillan et al.^[22] The resulting aminooxylated aldehyde was reduced to alcohol **40** with excellent enantioselectivity (99% enantiomeric excess (*ee*)).^[23] Cleavage of the N–O bond by hydrogenation, followed by protection of the secondary alcohol, and oxidation, gave aldehyde **41**. The chiral aldehyde was then transformed in a Ti-chelation-controlled Mukaiyama aldol reaction, using the trimethylsilyl (TMS) enolate of thioethylacetate in the presence of TiCl₃-(O-*i*Pr), to give *syn*-aldol **42** with exceptional diastereoselectivity (> 99% diastereomeric excess (*de*)).^[20,24,25] Subsequent reduction of the thioester unit in the stepwise sequence of protection, deprotection, and oxidation of the hydroxy group, yielded the desired aldehyde of *syn*-**34**.

Total synthesis of 4: With both diol units in hand, we turned our attention to completing the synthesis of guadinomine C_2

with the construction of the piperazinone and cyclic guanidine moieties (Scheme 7). Introduction of the piperazinone moiety with designated stereo configurations from anti-33 was adapted to our procedure (indicated in Scheme 3). Although the diol unit has additional functions compared with the model piperazinone compound all reaction progressed sequences quite smoothly^[26] to form piperazinone aldehyde 44 in a pure form.[20] We subsequently applied Yamada's conditions for the asymmetric nitro aldol reaction,[27] which have been examined under various conditions

with simpler substrates, as discussed in our previous paper. ^[8] Thus **44** was treated with the (R,R)-salen–cobalt catalyst **45** under modified conditions to eventually give **46** with high

stereoselectivity (90% de). Introduction of a guanidyl group was achieved through reduction of the nitro group followed by guanvlation with 47^[28] to give 48. We have previously investigated the S_N2 cyclization procedure for cyclic guanidine by mesylation of the alcohol followed by ring closure under basic conditions.[8] Applying this two-step procedure with 48, however, resulted in low reproducibility for production of 50 due to mesylation on the other amide moiety, a yield of 82% could only be obtained once. This problem was overcome by using S_N2 cyclization conditions

via a phosphonium intermediate, which is generated from I₂ and PPh₃. The S_N2 cyclization proceeded very smoothly under mild conditions without any side reactions, such as iodination of the hydroxy group. This reaction has not only great advantages regarding simplicity for purification, but also better efficiency than the standard Mitsunobu-type reaction in the case of the 5-membered cyclic guanidine formation. The final sequence for the formation of the carbamoyl and total deprotection proceeded as expected, and (3'R)-guadinomine C_2 ((3'R)-4) was obtained. Access to the isomer, (3'S)-4, was also obtained by applying an identical reaction sequence as that used for the preparation of (3'R)-4 from syn-34. The spectral characteristics of (3'R)-4 showed a clear match with the data from naturally occurring 4. Thus, we established that guadinomine C2 has the configuration 3S,5S,6S,2'S,3'R,4''R with the L-peptide moiety.

Scheme 7. Reagents and conditions: a) (*S*)-**16**, nBu₂BOTf, Et₃N, CH₂Cl₂, -78 to 0°C, 65% (2 steps); b) NaH, EtOH, 0°C, 20 min, 88% (as a mixture of the *trans/cis*-epoxide; predominantly the *trans* isomer; 5.8:1); c) NaN₃, NH₄Cl, EtOH/H₂O (20:1), 60°C, 38 h, 56%; d) PPh₃, dehydrated MeCN, 80°C, 21 h, 76% as only the *trans*-aziridine isomer; e) NsCl, 4-(dimethylamino)pyridine, Et₃N, CH₂Cl₂, 0°C to RT, 4 h; f) NaN₃, DMF, RT, 1 h, 93% (2 steps) (>20:1 = α/β -N₃); g) PhSH, DIPEA, MeCN, RT, 6 h, 65%; h) (*R*)-**10**, PyBOP, iPr₂NEt, CH₂Cl₂, RT, 1 h, 95%; i) PPh₃, Et₃N, MeCN, 1 h; then H₂O, 60°C, 7 h; j) Boc₂O, EtOAc, 80°C, 1 h, 68% (2 steps); k) LiOH, THF/MeOH/H₂O (2:2:1), RT, 1 h; l) H₂N-L-Ala-L-Val-OtBu **19**, PyBOP, HOBt, iPr₂NEt, CH₂Cl₂, RT, 4 h, 70% (2 steps); m) tetrabutylammonium fluoride (TBAF), THF, RT, 3 h, 79%; n) SO₃-pyridine, DMSO, Et₃N, CH₂Cl₂, 0°C to RT, 1 h; o) (*R*, *R*)-**45**, MeNO₂, iPr₂NEt, CH₂Cl₂, -40°C, 46 h, 53% (2 steps), 90% de; p) HCO₂NH₄, 10% Pd/C, MeOH, RT, 2 h; q) **47**, iPr₂NEt, MeCN, RT, 1 h, 57% (2 steps); r) I₂, PPh₃, imidazole, CH₂Cl₂, 0°C to RT, 2 h, 88%; s) Ms₂O (Ms=methanesulfonyl), pyridine, 4-(dimethylamino)pyridine, CH₂Cl₂, 0°C, 0.5 h; t) iPr₂NEt, MeCN, 65°C, 4 h, ≈82%; u) p-methoxyphenylisocyanate, PhH, RT, 10 min; v) ceric ammonium nitrate (CAN), MeCN/H₂O (1/1), 0°C, 2.5 h; w) TFA/H₂O (3/1), RT, 5 h 60% (3 steps); for the reaction sequence from *syn*-**34** to (3′S)-**4**, see the Supporting Information.

Total synthesis of guadinomine B: We next approached the total synthesis of guadinomine B (2), which differs only in the diamine part from 4 (diamine is converted to piperazinone in 4). Therefore, to access 2, 1, 2-azidoamine 43 was converted to 1,2-bis(Boc-amine) 51, which subsequently underwent the same reaction sequence as that for the synthesis of 4 to give 2 (Scheme 8). Synthetic 2 was identical to natu-

rally occurring **2** in all respects. Hence, we established that guadinomine B has the configuration 2S,3S,6R,7S,4'R with the L-peptide moiety.

Inhibitory activity of TTSS for natural and synthetic guadinomine B and C_2 : By using the synthetic guadinomines B and C_2 thus obtained, a TTSS assay with TTSS-expressing

Scheme 8. Reagents and conditions: a) H_2 , 10% Pd/C, EtOAc, RT, 1 h; b) Boc₂O, EtOAc, 60°C, 45 min, 91% (2 steps); c) LiOH, THF/MeOH/ H_2 O (2:2:1), RT, 0.5 h; d) H_2 N-L-Ala-L-Val-OtBu **19**, PyBOP, HOBt, tPr₂NEt, CH₂Cl₂, RT, 3 h, 89% (2 steps); for the reaction sequence from **51** to **2**, see the Supporting Information.

EPEC was conducted. TTSS activity was measured as the hemolytic activity caused by TTSS of EPEC in a 96-well microplate, as reported previously.[1] TTSS-expressing EPEC and erythrocytes were mixed and placed in contact, and the hemolytic activity was measured spectrometrically. Namely, the noninfectious strain EPEC DCesT, which was defective of the chaperon protein of the translocated intimin receptor (Tir), was used in this assay. As shown in Figure 2, the inhibitory activity

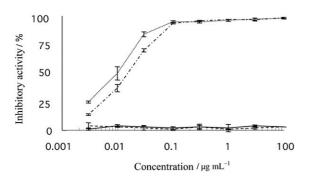


Figure 2. Inhibitory activity of TTSS-induced hemolysis for synthetic and natural guadinomine B and C_2 : natural guadinomine B (----), synthetic guadinomine B (----), natural guadinomine C_2 (----), and synthetic guadinomine C_2 (----).

of synthetic **2** was almost the same as that of natural **2** (Actually, natural **2** was slightly less active than synthetic **2** due to its impurity). On the other hand, natural and synthetic guadinomine C_2 , (3'R)-**4**, showed no activity at $100 \, \mu g \, mL^{-1}$ in this assay. The basic structure of guadinomines with the piperazinone moiety on 1,2-diamine lost activity. Thus, the activity of synthetic and natural guadinomines B and C_2 were essentially identical.

Conclusion

In summary, the first asymmetric total synthesis of guadinomines B (2) and C_2 (4) has been achieved. The longest linear sequence proceeded in 32 steps for 2 and 33 steps for 4. This synthetic process not only provides viable routes to these guadinomines, as well as to potential analogues thereof, but also establishes the absolute configurations of natural 2 and 4.

Experimental Section

General remarks: Dry THF, toluene, ethyl ether, and CH2Cl2 were purchased from Kanto Chemical. Precoated silica gel plates with a fluorescent indicator (Merck 60 F254) were used for analytical and preparative thin layer chromatography. Flash column chromatography was carried out with Kanto Chemical silica gel (Kanto Chemical, silica gel 60N, spherical neutral, 0.040-0.050 mm, Cat.-No. 37563-84). ¹H NMR spectra were recorded at 270, 300, or 400 MHz and 13C NMR spectra were recorded at 67.5, 75, or 100 MHz on JEOL JNM-EX270 (270 MHz), Varian VXR-300 (300 MHz), Varian XL-400 (400 MHz), or Varian UNITY-400 (400 MHz) spectrometers. The chemical shifts are expressed in ppm downfield from the internal solvent peaks for CHCl₃ (7.26 ppm, ¹H NMR), CH₃OH (3.31, 4.84 ppm, ¹H NMR), H₂O ¹H NMR), CDCl₃ (77.0 ppm, ¹³C NMR), CD₃OD (49.0 ppm, ¹³C NMR), or D₂O (the end of both fields; 0, 200 ppm, ¹³C NMR) and J values are given in hertz. The coupling patterns are denoted s (singlet), d (doublet), dd (double doublet), ddd (double doublet), t (triplet), dt (double triplet), q (quartet), m (multiplet), or br (broad). All infrared spectra were measured on a Horiba FT-210 spectrometer. High- and low-resolution mass spectra were measured on a JEOL JMS-DX300 and JEOL JMS-AX505 HA spectrometer. Liquid chromatographic preparation was conducted on a Jasco PU-980 with Senshu Pak-PEGASIL ODS. Optical rotations were measured by using JASCO DIP-370 polarimeter. Melting points were measured on a Yanagimoto Micro Apparatus.

(4R,2'R,3'S)-4-Benzyl-(2'-chloro-3'-hydroxyheptanoyl)-2-oxazolizinone (17): DIPEA (2.62 mL, 18.0 mmol), and nBu₂BOTf (1.0 m in CH₂Cl₂, 14.0 mL, 14.0 mmol) were added to a solution of chloroacetyloxazolidinone (R)-16 (2.4 g, 10.0 mmol) in CH₂Cl₂ (104 mL) at −78 °C. After stirring for 1 h at RT, the reaction mixture was cooled to -78°C. Then, valeraldehyde (2.69 mL, 14.0 mmol) was added to the reaction solution. After stirring for 5 min, the solution was warmed to 0°C and stirred for 1 h. Phosphate buffer (pH 7.2; 6 mL) and 30% aqueous H₂O₂/MeOH (1:2) (20 mL) were added to the reaction solution at 0 °C, then the mixture was stirred for 1 h. The organic layer was separated and water layer was extracted with CHCl₃ (40 mL×3). The combined organic extracts were washed with a saturated aqueous solution of NH₄Cl (20 mL) and brine (20 mL), then dried over Na_2SO_4 , filtered, and the solvent was evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc 4:1) gave 17 as a colorless oil (1.93 g, 72 %). $R_f = 0.58$ (silica gel, hexane/EtOAc 1:1); $[\alpha]_D^{27} = -46.4$ (c=1.93, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.37 - 7.21$ (m, 5H; 4-CH₂Ph), 5.68 (d, $J=3.0 \text{ Hz}, 1\text{ H}; 2'-\text{H}), 4.72 \text{ (dddd}, } J=2.3, 3.3, 5.6, 9.6 \text{ Hz}, 1\text{ H}; 4-\text{H}), 4.28$ (dd, J=5.6, 9.2 Hz, 1H; 5-H₂), 4.23 (dd, J=2.3, 9.2 Hz, 1H; 5-H₂), 4.10(m, 1H; 3'-H), 3.32 (dd, J=3.3, 13.5 Hz, 1H; 4-C H_2 Ph), 2.83 (dd, J=9.6, 13.5 Hz, 1H; 4-C H_2 Ph), 2.70 (d, J = 5.5 Hz, 1H; 3'-OH), 1.72–1.54 (complex m, 2H; $4'-H_2$), 1.52-1.31 (complex m, 2H; $6'-H_2$), 1.43-1.31 (complex m, 2H; 5'-H₂), 0.92 ppm (t, J=6.6 Hz, 3H; 7'-H₃); ¹³C NMR $(67.5 \text{ MHz}, \text{CDCl}_3)$: $\delta = 169.3$, 153.6, 135.2, 130.2 (2 C), 130.1 (2 C), 128.2, 71.7, 66.9, 60.4, 55.8, 37.3, 33.8, 27.6, 22.5, 13.9 ppm; IR (NaCl) $\tilde{v} = 3523$ (br, OH), 1780 (C=O, ester), 1711 (C=O, imide), 1389, 1365, 1209, 1113, 1057, 1001, 750, 698 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd

for $C_{17}H_{23}NO_4Cl$: 340.1316 [M+H]; found: 340.1309 [M+H]+.

(2''R,3''S)-tert-Butyl-[N'-(2''-chloro-3''-hydroxyheptanoyl)-L-alanyl]-L-valinate (52): 30% aqueous H₂O₂ (1.55 mL, 13.7 mmol) and 1 N aqueous LiOH (5.27 mL, 5.27 mmol) were added to a solution of 17 (896 mg, 2.64 mmol) in THF/H₂O (5:1) (26.4 mL) at 0 °C. After stirring for 25 min at the same temperature, a saturated aqueous solution of Na₂SO₃ (5.0 mL) and CHCl₃ (50 mL) were added to the reaction mixture. The organic layer was separated, and 1 N aqueous HCl (10 mL) was added to the aqueous layer, which was then extracted with CHCl₃ (50 mL×3). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Crude product 18 was used in the next reaction without further purification. The residue was dissolved in CH2Cl2 (24.2 mL) and then tert-butyl L-alanyl-L-valinate 19 (886 mg, 3.63 mmol), DIPEA (829 μL, 4.84 mmol), PyBrop (1.69 g, 3.63 mmol) were added. After stirring for 10 min at 0 °C under argon, the reaction mixture was warmed up to RT, and stirred for 1 h. The reaction was quenched with a saturated aqueous solution of NH₄Cl (10 mL). The organic layer was separated and the aqueous layer was extracted with CHCl₃ (20 mL×2). The combined organic extracts were washed with brine (20 mL), dried over Na2SO4, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=3:1) gave 52 as a colorless oil (876 mg, 82 % in 2 steps). $R_f = 0.35$ (silica gel, hexane/EtOAc=1:1); $[\alpha]_D^{26} = +10.2$ (c=1.30, CHCl₃); ¹H NMR (270 MHz, CDCl₃): δ =6.97 (d, J=6.9 Hz, 1 H; 2'-NH), 6.76 (d, J = 8.9 Hz, 1 H; 2-NH), 4.45 (dq, J = 6.9, 6.9 Hz, 1 H; 2'-H), 4.44 (dd, J = 4.5, 8.9 Hz, 1 H; 2-H), 4.36 (d, J=1.7 Hz, 1 H; 2"-H), 4.21 (m, 1 H; 3"-H), 4.11 (d, J=6.3 Hz, 1H; 3"-OH), 2.09 (dqq, J=4.5, 7.3, 7.6 Hz, 1H; 3-H), 1.74–1.66 (m, 1H; 4"- H_2), 1.61–1.52 (m, 1H; 4"- H_2), 1.47 (d, J=6.9 Hz, 3H; 3'-H₃), 1.45 (s, 9H; 1-OC(CH_3)₃), 1.41–1.31 (complex m, 4H; 5"-H₂, 6"- H_2), 0.91 (t, J = 6.6 Hz, 3H; 7"- H_3), 0.90 (d, J = 7.6 Hz, 3H; 3- CH_3), 0.87 ppm (d, J = 7.3 Hz, 3H; 3-C H_3); ¹³C NMR (67.5 MHz, CDCl₃): $\delta =$ 171.7, 171.5, 168.7, 82.3, 71.6, 64.5, 57.5, 49.9, 33.5, 31.4, 27.8 (3 C), 27.5, 22.2, 18.7, 17.8, 17.5, 13.8 ppm; IR (KBr) $\tilde{v} = 3313$ (br, -NH), 3072 (br, -OH), 1732 (C=O, ester), 1651 (C=O, amide), 1520, 1456, 1369, 1313, 1223, 1155 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{19}H_{36}N_2O_5Cl: 407.2313 [M+H]: found: 407.2312 [M+H]^+.$

(2"S,3"S)-(-)-tert-Butyl-[N'-(2",3"-epoxyheptanoyl)-L-alanyl]-L-valinate (20): H₂O (47.0 μ L, 2.61 mmol) and milled K₂CO₃ (144 mg, 1.04 mmol) were added to a solution of chlorohydrin 52 (212 mg, 522 μ mol) in DMF

(2.60 mL) at RT. After stirring for 2.5 h, the reaction mixture was diluted with EtOAc (10 mL) and H₂O (2.0 mL) was added. The organic layer was separated, and the aqueous layer was extracted with EtOAc (10 mL×2). The combined organic extracts were washed with H₂O (10 mL×5) and brine (20 mL), dried over Na2SO4, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=4:1) gave 20 (193 mg, 100%) as a colorless oil. R_f =0.41 (silica gel, hexane/EtOAc=1:1); $[\alpha]_D^{26}$ =-30.6 (c=1.10, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 6.73$ (d, J = 7.3 Hz, 1H; 2'-NH), 6.42 (d, J=8.9 Hz, 1H; 2-NH), 4.53 (dq, J=6.9, 7.3 Hz, 1H; 2'-H), 4.41 (dd, J=4.6, 8.9 Hz, 1H; 2-H), 3.45 (d, J=4.6 Hz, 1H; 2"-H), 3.17 (m, 1H; 3"-H), 2.09 (dqq, J=4.6, 6.6, 6.6 Hz, 1H; 3-H), 1.57–1.32 (complex m, 2H; 4"-H₂), 1.57-1.32 (complex m, 4H; 5"-H₂, 6"-H₂), 1.47 (s, 9H; 1- $OC(CH_3)_3$, 1.39 (d, J=6.9 Hz, 3H; 3'-H₃), 0.93, 0.90 (d, J=6.6 Hz, each 3H; 3- $(CH_3)_2$), 0.90 ppm (t, J=6.9 Hz, 3H; 7"- H_3); ¹³C NMR (67.5 MHz, $CDCl_{3}): \delta \!=\! 171.3, \, 170.6, \, 167.3, \, 82.0, \, 58.4, \, 57.6, \, 54.9, \, 48.4, \, 31.2, \, 28.0, \, 28.0$ (3C), 27.2, 22.3, 18.9, 18.5, 17.5, 13.8 ppm; IR (KBr): $\tilde{\nu} = 3317$ (br, -NH), 1734 (C=O, ester), 1684 (C=O, amide), 1655 (C=O, amide), 1541, 1522, 1458, 1369, 1157 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{19}H_{35}N_2O_5$: 371.2546 [*M*+H]; found: 371.2545 [*M*+H]⁺.

 $(2''S,\!3''R)\text{-}(-)\text{-}tert\text{-}Butyl\text{-}[N'\text{-}(3''\text{-}azido\text{-}2''\text{-}hydroxyheptanoyl})\text{-}L\text{-}alanyl]\text{-}L\text{-}alanyl}$ valinate (53): NaN₃ (67.6 mg, 1.04 mmol) and NH₄Cl (55.6 mg, 1.04 mmol) were added to a solution of 20 (193 mg, 520 μ mol) in MeOH/ H₂O (20:1) (5.20 mL) at RT and the reaction mixture was warmed to 70°C. After stirring for 56 h, the reaction mixture was cooled to RT, diluted with CHCl₃ (15 mL), and H₂O (2.0 mL) was added. The organic layer was separated, and the aqueous layer was extracted with CHCl₃ (10 mL×3). The combined organic extracts were washed with brine (20 mL), dried over Na2SO4, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc= 2:1) gave 53 as colorless needles (197 mg, 91%). R_f =0.39 (silica gel, hexane/EtOAc=1:1); m.p. 189.5-191.0 °C; $[\alpha]_D^{29} = -46.1$ (c=0.80, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.23$ (d, J = 7.3 Hz, 1H; 2'-NH). 6.48 (d, J=8.6 Hz, 1H; 2-NH), 4.53 (dq, J=6.9, 7.3 Hz, 1H; 2'-H), 4.39 (dd, J=4.6, 8.6 Hz, 1H; 2-H), 4.11 (dd, J=2.6, 6.6 Hz, 1H; 2"-H), 3.79(ddd, J=2.6, 6.6, 8.6 Hz, 1 H; 3"-H), 3.66 (d, J=6.6 Hz, 1 H; 2"-OH), 2.16(dqq, J=4.5, 6.6, 6.6 Hz, 1H; 3-H), 1.74-1.58 (complex m, 2H; 4"-H₂),1.51-1.33 (complex m, 4H; 5"-H₂, 6"-H₂), 1.47 (s, 9H; 1-OC(CH₃)₃), 1.46 $(d, J=6.9, 3H; 3'-H_3), 0.94 (t, J=6.9 Hz, 3H; 7''-H_3), 0.92 (d, J=6.6 Hz,$ 3 H; 3-(CH_3)₂), 0.90 ppm (d, J=6.6 Hz, 3 H; 3-(CH_3)₂); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 173.2$, 171.8, 170.4, 81.9, 73.4, 63.3, 57.8, 48.6, 31.1, 29.9, 28.3, 27.9 (3 C), 22.4, 18.8, 18.5, 17.6, 13.9 ppm; IR (KBr): \tilde{v} = 3369 (br, -NH), 3297 (br, -NH), 3103 (br, -OH), 2108 ($N = N^+ = N^-$), 1734 (C=O, ester), 1647 (C=O, amide), 1547, 1458, 1371, 1261, 1159, 1144 cm $^{-1}$; HRMS (FAB, NBA matrix): m/z calcd for $C_{19}H_{36}N_5O_5$: 414.2716 [*M*+H]; found: 414.2712 [*M*+H]⁺.

(2''R,3''R)-(+)-tert-Butyl- $\{N'$ -[2'',3''-(N''-o-nitrobenzenesulfonylimino)heptanoyl]-L-alanyl}-L-valinate (21): 10% Pd on carbon (25.8 mg, 24.2 µmol) was added to a solution of 53 (100 mg, 242 µmol) in EtOAc (2.42 mL) under H₂ at RT. After stirring for 8.5 h, the reaction solution was filtered through a Celite pad to remove the catalyst, and the pad was washed with EtOAc. The filtrate solution was evaporated to remove the solvent, the residue was dissolved in CH₂Cl₂ (4.84 mL), and then 2-nitrobenzenesulfonyl chloride (161 mg, 726 μmol), TEA (100 μL, 726 μmol), and DMAP (1.5 mg, 12.1 µmol) were added to the solution. After stirring for 11.5 h under argon at RT, the reaction solution was quenched with a saturated aqueous solution of NH₄Cl (3.0 mL), the organic layer was separated and the aqueous layer was extracted with CHCl₃ (10 mL×2). The combined organic extracts were washed with brine (5.0 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=2:1) gave 21 as a yellow oil (121 mg, 91 % in 2 steps). $R_f = 0.46$ (silica gel, hexane/EtOAc = 1:1); $[\alpha]_D^{25} = +3.9$ (c=0.87, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta =$ $8.19 - 8.15 \ (m, \ 1H; \ \textit{N''} - S(O_2) - \textit{Ph} - NO_2), \ 7.85 - 7.76 \ (m, \ 3H; \ \textit{N''} - S(O_2) - \textit{Ph} - NO_2) + (NO_2) - (NO_2)$ NO_2), 6.92 (d, J=7.6 Hz, 1H; 2'-NH), 6.38 (d, J=8.9 Hz, 1H; 2-NH), 4.44 (dq, J=7.3, 7.6 Hz, 1H; 2'-H), 4.36 (dd, J=4.3, 8.9 Hz, 1H; 2-H), 3.65 (d, J=7.6 Hz, 1H; 2"-H), 3.24 (ddd, J=5.9, 7.6, 7.6 Hz, 1H; 3"-H), 2.12 (dqq, J=4.3, 6.9, 6.9 Hz, 1 H; 3-H), 1.60–1.50 (complex m, 2 H; 4"- H_2), 1.45–1.35 (complex m, 2H; 5"- H_2), 1.45 (s, 9H; 1-OC(C H_3)₃), 1.39 (d, J=7.3, 3H; 3'-H₃), 1.31–1.20 (complex m, 2H; 6"-H₂), 0.87 (d, J=6.9 Hz, 3H; 3-(CH₃)₂), 0.86 (d, J=6.9 Hz, 3H; 3-(CH₃)₂), 0.81 ppm (t, J=6.9 Hz, 3H; 7"-H₃); ¹³C NMR (67.5 MHz, CDCl₃): δ =171.1, 170.5, 164.2, 148.6, 135.0, 132.3, 131.3, 130.9, 124.6, 81.9, 57.4, 48.8, 48.2, 44.5, 31.1, 28.8, 27.9 (3 C), 26.7, 21.8, 18.7, 17.8, 17.4, 13.6 ppm; IR (KBr): \tilde{v} =3317 (br, -NH), 1728 (C=O, ester), 1687 (C=O, amide), 1658 (C=O, amide), 1547 (NO₂), 1367 (NO₂), 1344 (N-SO₂), 1167 (N-SO₂), 960, 852, 781, 739, 602 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for C₂₅H₃₈N₄O₈SNa: 577.2308 [M+Na]; found: 577.2310 [M+Na]⁺.

(2''R,3''S)-(-)-tert-Butyl- $\{N'-[3''$ -azido-2''-(o-nitrobenzenesulfonamido)heptanoyl]-L-alanyl}-L-valinate (54): NaN₃ (33.4 mg, 428 µmol) was added to a solution of 21 (142 mg, 257 µmol) in DMF (2.57 mL) under Ar at 0°C. After stirring for 30 min, the reaction solution was warmed to RT and stirred for 2 h. The mixture was diluted with EtOAc (5.0 mL), H2O (5.0 mL) was added, and the organic layer was separated. The aqueous layer was extracted with EtOAc (10 mL). The combined organic extracts were washed with H₂O (10.0 mL×3) and brine (10 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=3:1) gave 54 as a white solid (140 mg, 91%). $R_f = 0.47$ (silica gel, hexane/EtOAc=1:1); m.p. 153–157 °C; $[\alpha]_D^{27} = -31.2$ (c = 1.70, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 8.11$ (m, 1H; N"-S(O₂)-Ph-NO₂), 7.91 (m, 1H; N"-S(O₂)-Ph- NO_2), 7.75 (complex m, 2H; N"-S(O₂)-Ph-NO₂), 7.04 (d, J=7.3 Hz, 1H; 2'-NH), 6.37 (d, J=8.3 Hz, 1H; 2-NH), 4.38 (dd, J=4.3, 8.3 Hz, 1H; 2-H), 4.38 (dq, J = 6.9, 7.3 Hz, 1 H; 2'-H), 4.13 (ddd, J = 2.6, 6.0, 7.6 Hz, 1 H; 3"-H), 4.04 (d, J=2.6 Hz, 1 H; 2"-H), 2.14 (dqq, J=4.3, 6.9, 7.3 Hz, 1 H; 3-H), 1.69-1.56 (complex m, 2H; 4"-H2), 1.48-1.32 (complex m, 2H; 5"-H₂), 1.46 (s, 9H; 1-OC(CH₃)₃), 1.32-1.10 (complex m, 2H; 6"-H₂), 1.24 (d, J = 6.9 Hz, 3H; 3'-H₃), 0.89 (d, J = 6.9 Hz, 3H; 3-(C H_3)₂), 0.88 (d, J =6.9 Hz, 3H; 3-(CH_3)₂), 0.82 ppm (t, J=7.3 Hz, 3H; 7"- H_3); ¹³C NMR $(67.5 \text{ MHz}, \text{ CDCl}_3): \delta = 171.1, 170.5, 168.1, 147.7, 133.9, 133.5, 132.9,$ 130.7, 125.3, 81.9, 63.4, 59.7, 57.5, 49.1, 31.1, 30.7, 27.9 (3 C), 27.9, 22.2, 18.6, 18.0, 17.4, 13.6 ppm; IR (KBr): $\tilde{v} = 3373$ (br, -NH), 3315 (br, -NH), 2108 (N=N+=N-), 1728 (C=O, ester), 1649 (C=O, amide), 1543 (NO₂), 1454, 1362 (N-SO₂), 1163 (N-SO₂), 847, 789, 741, 588 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for C25H39N7O8SNa: 620.2479 [M+Na]; found: 620.2503 $[M+Na]^+$.

(2''R,3''S)-(+)-tert-Butyl- $\{N'$ -[3''-amino-2''-(o-nitrobenzenesulfonamido)heptanoyl]-L-alanyl}-L-valinate (22): H₂O (30.4 µL, 1.69 mmol) and PPh₃ (66.5 mg, 0.253 mmol) were added to a solution of **54** (101 mg, 169 μmol) in THF (1.70 mL) at RT. After stirring for 20 h at 45 °C, the reaction solution was cooled to RT. Then the solution was evaporated under reduced pressure to remove the solvent. Purification by flash chromatography on silica gel (CHCl₃/MeOH=50:1) gave 22 as a yellow powder (82.5 mg, 85%). $R_f = 0.31$ (silica gel, CHCl₃/MeOH = 10:1); $[\alpha]_D^{29} = +1.66$ (c=0.84, MeOH); 1 H NMR (270 MHz, CD₃OD): δ = 7.94 (m, 1H; N''-S(O₂)-Ph-NO₂), 7.70-7.58 (complex m, 3H; N"-S(O₂)-Ph-NO₂), 4.12 (q, J=7.3 Hz, 1 H; 2'-H), 4.05 (d, J=5.9 Hz, 1 H; 2-H), 3.85 (d, J=3.3 Hz,1 H; 2"-H), 3.15 (dt, J=3.3, 6.9 Hz, 1 H; 3"-H), 2.01 (m, 1 H; J=6.9 Hz, 3-H), 1.64-1.42 (m, 1H; 4"-H₂), 1.39-1.12 (complex m, 5H; 4"-H₂, 5"-H₂, 6"-H₂), 1.37 (s, 9H; 1-OC(CH_3)₃), 1.12 (d, J=7.3 Hz, 3H; 3'-H₃), 0.86 (d, $J=6.9 \text{ Hz}, 6 \text{ H}; 3-(\text{C}H_3)_2), 0.79 \text{ ppm } (\text{t}, J=6.9 \text{ Hz}, 3 \text{ H}; 7"-\text{H}_3); {}^{13}\text{C NMR}$ (67.5 MHz, CD₃OD): $\delta = 175.0$, 173.9, 172.1, 149.2, 137.0, 133.9, 133.2, 131.2, 125.3, 82.8, 61.5, 60.1, 55.6, 50.3, 32.5, 31.7, 28.8, 28.3 (3 C), 23.5, 19.5, 18.5, 18.1, 14.2 ppm; IR (KBr): $\tilde{\nu}$ =3375 (-NH), 3321 (-NH), 1730 (C=O, ester), 1655 (C=O, amide), 1541 (NO_2) , 1456, 1369 $(N-SO_2)$, 1165 (N-SO₂), 850, 787, 737, 658 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{25}H_{41}N_5O_8SNa$: 594.2574 [M+Na]; found: 594.2568 [M+Na]⁺.

(2"R,3"S,2"R)-(-)-tert-Butyl-{N'-[3"-(2"'-bromopropanamido})-2"-(o-nitrobenzenesulfonamido)heptanoyl]-L-alanyl}-L-valinate (55): Compound (R)-10 (19.0 μ L, 211 μ mol), HOBt (32.4 mg, 239 μ mol), and EDCI (40.5 mg, 211 μ mol) were added to a solution of 22 (80.5 mg, 141 μ mol) in CH₂Cl₂ (1.40 mL) under argon at 0°C. After stirring for 1 h, H₂O (1.0 mL) was added to the reaction and the organic layer was separated. The aqueous layer was extracted with CHCl₃ (10 mL×3). The combined organic extracts were washed with H₂O (5.0 mL) and brine (5.0 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (CHCl₃/MeOH=100:1)

gave 55 as a yellow powder (90.5 mg, 91 %). R_f =0.49 (silica gel, CHCl₃/ MeOH=10:1); $[\alpha]_D^{26} = -21.0$ (c=0.47, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 8.12$ (m, 1H; N"-S(O₂)-Ph-NO₂), 7.85 (m, 1H; N"-S(O₂)-Ph- NO_2), 7.77–7.64 (complex m, 2H; N"-S(O_2)-Ph-NO₂), 7.15 (d, J=6.9 Hz, 1 H; 2'-NH), 7.00 (d, J=8.2 Hz, 1H; 3"-NH), 6.38 (d, J=8.6 Hz, 1H; 2-NH), 4.37 (q, J=7.3 Hz, 1H; 2'-H), 4.36 (q, J=6.9 Hz, 1H; 2"'-H), 4.34 (dd, J=4.6, 8.6 Hz, 1H; 2-H), 4.21 (d, J=4.3 Hz, 1H; 2"-H), 4.05 (ddd, J=4.6, 8.6 Hz, 1H; 2-H), 4.05J=4.3, 8.2, 8.9 Hz, 1 H; 3"-H), 2.11 (dq, J=4.6, 6.9 Hz, 1 H; 3-H), 1.95-1.60 (complex m, 2H; 4"-H₂), 1.80 (d, J=8.2 Hz, 3H; 3"'-H₃), 1.45 (s, 9H; 1-OC(C H_3)₃), 1.30–1.13 (complex m, 4H; 5"-H₂, 6"-H₂), 1.23 (d, J=7.3 Hz, 3H; 3'-H₃), 0.87 (d, J = 6.9 Hz, 3H; 3-(C H_3)₂), 0.86 (d, J = 6.9 Hz, 3H; 3-(CH_3)₂), 0.77 ppm (t, J = 6.6 Hz, 3H; 7"- H_3); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 171.5$, 170.8, 170.5, 169.2, 147.6, 133.7, 133.7, 133.0, 131.2, 124.9, 82.0, 61.2, 57.6, 52.4, 49.1, 43.9, 31.0, 29.8, 28.0, 28.0 (3 C), 22.2, 22.1, 18.8, 18.7, 17.7, 13.8 ppm; IR (KBr): $\tilde{v} = 3315$ (-NH), 1730 (C=O, ester), 1662 (C=O, amide), 1541 (NO₂), 1454, 1363 (N-SO₂), 1163 (N-SO₂), 785, 739, 586 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{28}H_{45}N_5O_9SBr: 706.2121 [M+H];$ found: 706.2135 [M+H]⁺.

 $(3S, 5R, 6S) - (-) - 6 - Butyl - 5 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - valinyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - L - alanyl) carbonyl - 3 - (O^1 - tert - butyl - b$ methyl-2-piperazinone (23): DIPEA (37.0 µL, 428 µmol) was added to a solution of $55\ (75.0\ mg,\ 106\ \mu mol)$ in MeCN (2.12 mL) under argon at RT. After stirring for 19 h at 60 °C, the reaction solution was cooled to RT. Then thiophenol (16.3 μL, 159 μmol) and DIPEA (27.7 μL, 159 µmol) were added and the solution was stirred for 21 h at RT. The solution was then evaporated under reduced pressure to remove the solvent. Purification by flash chromatography on silica gel (CHCl₃/MeOH= 60:1) gave 23 as a colorless oil (40.4 mg, 100%). $R_f = 0.27$ (silica gel, CHCl₃/MeOH = 10:1); $[\alpha]_D^{29} = -40.5$ (c = 0.86, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89$ (d, J = 8.0 Hz, 1H; 2'-NH), 6.97 (d, J =8.8 Hz, 1H; 2"-NH), 6.45 (d, J=2.5 Hz, 1H; 1-H), 4.59 (dq, J=6.8, 8.0 Hz, 1H; 2'-H), 4.38 (dd, J=4.6, 8.8 Hz, 1H; 2"-H), 3.87 (dddd, J= 2.5, 4.8, 5.0, 8.3 Hz, 1H; 6-H), 3.41 (q, J=7.0 Hz, 1H; 3-H), 3.36 (d, J=4.8 Hz, 1 H; 5 -H), 2.11 (dqq, J=4.6, 7.8, 7.8 Hz, 1 H; 3"-H), 1.73-1.64 (m,1H; 6-CH₂CH₂CH₂CH₃), 1.61–1.52 (m, 1H; 6-CH₂CH₂CH₂CH₃), 1.44 (s, 9H; 1"-OC(CH₃)₃), 1.41–1.25 (complex m, 4H; 6-CH₂CH₂CH₂CH₃), 1.37 (d, J=7.0 Hz, 3H; 3-CH₃), 1.34 (d, J=6.8 Hz, 3H; 3'-H₃), 0.88 (d, J=7.8 Hz, 3H; 3"-(CH_3)₂), 0.88 (t, J=7.0 Hz, 3H; 6- $CH_2CH_2CH_2CH_3$), 0.86 ppm (d, J=7.8 Hz, 3H; 3"-(C H_3)₂); ¹³C NMR (75.0 MHz, CDCl₃): δ = 172.8 (C-2), 171.9 (C-1'), 170.9 (C-1"), 170.3 (5-CO-), 81.9 (1"-OCH-(CH₃)₃), 57.5 (C-2"), 56.9 (C-5), 52.1 (C-6), 50.1 (C-3), 48.6 (C-2"), 35.1 (1 C, 6-CH₂CH₂CH₂CH₃), 31.1 (C-3"), 28.0 (1"-OC(CH₃)₃), 27.4 (1 C, 6-CH₂CH₂CH₂CH₃), 22.4 (1 C, 6-CH₂CH₂CH₂CH₃), 18.8 (1 C, 3"-(CH₃)₂), 18.5 (C-3'), 17.8 (1 C, 3-CH₃), 17.6 (1 C, 3"-(CH₃)₂), 13.9 ppm (1 C, 6- $CH_2CH_2CH_2CH_3$); IR (KBr) $\tilde{v}=3662$, 3288 (-NH), 1730 (C=O, ester), 1655 (C=O, amide), 1545, 1466, 1379, 1155, 935, 841, 627 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{22}H_{40}N_4O_5Na$: 463.2896 [M+Na]; found: $463.2896 [M+Na]^+$.

(3S,5R,6S)-(-)-6-Butyl-3-methyl-5-(L-valinyl-L-alanyl)carbonyl-2-piperazinone (7): After dissolving 23 (45.8 mg, 104 µmol) in a solution of TFA/ H₂O (3:1) (2.08 mL), the reaction solution was stirred for 3 h at RT. The solution was diluted with H₂O (3.0 mL), and evaporated under reduced pressure to remove the solvent. Purification by flash chromatography on silica gel (CHCl₃/MeOH=10:1) gave 7 as a white powder (40.4 mg, 100 %). R_f = 0.12 (silica gel, CHCl₃/MeOH = 10:1); $[\alpha]_D^{24}$ = -35.2 (c = 1.50, MeOH); ¹H NMR (400 MHz, 1% TFA in D_2O): $\delta = 4.35$ (q, J = 7.0 Hz, 1H; 2'-H), 4.17 (q, J=7.2 Hz, 1H; 3-H), 4.16 (d, J=6.0 Hz, 1H; 2"-H), 4.02 (d, J=9.0 Hz, 1H; 5-H), 3.81 (ddd, J=4.5, 6.5, 9.0 Hz, 1H; 6-H), 2.09 (dq, J=6.0, 6.9 Hz, 1H; 3"-H), 1.65–1.58 (m, 1H; 6- $CH_2CH_2CH_2CH_3$), 1.56–1.49 (m, 1H; 6- $CH_2CH_2CH_2CH_3$), 1.51 (d, J=7.0 Hz, 3 H; 3-C H_3), 1.33 (d, J=7.0 Hz, 3 H; 3'-H₃), 1.28–1.17 (complex m, 4H; 6-CH₂CH₂CH₂CH₃), 0.86 (d, J = 6.9 Hz, 3H; 3"-(CH₃)₂), 0.85 (d, J=6.9 Hz, 3H; 3"-(CH₃)₂), 0.84 ppm (t, J=7.0 Hz, 3H; 6-CH₂CH₂CH₂CH₃); ¹³C NMR (100 MHz, 1% TFA in D₂O), reference 0-200 ppm. $\delta = 177.7$ (C-1"), 177.2 (C-1'), 171.4 (C-2), 168.5 (5-CO-), 61.2 (C-2"), 56.8 (C-5), 54.3 (C-3), 53.7 (C-6), 52.5 (C-2"), 33.4 (1C, 6-CH₂CH₂CH₂CH₃), 32.4 (C-3"), 28.1 (1 C, 6-CH₂CH₂CH₂CH₃), 24.2 (1 C, 6-CH₂CH₂CH₂CH₃), 20.9 (1 C, 3"-(CH₃)₂), 19.9 (1 C, 3"-(CH₃)₂), 19.3 (C-3'), 17.2 (1 C, 3-CH₃), 15.6 ppm (1 C, 6-CH₂CH₂CH₂CH₃); IR (KBr): \tilde{v} = 3435 (br, -NH), 1672 (C=O, amide), 1566, 1196, 1142, 723 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{18}H_{33}N_4O_5$: 385.2451 [M+H]; found: 385.2436 [M+H]+.

(2R,3S)-(-)-Ethyl-2,3-epoxyheptanate (24): NaH (55 wt % in mineral oil, 446 mg, 11.1 mmol) was added to a solution of **17** (3.30 g, 10.1 mmol) in EtOH (50.5 mL) at 0 °C. After stirring for 20 min, a saturated aqueous solution of NH₄Cl (30 mL) and CH₂Cl₂ (100 mL) was added to the reaction mixture. The organic layer was separated, and the aqueous layer was extracted with CH2Cl2 (100 mL×2), dried over Na2SO4, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=5:1) gave a mixture of trans-epoxide 24 and cis-epoxide (5.4:1) as a colorless oil (1.70 g, 98%). R_f =0.56 (silica gel, hexane/EtOAc=2:1); $[\alpha]_D^{27} = -18.3$ (c=1.00, CHCl₃), as a mixture; ¹H NMR (270 MHz, CDCl₃), major isomer **24** is reported $\delta = 4.23$ (dq, J=3.3, 7.3 Hz, 2H; 1-OC H_2 CH₃), 3.20 (d, J=2.0 Hz, 1H; 2-H), 3.15 (ddd, J=2.0, 5.0, 5.9 Hz, 1H; 3-H), 1.70–1.54 (complex m, 2H; 4-H₂), 1.49–1.35 (complex m, 2H; 5-H₂, 6-H₂), 1.30 (t, J = 7.3 Hz, 3H; 1- OCH_2CH_3), 0.92 ppm (t, J=6.9 Hz, 3H; 7-H₃); ¹³C NMR (67.5 MHz, CDCl₃), major isomer **24** is reported $\delta = 169.3$, 61.4, 58.4, 53.0, 31.1, 27.7, 22.3, 14.0, 13.8 ppm; IR (NaCl): $\tilde{v} = 1753$ (C=O, ester), 1446, 1284 (C-O, epoxide), 1196, 1036, 906 cm⁻¹; MS (FAB, EI): could not be observed.

A mixture of (2S,3S)-ethyl-2-azido-3-hydroxyheptanate and (2R,3R)ethyl-3-azido-2-hydroxyheptanate (56): NH₄Cl (792 mg, 14.8 mmol) and NaN₃ (963 mg, 14.8 mmol) were added to a solution of 24 and cis-epoxide mixture (1.70 g, 9.87 mmol) in 1,4-dioxane/H₂O (1:1) (66.0 mL) at RT and warmed to 60°C. After stirring for 40 h, the reaction mixture was cooled to RT, diluted with CHCl₃ (100 mL), and the organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=5:1) gave a mixture of 56 as a colorless oil (478 mg, 55%). $R_f = 0.39$ (hexane/EtOAc = 3:1); ¹H NMR (270 MHz, CDCl₃): as a mixture of four compounds $\delta = 4.36-4.10$ (complex m, 2H; 1-OC H_2 CH₃), 3.97-3.88 (complex m, 1H; 2-H), 3.58-3.45 (complex m, 1H; 3-H), 3.07 (brs, 1H; -OH), 1.90-1.65 (complex m, 1H; 4-H₂), 1.56-1.23 (complex m, 5H; 4-H₂, 5-H₂, 6-H₂), 1.37-1.27 (complex m, 3H; 1-OCH₂CH₃), 0.98-0.86 ppm (complex m, 3H; 7-H₃); ¹³C NMR (67.5 MHz, CDCl₃): two major isomers were indicated. $\delta = 171.9$ and 168.8, 73.3 and 71.7, 66.1 and 64.2, 61.9 and 61.7, 32.4 and 29.3, 28.2 and 27.3, 22.2 and 22.0, 13.8, 13.6 and 13.5 ppm; IR (NaCl) $\tilde{v} = 3483$ (br, -OH), 2109 (-N=N⁺=N⁻), 1739 (-C=O, ester), 1468, 1371, 1265, 1203, 1130, 1095, 1026, 862 cm⁻¹; HRMS (FAB, NBA matrix): m/z: calcd for $C_9H_{17}N_3O_3Na$: 238.1168 [M+Na]; found: 238.1161 [M+Na]+.

(2.5,3.R)-Ethyl-2,3-iminoheptanate (2.5): PPh₃ (1.49 g, 5.70 mmol) was added to a solution of 56 (943 mg, 4.38 mmol) in MeCN (21.9 mL) under argon at RT. After stirring for 30 min, the reaction solution was warmed to 80°C and stirred for 1.5 h. Then the solution was cooled to RT and evaporated under reduced pressure to remove the solvent. Purification by flash chromatography on silica gel (hexane/EtOAc=5:1) gave 25 (667.6 mg, 89%) and cis-aziridine 57 (75 mg, 10%) as colorless oils. 25: $R_f = 0.46$ (silica gel, hexane/EtOAc=3:1); $[\alpha]_D^{25} = +73.8$ (c = 0.50, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 4.22$ (dq, J = 3.2, 7.3 Hz, 2H; 1- OCH_2CH_3), 2.26 (d, J=2.3 Hz, 1H; 2-H), 2.21 (m, 1H; 3-H), 1.44–1.32 (complex m, 6H; 4-H₂, 5-H₂, 6-H₂), 1.29 (t, J = 7.3 Hz, 3H; 1-OCH₂CH₃), 0.90 ppm (t, J = 7.3 Hz, 3H; 7-H₃); 13 C NMR (67.5 MHz, CDCl₃): $\delta =$ 172.4, 61.0, 39.2, 35.0, 32.1, 29.0, 22.1, 13.9, 13.6 ppm; IR (NaCl): $\tilde{\nu} = 3288$ (br, -NH), 1728 (C=O, ester), 1468, 1431, 1373, 1342, 1209, 1036, 845 cm $^{-1}$; HRMS (FAB, NBA matrix): m/z calcd for C₉H₁₈NO₂ 172.1338 [M+H]; found: 172.1336 [M+H]⁺. 57: R_f =0.25 (silica gel, hexane/ EtOAc=3:1); $[\alpha]_D^{23} = -47.6$ (c=1.41, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 4.22$ (q, J = 7.3 Hz, 2H; 1-OCH₂CH₃), 2.63 (brd, J = 5.9 Hz, 1H; 2-H), 2.21 (brm, 1H; 3-H), 1.24–1.67 (complex m, 6H; 4-H₂, 5-H₂, 6-H₂), 1.30 (t, J = 7.3 Hz, 3H; 1-OCH₂CH₃), 0.89 ppm (t, J = 6.6 Hz, 3H; 7-H₃); ¹³C NMR (67.5 MHz, CDCl₃): δ = 170.8, 61.1, 38.7, 34.5, 29.8, 27.4, 22.2, 14.1, 13.8 ppm; IR (NaCl): $\tilde{v} = 3267$ (br, NH), 1727 (C=O), 1466, 1408, 1383, 1198, 1034, 827 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_9H_{18}NO_2$: 172.1338 [M+H]; found: 172.1336 [M+H]⁺.

(2*R***,3***R***)-Ethyl-3-amino-2-azidoheptanate (26) and (2***S***,3***S***)-ethyl-2-amino-3-azidoheptanate (27): TEA (1.63 mL, 11.7 mmol), 2-nitrobenz-enesulfonyl chloride (1.29 g, 5.84 mmol), and DMAP (47.5 mg, 389 μmol)**

were added to a solution of 25 (666 mg, 3.89 mmol) in CH₂Cl₂ (38.9 mL) at RT under argon. After stirring for 20 h, the reaction was quenched with a saturated aqueous solution of NH₄Cl (10 mL), the organic layer was separated and aqueous layer was extracted with CHCl₃ (30 mL×3). The combined organic extracts were dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was roughly purified with silica gel (hexane/EtOAc=5:1) to provide the residue of Ns-aziridine. The residue was dissolved in DMF (38.9 mL), and then NaN₃ (506 mg, 7.78 mmol) was added to the solution at 0 °C under argon, and then the reaction mixture was warmed to RT. After stirring for 30 min, the solution was diluted with EtOAc (40 mL), H2O (20 mL) was added, and the organic layer was separated. The organic extracts were washed with brine (10.0 mL×3), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to provide a mixture of azido-Ns-amine. The azido-Ns-amine residue was dissolved in MeCN (38.9 mL), and then thiophenol (999 μL, 9.73 mmol), and DIPEA (1.69 mL, 9.73 mmol) were added to the solution at RT under argon. After stirring for 2.5 h, a saturated aqueous solution of NaHCO3 (10 mL) was added to the reaction mixture. Then the mixture was extracted with CHCl₃ (30 mL×3). The organic extracts were dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=1:1) gave 26 (385 mg, 53% in 3 steps) and 27 (101.7 mg, 14% in 3 steps) as colorless oils. **26**; R_f =0.24 (hexane/ EtOAc=2:1); $[\alpha]_D^{24} = +60.3$ (c=0.50, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 4.25$ (dq, J = 1.3, 7.3 Hz, 2H; 1-OC H_2 CH₃), 3.86 (d, J =5.3 Hz, 1 H; 2 -H), 3.08 (ddd, J = 1.6, 5.3, 8.9 Hz, 1 H; 3 -H), 1.54 - 1.42(complex m, 2H; 4-H₂), 1.37-1.23 (complex m, 4H; 5-H₂, 6-H₂), 1.30 (t, J=7.3 Hz, 3H; 1-OCH₂CH₃), 0.88 ppm (t, J=7.0 Hz, 3H; 7-H₃); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 169.0$, 67.9, 61.7, 53.1, 33.0, 28.1, 22.5, 14.1, 13.9 ppm; IR (NaCl): $\tilde{\nu} = 2108$ (N=N⁺=N⁻), 1739 (C=O, ester), 1466, 1265, 1194, 1028, 854 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_9H_{19}N_4O_2$ 215.1508 [M+H]; found: 215.1508 [M+H]⁺. 27; R_f =0.35 (hexane/EtOAc=2:1); $[\alpha]_D^{30}$ -23.5 (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 4.23$ (dq, J = 3.3, 6.9 Hz, 2H; 1-OC H_2 CH₃), 3.61 (d, J =4.6 Hz, 1 H; 2 -H), 3.52 (ddd, J = 4.6, 7.6, 8.9 Hz, 1 H; 3 -H), 1.80 - 1.50(complex m, 2H; 4-H₂), 1.51-1.25 (complex m, 4H; 5-H₂, 6-H₂), 1.30 (t, $J=6.9 \text{ Hz}, 3 \text{ H}; 1-\text{OCH}_2\text{C}H_3), 0.92 \text{ ppm} (t, J=6.9 \text{ Hz}, 3 \text{ H}; 7-\text{H}_3);$ ¹³C NMR (67.5 MHz, CDCl₃): δ = 171.2, 64.0, 61.8, 57.4, 29.8, 28.3, 22.3, 14.1, 13.8 ppm; IR (NaCl): $\tilde{v} = 3302$ (br, -NH), 2106 (N=N⁺=N⁻), 1739 (C=O, ester), 1514, 1468, 1369, 1257, 1234, 1028, 861 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_9H_{19}N_4O_2$: 215.1508 [M+H]; found: 215.1515 [M+H]+.

(2R,3R,2'S)-(+)-Ethyl-2-azido-3-(2'-bromopropanamido)heptanate (58): Compound (S)-10 (85.7 µL, 953 µmol), PyBOP (496 mg, 953 µmol), and DIPEA (204 μL, 1.19 mmol) were added to a solution of 26 (88.7 mg, 476 μmol) in CH₂Cl₂ (4.80 mL) at RT under argon. After stirring for 80 min, a saturated aqueous solution of NH₄Cl (3.0 mL) was added to the reaction solution. The organic layer was separated, then the aqueous layer was extracted with CH₂Cl₂ (10 mL×3). The combined organic extracts were dried over Na2SO4, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc= 5:1) gave **58** as a yellow powder (156 mg, 94%). $R_f = 0.44$ (hexane/ EtOAc=3:1); $[\alpha]_{D}^{30} = +61.3$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): δ = 6.51 (d, J = 8.3 Hz, 1 H; 3-NH-CO-), 4.42 (q, J = 7.3 Hz, 1 H; 2'-H), 4.37 (m, 1H; 3-H), 4.30 (dq, J = 1.0, 6.9 Hz, 2H; 1-OC H_2 CH₃), 4.24 $(d, J=4.0 \text{ Hz}, 1\text{ H}; 2\text{-H}), 1.90 (d, J=6.9 \text{ Hz}, 3\text{ H}; 3'\text{-H}_3), 1.56-1.43 (com$ plex m, 2H; 4-H₂), 1.37–1.20 (complex m, 4H; 5-H₂, 6-H₂), 1.34 (t, J =7.3 Hz, 3H; 1-OCH₂CH₃), 0.88 ppm (3H; t, J=6.9, 7-H₃); ¹³C NMR $(67.5 \text{ MHz}, \text{CDCl}_3)$: $\delta = 169.3, 168.2, 64.4, 62.2, 50.8, 44.7, 29.6, 27.8, 22.9,$ 22.1, 14.1, 13.7 ppm; IR (NaCl): $\tilde{\nu} = 3300$ (br, -NH), 2112 (N=N⁺=N⁻), 1743 (C=O, ester), 1658 (C=O, amide), 1541, 1446, 1373, 1269, 1246, 1196, 1026 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{12}H_{22}N_4O_3Br: 349.0875 [M+H];$ found: 349.0890 [M+H]⁺.

(3R,5R,6R)-(+)-6-Butyl-5-ethoxycarbonyl-3-methyl-2-piperazinone (28): PPh₃ (308 mg, 1.17 mmol) and TEA (164 μ L, 1.17 mmol) were added to a solution of 58 (129 mg, 369 μ mol) in MeCN (7.37 mL) under argon at RT. After stirring for 1 h, H₂O (730 μ L) was added to the reaction solution, it was warmed to 60 °C, and stirred for 1.5 h. Then the solution was cooled to RT and evaporated under reduced pressure to remove the solvent. Pu-

rification by flash chromatography on silica gel (CHCl₃) gave 28 as a colorless oil (65.0 mg, 73%). $R_f = 0.37$ (CHCl₃/MeOH = 10:1); $[\alpha]_D^{30} = +92.9$ $(c = 0.50, \text{CHCl}_3)$; ¹H NMR (400 MHz, 1 % TFA in D₂O): $\delta = 4.22$ (q, J =7.0 Hz, 2H; 5-CO-O-C H_2 CH₃), 4.03 (d, J=4.2 Hz, 1H; 5-H), 3.72 (ddd, J=3.5, 4.2, 10.3 Hz, 1H; 6-H), 3.53 (q, J=6.9 Hz, 1H; 3-H), 1.56 (m, 1H; 6-C H_2 C H_2 C H_2 C H_3), 1.36 (m, 1H; 6-C H_2 C H_2 C H_2 C H_3), 1.31 (d, J =6.9 Hz, 3H; 3-CH₃), 1.31–1.21 (complex m, 4H; 6-CH₂CH₂CH₂CH₃), 1.25 (t, J=7.0 Hz, 3H; 5-CO-O-CH₂CH₃), 0.83 ppm (t, J=7.0 Hz, 3H; 6-CH₂CH₂CH₂CH₃); ¹³C NMR (100 MHz, D₂O with TFA): δ = 175.1 (C-2), 171.5 (1C, 5-CO-O-CH₂CH₃), 62.7 (1C, 5-CO-O-CH₂CH₃), 57.6 (C-5), 52.7 (C-3), 52.6 (C-6), 30.9 (1 C, 6-CH₂CH₂CH₂CH₃), 27.3 (1 C, 6-CH₂CH₂CH₂CH₃), 21.9 (1 C, 6-CH₂CH₂CH₂CH₃), 16.9 (1 C, 3-CH₃), 13.4 $(1\,C,\,5\text{-CO-O-CH}_2CH_3),\,\,13.2\,ppm\,\,\,(1\,C,\,6\text{-CH}_2CH_2CH_2CH_3);\,\,IR\,\,\,(NaCl):$ $\tilde{v} = 3330$ (br, -NH), 3207 (br, -NH), 1739 (C=O, ester), 1668 (C=O, amide), 1468, 1371, 1329, 1217, 1176, 1041, 1020, 856, 771, 719 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{12}H_{23}N_2O_3$: 243.1709 [M+H]; found: 243.1707 [M+H]+.

(3R, 5R, 6R)-(+)-4-tert-Butoxycarbonyl-6-butyl-5-ethoxycarbonyl-3methyl-2-piperazinone (29): Di-tert-butyl dicarbonate (385 mg, 1.76 mmol) was added to a solution of 28 (85.3 mg, 352 µmol) in EtOAc (3.50 mL) at RT under argon. After stirring for 20 min at 80 °C, the reaction solution was cooled to RT. Then brine (2.0 mL) was added to the reaction mixture, the organic layer was then separated, and the aqueous layer was extracted with CHCl₃ (10 mL×2). The combined organic extracts were dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/ EtOAc=2:1) gave **29** as a yellow powder (88.5 mg, 73%). R_f =0.35 (hexane/EtOAc=1:1); $[\alpha]_D^{30} = +13.7$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): as two rotamers. $\delta = 5.73$ (brs, 1H; 1-H), 5.04 (brd, J = 3.3 Hz, 2/3 H; 5-H), 4.78 (br s, 1/3 H; 5-H), 4.42 (q, J = 6.6 Hz, 1 H; 3-Hz)H), 4.20 (q, J=7.3 Hz, 4/3H; 5-CO-O-C H_2 C H_3), 4.19 (q, J=7.3 Hz, 2/33H; 5-CO-O-CH₂CH₃), 3.66 (m, 1H; 6-H), 1.75–1.49 (complex m, 2H; 6- $CH_2CH_2CH_2CH_3$), 1.59 (br d, J = 6.6 Hz, 3H; 3- CH_3), 1.49 (s, 9H; 4-CO- $OC(CH_3)_3$, 1.46–1.36 (complex m, 4H; 6-CH₂CH₂CH₂CH₃), 1.28 (t, J =7.3 Hz, 3H; 5-CO-O-CH₂CH₃), 0.92 ppm (t, J=6.6 Hz, 3H; 6- $CH_2CH_2CH_2CH_3$); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 171.1$, 168.8, 154.0, 81.3, 61.0, 54.0, 52.4, 31.4, 28.2 (3 C), 27.5, 22.3, 18.2, 14.0, 13.7 ppm; IR (NaCl): $\tilde{v} = 3203$ (br, -NH), 3087 (br, -NH), 1747 (C=O, ester), 1695 (C=O, urethane), 1682 (C=O, amide), 1456, 1369, 1327, 1257, 1186, 1169, 1130, 1028, 935, 816, 769 cm⁻¹; HRMS (FAB, NBA matrix): *m/z* calcd for $C_{17}H_{31}N_2O_5$: 343.2233 [M+H]; found: 343.2232 [M+H]⁺.

(3R,5R,6R)-(+)-4-tert-Butoxycarbonyl-6-butyl-5- $(O^1$ -tert-butyl-L-valinyl-L-analyl)-carbonyl-3-methyl-2-piperazinone (30): Lithium hydroxide (10.5 mg, 438 μ mol) was added to a solution of 29 (15.0 mg, 43.8 μ mol) in MeOH/THF/ H_2O (2:2:1) (880 μL) at RT. After stirring for 85 min, a saturated aqueous solution of NH₄Cl (1.0 mL) was added to the reaction mixture, which was then extracted with CHCl3 (5.0 mL×3). The combined organic extracts were dried over Na2SO4, filtered, and evaporated under reduced pressure. The crude product was used in the next reaction without further purification. The residue was dissolved in CH2Cl2 $(880 \, \mu L)$ and then **19** $(12.8 \, mg, \, 52.6 \, \mu mol)$, DIPEA $(11.2 \, \mu L, \, 65.7 \, \mu mol)$, and PyBOP (27.4 mg, 52.6 µmol) were added at RT under Ar. After stirring for 1 h, the reaction solution was quenched with a saturated aqueous solution of NH₄Cl (1.0 mL), the organic layer was separated, and the aqueous layer was extracted with CHCl3 (10 mL×2). The combined organic extracts were dried over Na2SO4, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (CHCl₃/MeOH = 50:1) gave 30 as a colorless oil (15.9 mg, 67% in 2 steps). $R_f = 0.47$ (silica gel, CHCl₃/MeOH = 10:1); $[\alpha]_D^{24} = +29.1$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 6.96$ (d, J = 7.3 Hz, 1 H; 2'-NH), 6.50 (d, J=8.9 Hz, 1H; 2"-NH), 6.14 (s, 1H; 1-H), 4.69 (d, J=3.6 Hz, 1H; 5-H), 4.48 (q, J = 7.3 Hz, 1H; 3-H), 4.46–4.38 (m, 1H; 2'-H), 4.41 (dd, J=4.6, 8.9 Hz, 1H; 2"-H), 3.62 (ddd, J=3.6, 6.9, 6.9 Hz, 1H; 6-H),2.13 (dqq, J=4.6, 6.6, 6.6 Hz, 1H; 3"-H), 1.82–1.65 (complex m, 2H; 6-CH₂CH₂CH₂CH₃), 1.50-1.24 (complex m, 4H; 6-CH₂CH₂CH₂CH₃), 1.50 (s, 9H; 4-CO-OC(C H_3)₃), 1.45 (s, 9H; 1"-OCH(C H_3)₃), 1.44 (d, J=6.9 Hz, 3H; 3-C H_3), 1.36 (d, J=6.9 Hz, 3H; 3'- H_3), 0.90 (t, J=7.0 Hz, 3H; 6-CH₂CH₂CH₂CH₃), 0.87, 0.84 ppm (d, J = 6.6 Hz, each 3H; 3"- $(CH_3)_2$); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 171.4$, 170.8, 170.2, 168.1,

154.4, 82.0, 81.9, 57.3, 53.5, 53.2, 52.4, 48.6, 31.2, 31.1, 28.3, 28.0, 27.9, 22.4, 18.9, 17.4, 18.6, 18.1, 13.8 ppm; IR (NaCl): \bar{v} =3315 (br, -NH), 1734 (C=O, ester), 1672 (C=O, amide, urethane), 1535, 1458, 1369, 1331, 1255, 1165, 1132, 1018, 849, 756 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{27}H_{48}N_4O_7Na$: 563.3421 [M+Na]; found: 563.3420 [M+Na]⁺.

(3R.5R.6R)-(+)-6-Butyl-5-(L-valinyl-L-alanyl)carbonyl-3-methyl-2-piperazinone (8): After dissolving 30 (15.9 mg, 29.4 µmol) in a solution of TFA/H₂O (3:1) (980 uL), the reaction solution was stirred for 2.5 h at RT. The solution was diluted with H₂O (1.0 mL) and evaporated under reduced pressure. Purification by flash chromatography on silica gel (CHCl₃/MeOH = 10:1) gave **8** as a white powder (14.4 mg, 98%). R_f = 0.14 (silica gel, CHCl₃/MeOH = 10:1); m.p. 129–131 °C; $[\alpha]_D^{23} = +19.8$ (c = 1.00, MeOH); 1 H NMR (400 MHz, 1%TFA in D₂O): δ = 4.53 (d, J = 4.5 Hz, 1H; 5-H), 4.35 (q, J = 7.2 Hz, 1H; 2'-H), 4.16 (d, J = 6.0 Hz, 1H; 2"-H), 4.10 (q, J=7.0 Hz, 1 H; 3-H), 3.93 (ddd, J=3.2, 4.2, 10.5 Hz, 1 H; 6-H), 2.10 (dq, J=6.0, 6.6 Hz, 1H; 3"-H), 1.52 (m, 1H; 6- $\text{C}H_2\text{C}\text{H}_2\text{C}\text{H}_2\text{C}\text{H}_3$), 1.50 (d, $J\!=\!7.0\,\text{Hz}$, 3 H; 3-C H_3), 1.45–1.35 (complex m, 3H; 6-C H_2 C H_2 C H_2 C H_3), 1.32 (d, J = 7.2 Hz, 3H; 3'-H₃), 1.30–1.17 (complex m, 2H; 6-CH₂CH₂CH₂CH₃), 0.88 (d, J=6.6 Hz, 6H; 3"-(CH₃)₂), 0.78 ppm (t, J = 6.6 Hz, 3H; 6-CH₂CH₂CH₂CH₂CH₃); ¹³C NMR (100 MHz, $1\,\%\,TFA\ \ in\ \ D_2O),\ reference\ \ 0-200\ ppm,\ \ \delta\,{=}\,177.7\ \ (C\text{-}1''),\ \ 177.3\ \ (C\text{-}1'),$ 170.7 (C-2), 167.7 (5-CO-NH-), 61.2 (C-2"), 59.7 (C-5), 54.8 (C-3), 53.0 (C-6), 52.3 (C-2'), 33.0 (1 C, 6-CH₂CH₂CH₂CH₃), 32.4 (C-3"), 29.5 (1 C, 6- $CH_{2}CH_{2}CH_{2}CH_{3}),\,24.0\;(1\,C,\,6\text{-}CH_{2}CH_{2}CH_{2}CH_{3}),\,20.9,\,20.0\;(each\;1\,C,\,3^{\prime\prime}\text{-}10^{\prime\prime})$ $(CH_3)_2$, 19.3 (C-3'), 16.4 (1 C, 3- CH_3), 15.5 ppm (1 C, 6- $CH_2CH_2CH_2CH_3$); IR (KBr): $\tilde{v} = 3410$ (C=O, -NH), 3278 (C=O, -NH), 1670 (C=O, amide), 1547, 1431, 1394, 1201, 1142, 723 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{18}H_{33}N_4O_5$: 385.2451 [M+H]; found: 385.2459 [M+H]+.

(3R,5R,6R)-(-)-4-tert-Butoxycarbonyl-6-butyl-5- $(O^1$ -tert-butyl-D-valinyl-D-alanyl)-carbonyl-3-methyl-2-piperazinone (59): According to the procedure of the compound 30, compound 59 (86.0 mg, 74% in 2 steps) was obtained from 29 as a colorless oil (73.5 mg, 215 μ mol). R_f =0.47 (silica gel, CHCl₃/MeOH=10:1); $[\alpha]_D^{22} = +69.4$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 6.88$ (d, J = 6.6 Hz, 1H; 2'-NH), 6.68 (d, J=7.9 Hz, 1H; 2"-NH), 6.08 (brs, 1H; 1-H), 4.66 (brs, 1H; 5-H), 4.49– 4.39 (complex m, 2H; 3-H, 2'-H), 4.41 (dd, J=4.3, 7.9 Hz, 1H; 2"-H), 3.61 (dt, J=4.3, 7.3 Hz, 1H; 6-H), 2.15 (dq, J=4.3, 6.9 Hz, 1H; 3"-H), 1.81-1.69 (complex m, 2H; 6-CH₂CH₂CH₂CH₃), 1.50-1.22 (complex m, 4H; 6-CH₂CH₂CH₂CH₃), 1.50 (s, 9H; 4-CO-OC(CH₃)₃), 1.47–1.45 (complex m, 3H; 3-C H_3), 1.45 (s, 9H; 1"-OC(C H_3)₃), 1.31 (d, J=6.9 Hz, 3H; 3'-H₃), 0.89 (d, J=6.9 Hz, 3H; 6-CH₂CH₂CH₂CH₃), 0.89 ppm (d, J=6.9 Hz, 3H; 3"-(CH₃)₂); 13 C NMR (67.5 MHz, CDCl₃): $\delta = 171.6$ (C-2), 170.8 (C-1'), 170.0 (C-1"), 168.3 (1 C, 5-CO-NH-), 154.7 (1 C, 4-CO-OC- $(CH_3)_3$, 81.9 (1"-OC(CH₃)₃), 81.8 (1C, 4-CO-OC(CH₃)₃), 57.3 (C-2"), 53.5 (C-5), 52.3 (C-3), 52.3 (C-6), 48.4 (C-2'), 31.2 (C-3"), 31.0 (1 C, 6-CH₂CH₂CH₂CH₃), 28.2 (1 C, 4-CO-OC(CH₃)₃), 28.0 (1 C, 6-CH₂CH₂CH₂CH₃), 27.9 (1"-OC(CH₃)₃), 22.3 (1 C, 6-CH₂CH₂CH₂CH₃), 18.9, 17.4 (each 1 C, 3"-(CH₃)₂), 18.0 (1 C, 3-CH₃), 18.0 (C-3'), 13.8 ppm (1C, 6-CH₂CH₂CH₂CH₃); IR (KBr) $\tilde{\nu}$ =3300 (br, -NH), 1728 (C=O, ester), 1689 (C=O, amide), 1531, 1456, 1371, 1331, 1159, 1132, 1070, 849, 756 cm⁻¹; HRMS (FAB, NBA+NaI matrix): m/z calcd for $C_{27}H_{49}N_4O_7$: 541.3601 [M+Na]; found: 541.33597 [M+H]+.

(3*R*,5*R*,6*R*)-(+)-6-Butyl-5-(p-valinyl-p-alanyl)carbonyl-3-methyl-2-piperazinone (31): According to the procedure for 8, compound 31 (43.0 mg, 93%) was obtained from 59 as a TFA salt (50.1 mg, 45.0 μmol). R_f =0.14 (silica gel, CHCl₃/MeOH=10:1); [α] $_{D}^{25}$ =+70.9 (c=1.00, MeOH); 1 H NMR (400 MHz, 1% TFA in D₂O): δ=4.49 (d, J=4.5 Hz, 1H; 5-H), 4.40 (q, J=7.2 Hz, 1H; 2'-H), 4.14 (d, J=5.8 Hz, 1H; 2"-H), 4.09 (q, J=7.2 Hz, 1H; 3-H), 3.89 (ddd, J=3.9, 4.5, 11.2 Hz, 1H; 6-H), 2.09 (dq, J=5.8, 7.0 Hz, 1H; 3"-H), 1.52–1.33 (complex m, 2H; 6-CH₂CH₂CH₂CH₂CH₃), 1.49 (d, J=7.2 Hz, 3H; 3-CH₃), 1.33–1.10 (complex m, 4H; 6-CH₂CH₂CH₂CH₃), 1.30 (d, J=7.2 Hz, 3H; 3'-H₃), 0.86 (d, J=7.0 Hz, 6H; 3"-(CH₃)₂), 0.76 ppm (t, J=7.0 Hz, 3H; 6-CH₂CH₂CH₂CH₃); 13 C NMR (100 MHz, 1% TFA in D₂O), reference 0–200 ppm δ=177.6 (C-1"), 176.7 (C-1"), 170.6 (C-2), 167.5 (5-CO-NH-), 61.0 (C-2"), 59.7 (C-5), 54.8 (C-3), 53.3 (C-6), 52.0 (C-2"), 32.9 (1C, 6-CH₂CH₂CH₂CH₃), 32.5 (C-3"), 29.6 (1C, 6-CH₂CH₂CH₂CH₃), 21.0, 19.9 (each

1C, 3''-(CH_3)₂), 19.2 (C-3'), 16.5 (1 C, 3- CH_3), 15.6 ppm (1 C, 6- $CH_2CH_2CH_3$); IR (KBr): $\tilde{v}=3431$ (br, -NH), 3286 (br, -NH), 1668 (C=O, amide), 1552, 1431, 1385, 1203, 1144, 800, 723 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{18}H_{33}N_4O_5$: 385.2451 [M+H]; found: 385.2442 [M+H]⁺.

(R)-(-)-1-Benzyloxy-2,5-pentanediol (60): BH₃-Me₂S complex (5.16 mL, 48.8 mmol) was slowly added to a solution of 35 (4.70 g, 24.4 mmol) in THF (122 mL) at 0°C under argon. After stirring for 80 min, the reaction mixture was quenched with 4.0 N aqueous NaOH (65 mL) and 30 % aqueous H₂O₂ (65 mL) at 0 °C, then the mixture was warmed up to RT, and stirred for 2 h. The resulting mixture was extracted with EtOAc (200 mL×3), the combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. Flash chromatography on silica gel (CHCl₃/MeOH=100:1) gave 60 as a colorless oil (4.50 g, 87%). $R_f = 0.20$ (silica gel, CHCl₃/ MeOH=10:1); $[\alpha]_D^{20} = -2.84$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.40-7.26$ (complex m, 5H; 1-O-CH₂-Ph), 4.56 (s, 2H; 1-O- CH_2 -Ph), 3.87 (ddd, J=1.1, 3.3, 7.9 Hz, 1H; 2-H), 3.51 (dd, J=3.3, 9.2 Hz, 1H; 1- H_2), 3.66 (dt, J=3.9, 5.9 Hz, 2H; 5- H_2), 3.36 (dd, J=7.9, 9.2 Hz, 1H; 1-H₂), 2.06 (brs, 2H; 2-OH, 5-OH), 1.77-1.64 (complex m, 2H; 3-H₂), 1.62–1.43 ppm (complex m, 2H; 4-H₂); ¹³C NMR (67.5 MHz, $CDCl_{3}): \ \delta \! = \! 138.7, \ 129.2 \ (2 \, C), \ 128.6 \ (2 \, C), \ 128.5, \ 74.9, \ 73.7, \ 70.7, \ 63.0,$ 30.3, 29.1 ppm; IR (NaCl): \tilde{v} =3365 (OH), 1454, 1093, 1059, 739, 698 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for C₁₂H₁₉O₃:211.1334 [M+H]; found: 211.1342 $[M+H]^+$.

(R)-(+)-1-Benzyloxy-2,5-di-(tert-butyldimethylsiloxy)-pentane (61): Imidazole (6.66 g, 113 mmol) and TBSCl (11.1 g, 73.3 mmol) were added to a solution of 60 (5.14 g, 24.4 mmol) in DMF (48.9 mL) at RT under argon. After stirring for 2 h at RT, the reaction solution was diluted with hexane/EtOAc (2/1) (800 mL), and the solution was washed with H2O (600 mL×6), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/ EtOAc=15:1) gave **61** as a colorless oil (9.16 g, 95%). R_f =0.76 (silica gel, hexane/EtOAc=2:1); $[\alpha]_D^{26} = +9.40$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.36-7.23$ (complex m, 5H; 1-O-CH₂-Ph), 4.52 (s, 2H; 1-O-CH₂-Ph), 3.84 (m, 1H; 2-H), 3.63–3.57 (complex m, 2H; 5-H₂), 3.41 (dd, J=5.6, 9.6 Hz, 1H; 1- H_2), 3.36 (dd, J=5.3, 9.6 Hz, 1H; 1- H_2), 1.65-1.40 (complex m, 4H; $3-H_2$, $4-H_2$), 0.89 (s, 9H; $2-OSi[CH_3]_2C-OSi[CH_3]_2C-OSi[CH_3]_2C-OSI[CH_3]_2C (CH_3)_3$, 0.87 (s, 9H; 5-OSi[CH₃]₂C(CH₃)₃), 0.05 (s, 3H; 2-OSi[CH₃]₂C- $(CH_3)_3$, 0.04 (s, 6H; 5-OSi[$CH_3J_2C(CH_3)_3$), 0.04 ppm (s, 3H; 2-OSi- $[CH_3]_2C(CH_3)_3$; ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 138.4$, 128.2 (2C), 127.5 (2 C), 127.4, 74.7, 73.2, 71.3, 63.3, 31.0, 28.6, 26.0 (3 C), 25.9 (3 C), 18.3 (2 C), -4.38, -4.78, -5.28 ppm (2 C); IR (NaCl) $\tilde{\nu} = 1471,1255, 1099$, 1051, 835, 775 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{24}H_{47}O_3Si_2$: 439.3064 [M+H]; found: 439.3063 [M+H]+.

(R)-(-)-2,5-Di-(tert-butyldimethylsiloxy)pentanol Pd(OH)₂/C (791 mg, 1.12 mmol) was added to a solution of **61** (5.10 g, 11.2 mmol) in EtOH (112.6 mL) at RT. After stirring for 20 min under H₂, the reaction solution was filtered through a Celite pad to remove the Pd(OH)₂ catalyst, then the pad was washed with EtOAc. The filtrate was washed with a saturated aqueous solution of NaHCO3 (50 mL), dried over Na2SO4, filtered, and evaporated to remove the solvent. Purification by flash chromatography on silica gel (hexane/EtOAc=7:1) gave 62 as a colorless oil (3.77 g, 96%). R_f =0.43 (silica gel, hexane/EtOAc=4:1); $[\alpha]_{D}^{26} = -13.3 \ (c = 2.00, \text{CHCl}_3); ^{1}\text{H NMR } (270 \text{ MHz}, \text{CDCl}_3): \delta = 3.75 \ (\text{m},$ 1 H; 2-H), 3.62-3.50 (complex m, 2H; 5-H₂), 3.53 (dd, J=5.0, 11.2 Hz, 1H; 1- H_2), 3.44 (dd, J=5.6, 11.2 Hz, 1H; 1- H_2), 1.60–1.42 (complex m, 4H; 3-H₂, 4-H₂), 0.89 (s, 9H; 2-OSi[CH₃]₂C(CH₃)₃), 0.88 (s, 9H; 5-OSi- $[CH_3]_2C(CH_3)_3)$, 0.07 (s, 6H; 5-OSi $[CH_3]_2C(CH_3)_3$), 0.03 ppm (s, 6H; 5-OSi[CH₃/₂C(CH₃)₃); ¹³C NMR (67.5 MHz, CDCl₃): δ = 72.7, 66.2, 63.1, 30.3, 28.5, 25.9 (3 C), 25.8 (3 C), 18.3, 18.0, -4.5, -4.6, -5.4 ppm (2 C); IR (NaCl): $\tilde{v} = 3435$ (-OH), 1473, 1464, 1255, 1099, 1049, 837, 775 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{17}H_{41}O_3Si_2$: 349.2594 [M+H]; found: 349.2583 [M+H]+.

(35,4R)-4,7-Di-(*tert*-butyldimethylsiloxy)-hept-1-ene-3-ol (37): Oxalyl chloride (4.75 mL, 43.6 mmol) was slowly added to a solution of DMSO (7.73 mL, 109 mmol) in CH₂Cl₂ (160 mL) at -78 °C under argon. The solution was stirred for 30 min, then 62 (7.60 g, 21.8 mmol) in CH₂Cl₂

(48.0 mL) was added dropwise at -78 °C. After stirring for 30 min, TEA (18.2 mL, 131 mmol) was added to the solution at -78°C, then it was warmed to 0°C. The mixture was stirred for 15 min, and quenched with a saturated aqueous solution of NH₄Cl (60 mL). Then the two layers were separated and the aqueous layer was extracted with hexane/EtOAc (3:1) (60 mL×2). The combined organic extracts were washed with a saturated aqueous solution of NH₄Cl (60 mL), a saturated aqueous solution of NaHCO₃ (60 mL), H₂O (60 mL), and brine (60 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to give 36, which was used in the next reaction without further purification. A 1.0 m solution of vinylmagnesium bromide in THF (65.4 mL, 65.4 mmol) was added to a solution of 36 (\approx 21.8 mmol) in Et₂O (218 mL) at -78 °C under argon. After stirring for 35 min, the reaction mixture was poured through a funnel into a stirred solution of saturated aqueous NaHCO3/hexane (1:1) (200 mL), then the two layers mixture were separated, the organic layer was washed with a saturated aqueous solution of NH₄Cl (60 mL), a saturated aqueous solution of NaHCO3 (60 mL), H2O (60 mL), and brine (60 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Flash chromatography on silica gel (hexane/EtOAc=10:1) afforded 37 and the C3-epimer of 37 (5:1) as an inseparable mixture (6.84 g, 84 % for 2 steps). $R_f = 0.53$ (silica gel, hexane/EtOAc=4:1); ¹H NMR (270 MHz, CDCl₃), major isomer is indicated. $\delta = 5.85$ (ddd, J = 6.3, 10.6, $16.8 \text{ Hz}, 1 \text{ H}; 2 \text{-H}), 5.30 \text{ (ddd}, J = 1.7, 1.7, 16.8 \text{ Hz}, 1 \text{ H}; 1 \text{-} H_2), 5.19 \text{ (ddd,}$ $J=1.7, 1.7, 10.6 \text{ Hz}, 1 \text{ H}; 1-H_2$, 4.11 (m, 1 H; 3-H), 3.72 (m, 1 H; 4-H), 3.65-3.55 (complex m, 2H; 7-H₂), 1.73-1.41 (complex m, 4H; 5-H₂, 6- H_2), 0.91 (s, 6H; 4-OSi[CH₃]₂C(CH₃)₃), 0.90 (s, 3H; 4-OSi[CH₃]₂C- $(CH_3)_3$, 0.89 (s, 9H; 7-OSi[CH₃]₂C(CH₃)₃), 0.10 (s, 3H; 4-OSi[CH₃]₂C- $(CH_3)_3$, 0.09 (s, 3H; 4-OSi[CH_3]₂ $C(CH_3)_3$), 0.04 ppm (s, 6H; 7-OSi- $[CH_3]_2C(CH_3)_3$; ¹³C NMR (67.5 MHz, CDCl₃), major isomer is indicated. $\delta = 136.6, \ 116.4, \ 75.8, \ 75.2, \ 63.2, \ 28.8, \ 28.1, \ 26.0 \ (3\,C), \ 25.9 \ (3\,C), \ 18.3,$ 18.1, -4.4 (2 C), -5.3 ppm (2 C); IR (NaCl): $\tilde{v} = 3467$ (OH), 1471, 1464, 1255, 1099, 837, 775 cm⁻¹; HRMS (FAB, NBA+NaI matrix): m/z calcd for $C_{19}H_{42}O_3Si_2Na$: 397.2570 [M+Na]; found: 397.2582 [M+Na]⁺.

(35,4*R*)-Hept-1-ene-3,4,7-triol (63): The 5:1 mixture of 37 was dissolved in a 4 N solution of HCl in dioxane (36.8 mL) and stirred for 20 min at RT. Then the reaction mixture was concentrated under reduced pressure. Flash chromatography on silica gel (CHCl₃/MeOH=20:1) gave 63 as an inseparable mixture of diastereomers (1.61 g, 94%). R_f =0.13 (silica gel, CHCl₃/MeOH=8:1); ¹H NMR (270 MHz, CDCl₃), major isomer is reported δ =5.93 (ddd, J=6.6, 10.6, 17.2 Hz, 1 H; 2-H), 5.35 (ddd, J=1.3, 1.3, 17.2 Hz, 1 H; 1- H_2), 5.28 (ddd, J=1.3, 1.3, 10.6 Hz, 1 H; 1- H_2), 4.12 (ddd, J=1.3, 4.0, 6.6 Hz, 1 H; 3-H), 3.79–3.61 (complex m, 3 H; 4-H, 7- H_2), 1.96 (brs, 3 H; 3-OH, 4-OH, 7-OH), 1.80–1.69 (complex m, 2 H; 5- H_2), 1.65 (m, 1 H; 7- H_2), 1.47 ppm (m, 1 H; 7- H_2); ¹³C NMR (67.5 MHz, CD₃OD), major isomer is reported. δ =139.0, 116.6, 77.3, 75.3, 63.0, 30.0 ppm (2 C); IR (NaCl): \tilde{v} =3367 (-OH), 1644, 1429, 1053, 997, 926 cm⁻¹; HRMS (FAB, thioglycerol+glycerol matrix): m/z calcd for $C_7H_{15}O_3$: 147.1021 [M+H]; found: 147.1017 [M+H]⁺.

(4R,5S)-4,5-O-Isopropylidenehept-6-ene-1-ol (64): 2,2-Dimethoxypropane (1.70 mL, 13.8 mmol) and TsOH·H₂O (131 mg, 690 µmol) were added to a solution of 63 (1.01 g, 6.90 mmol) in acetone (68.9 mL) at RT. After stirring for 15 min, the reaction mixture was quenched with H₂O (4 mL) to remove the acetal on the primary alcohol. The mixture was then diluted with brine (20 mL) and CHCl₃ (100 mL), the resulting two layers were separated. The aqueous layer was extracted with CHCl₃ (100 mL×2), the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Flash chromatography on silica gel (hexane/EtOAc=6:1) afforded 64 (1.18 g, 92 %) as a diastereomixture (dr \approx 6:1). R_f =0.12 (silica gel, hexane/EtOAc=4:1) for the major isomer and 0.15 (silica gel, hexane/EtOAc=4:1) for the minor isomer, ¹H NMR (270 MHz, CDCl₃), major isomer is reported $\delta = 5.81$ (ddd, J=7.6, 10.2, 17.2 Hz, 1H; 2-H), 5.30 (ddd, J=1.0, 1.0, 17.2 Hz, 1H; $1-H_2$), 5.24 (ddd, J=1.0, 1.0, 10.2 Hz, 1 H; 1- H_2), 4.52 (dd, J=6.6, 7.6 Hz, 1H; 3-H), 4.16 (dt, J=6.6, 7.3 Hz, 1H; 4-H), 3.67 (t, J=5.9 Hz, 2H; 7-H₂), 1.80–1.58 (complex m, 4H; 5-H₂, 6-H₂), 1.49 (s, 3H; 3, 4-O-iPr), 1.37 ppm (s, 3H; 3, 4-*O-iPr*); ¹³C NMR (67.5 MHz, CDCl₃), major isomer is reported $\delta = 133.7$, 117.7, 107.6, 79.2, 77.5, 61.6, 28.9, 27.5, 26.5, 25.0 ppm; IR (NaCl): $\tilde{v} = 3438$ (OH), 1379, 1371, 1246, 1217, 1047, 1016,

926, 872 cm $^{-1}$; HRMS (FAB, NBA matrix): m/z calcd for $C_{10}H_{19}O_3$: 187.1334 [M+H]; found: 187.1337 [M+H] $^+$.

(3S, 4R)-(+)-7-Benzyloxy-3,4-O-isopropylidenehept-1-ene (3S) and (3R)4R)-(+)-7-Benzyloxy-3,4-O-isopropylidenehept-1-ene (C3-epi 38): 55 % NaH (1.20 g, 27.4 mmol) was added to a solution of the diastereomixture (ca. 6:1) of **64** (3.40 g, 18.3 mmol) in THF (183 mL) at 0°C under argon. Then the mixture was warmed to 60°C and stirred for 30 min and cooled to RT. Then TBAI (8.80 g, 23.7 mmol) and BnBr (2.82 mL, 23.7 mmol) were added to the mixture, and the resulting reaction mixture was heated to 70 °C under stirring. After stirring for 6.5 h, the reaction mixture was cooled to 0°C and quenched with a saturated aqueous solution of NH₄Cl, then the two layers mixture was separated, the aqueous layer was extracted with EtOAc (200 mL×4). The organic layers were washed with H₂O (80 mL) and brine (80 mL), dried over Na2SO4, filtered, and evaporated under reduced pressure. Flash chromatography on silica gel (hexane/ EtOAc=20:1) afforded 38 (4.30 g, 85%; dr = > 20:1) and C3-epi 38 (348 mg, 7%) as colorless oils. Major product 38: R_f =0.42 (silica gel, hexane/EtOAc=4:1); $[\alpha]_D^{27} = +1.78$ (c=1.00, CHCl₃); (400 MHz, CDCl₃): $\delta = 7.38 - 7.25$ (complex m, 5H; 7-O-CH₂-Ph), 5.82 (ddd, J=7.8, 10.2, 18.0 Hz, 1 H; 2-H), 5.30 (ddd, J=1.0, 1.3, 18.0 Hz, 1 H; $1-H_2$), 5.23 (ddd, J=1.0, 1.7, 10.2 Hz, 1H; $1-H_2$), 4.50 (s, 2H; 7-O- CH_2Ph), 4.49 (dd, J=7.8, 8.0 Hz, 1 H; 3-H), 4.14 (ddd, J=6.0, 6.2, 8.0 Hz, 1H; 4-H), 3.57-3.44 (complex m, 2H; 7-H₂), 1.80 (m, 1H; 6-H₂), 1.66 (m, 1H; 6-H₂), 1.60-1.48 (complex m, 2H; 5-H₂),1.48 (s, 3H; 3, 4-O-iPr), 1.36 ppm (s, 3H; 3, 4-*O*-*i*Pr); 13 C NMR (67.5 MHz, CDCl₃): $\delta = 137.9$, 133.8, 127.7 (2 C), 127.0 (2 C), 126.8, 117.6, 107.5, 79.2, 77.4, 72.1, 69.3, 27.6, 26.5, 25.8, 25.0 ppm; IR (NaCl): $\tilde{\nu} = 1454$, 1369, 1248, 1215, 1099, 1045, 926, 737, 698 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{17}H_{25}O_3$: 277.1804 [M+H]; found: 277.1811 [M+H]+. Minor product C3-epi **38**: $R_f = 0.45$ (silica gel, hexane/EtOAc=4:1); $[\alpha]_D^{26} = +0.52$ (c= 1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.37-7.22$ (complex m, 5H: 7-O-CH₂-Ph), 5.80 (ddd, J=7.3, 10.2, 17.2 Hz, 1H: 2-H), 5.36 (ddd, $J=1.3, 1.3, 17.2 \text{ Hz}, 1 \text{ H}; 1-H_2), 5.24 \text{ (ddd}, J=1.3, 1.6, 10.2 \text{ Hz}, 1 \text{ H}; 1-H_2),$ 4.50 (s, 2H; 7-O-CH₂Ph), 4.00 (dd, J=7.3, 8.3 Hz, 1H; 3-H), 3.69 (ddd, J = 4.0, 7.6, 8.3 Hz, 1 H; 4 -H), 3.56 - 3.44 (complex m, 2 H; 7 - H₂), 1.88 - 1.53(complex m, 4H; 5-H₂, 6-H₂), 1.41 (s, 3H; 3, 4-O-iPr), 1.40 ppm (s, 3H; 3, 4-*O*-*i*Pr); 13 C NMR (67.5 MHz, CDCl₃): $\delta = 138.5$, 135.4, 128.3, 128.3, 127.6 (2C), 127.5, 118.9, 108.5, 82.7, 80.4, 72.8, 70.0, 28.4, 27.3, 26.9, 26.2 ppm; IR (NaCl): $\tilde{v} = 1454$, 1369, 1242, 1217, 1097, 1053, 928, 885,737, 698 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for C₁₇H₂₅O₃: 277.1804 [M+H]; found: 277.1796 [M+H]⁺.

(3S,4R)-7-Benzyloxy-3,4-O-isopropylideneheptanol (65): BH₃·Me₂S complex (656 µL, 6.77 mmol) was slowly added to a solution of 38 (1.70 g, 6.15 mmol) in THF (61.5 mL) at 0°C under argon. After stirring for 30 min, the reaction mixture was warmed to RT and stirred for a further 2 h. The reaction was quenched with H₂O (65 mL), NaBO₃·4H₂O (3.12 g, 20.3 mmol) and NaOH (271 mg, 6.77 mmol), then the mixture was warmed to 50°C with stirring for 90 min. The resulting two layers were separated, and the aqueous layer was extracted with EtOAc (200 mL×2), the combined organic layers were washed with H₂O (100 mL) and brine (100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. Flash chromatography on silica gel (CHCl3/MeOH=100:1) afforded 65 as a colorless oil (1.25 g, 69%). R_f =0.41 (silica gel, CHCl₃/ MeOH=10:1); $[\alpha]_D^{27} = -17.8$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.38-7.26$ (complex m, 5H; 7-O-CH₂Ph), 4.50 (s, 2H; 7-O- CH_2Ph), 4.25 (ddd, J=3.0, 5.9, 10.6 Hz, 1H; 3-H), 4.10 (dt, J=5.9, 7.9, 1 H; 4-H), 3.82 (dt, J = 3.3, 5.6 Hz, 2 H; 7-H₂), 3.59–3.44 (complex m, 2 H; 1-H₂), 1.91-1.70 (complex m, 4H; 2-H₂, 5-H₂), 1.70-1.50 (complex m, 2H; 6-H₂), 1.45 (s, 3H; 3, 4-O-iPr), 1.33 ppm (s, 3H; 3, 4-O-iPr); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 138.3$, 128.2 (2 C), 127.5 (2 C), 127.4, 107.7, 77.5, 76.5, 72.7, 69.7, 60.6, 31.9, 28.3, 26.3, 26.3, 25.7 ppm; IR (NaCl): $\tilde{v} = 3429$ (-OH), 1367, 1246, 1217, 1093, 1057, 739, 698 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{17}H_{27}O_4$: 295.1909 [M+H]; found: 295.1919 [M+H]+.

(35,4R)-(-)-7-(tert-Butyldiphenylsiloxy)-3,4-O-isopropylideneheptanol (66): Imidazole (429 mg, 6.32 mmol) and TBDPSCl (1.29 mL, 5.05 mmol) were added to a solution of 65 (1.24 g, 4.21 mmol) in DMF (8.4 mL) at RT under argon. After stirring for 40 min at RT, the reaction was

quenched with H₂O (10 mL) and extracted with EtOAc (20 mL×3). The combined extracts were washed with 1 n aqueous HCl (20 mL), a saturated aqueous solution of NaHCO3 (50 mL×2), H2O (50 mL), and brine (50 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to afford the crude product, which was used in the next reaction without further purification. 20 wt % Pd(OH)₂/C (296 mg, 421 μmol) was added to a solution of crude product in EtOAc (42.1 mL) at RT. After stirring for 2.5 h under H₂, the reaction solution was filtered through a Celite pad to remove the Pd(OH)2 catalyst, then the pad was washed with EtOAc. The filtrate was concentrated, and purified by flash chromatography on silica gel (hexane/EtOAc=4:1) to give 66 as a colorless oil (1.45 g, 78% for 2 steps). $R_f = 0.22$ (hexane/EtOAc=2:1); $[\alpha]_D^{23} = -7.80$ $(c=1.00, \text{ CHCl}_3)$; ¹H NMR (270 MHz, CDCl₃): $\delta = 7.80-7.63$ (complex m, 4H; 7-OSi(Ph)₂C(CH₃)₃), 7.46–7.33 (complex m, 6H; 7-OSi(Ph)₂C- $(CH_3)_3$, 4.30 (dd, J=6.3, 10.6 Hz, 1H; 5-H), 4.08 (ddd, J=5.0, 6.0, 10.6 Hz, 1 H; 4-H), 3.81 (t, J = 6.3 Hz, 2 H; 1-H₂), 3.67 (dt, J = 1.7, 6.0 Hz, 2H; 7-H₂), 1.79-1.60 (complex m, 4H; 2-H₂, 6-H₂), 1.59-1.44 (complex m, 2H; 3-H₂), 1.39 (s, 3H; 4,5-O-iPr), 1.33 (s, 3H; 4,5-O-iPr), 1.05 ppm (s, 9H; 7-OSi(Ph)₂C(CH₃)₃); 13 C NMR (67.5 MHz, CDCl₃): $\delta = 135.4$ $(4\,C),\ 133.7,\ 133.6,\ 129.5,\ 127.7,\ 127.5\ (4\,C),\ 107.4,\ 77.8,\ 74.6,\ 62.5,\ 60.9,$ 32.6, 29.6, 28.4, 26.8 (3C), 25.8, 20.9, 19.1 ppm; IR (NaCl): $\tilde{v} = 3404$ (-OH), 1375, 1219, 1099, 1018, 743, 700, 611 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{26}H_{39}O_4Si$ 443.2618 [M+H]; found: 443.2617 $[M+H]^+$

(4S,2'S,3'R,6'R,7'S)-(+)-3-[9'-(tert-Butyldiphenylsilyloxy)-2'-chloro-3'-hydroxy-6',7'-O-isopropylidenenonanoyl]-4-benzyloxazolidinone Oxalyl chloride (1.07 mL, 12.3 mmol) was slowly added to a solution of DMSO (1.74 mL, 24.5 mmol) in CH₂Cl₂ (50.0 mL) at -78°C under Ar. The solution was stirred for 20 min, then 66 (2.70 g, 6.12 mmol) in CH₂Cl₂ (11.2 mL) was added dropwise at -78 °C. After stirring for 30 min at -78 °C, TEA (4.27 mL, 30.6 mmol) was added to the solution, and then it was warmed to 0°C. The mixture was stirred for 10 min, and quenched with a saturated aqueous solution of NH₄Cl (20 mL). Then the two layers were separated, and the aqueous layer was extracted with hexane/EtOAc (1/1) (40 mL×2). The combined organic extracts were washed with H₂O (60 mL), saturated aqueous NH₄Cl (60 mL), saturated aqueous NaHCO₃ (60 mL), and brine (60 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to give anti-33, which was used in the next reaction without further purification. Et₂N (2.13 mL. 15.3 mmol) was added to a solution of (S)-16 (3.11 g, 12.3 mmol) in CH₂Cl₂ (75.5 mL) at -78°C, followed by nBu₂BOTf (1.0 m in CH₂Cl₂, 12.6 mL, 12.6 mmol). The solution was stirred for 1 h at −78 °C and for 1 h at RT. After the solution was cooled to -78°C, crude anti-33 in CH₂Cl₂ (12.1 mL) was added. After stirring for 10 min at -78 °C, the reaction mixture was warmed to $0\,{\rm ^{\circ}C},$ stirred for 80 min, and then quenched with phosphate buffer (Ph 7.2, 20 mL), 30 % aqueous H₂O₂/MeOH (1:2; 10 mL), and stirred for a further 1 h at RT. The resulting mixture was extracted with CHCl₃ (80 mL×3) and the combined extracts were washed with brine (100 mL), dried over Na₂SO₄, filtered, and concentrated. Flash chromatography (hexane/EtOAc=2:1) gave 67 as a colorless oil (2.77 g, 65% for 2 steps). $R_f = 0.35$ (silica gel, hexane/EtOAc = 2:1); $[\alpha]_D^{28} = +24.5$ $(c=1.00, \text{ CHCl}_3)$; ¹H NMR (270 MHz, CDCl₃): $\delta = 7.70-7.63$ (complex m, 4H; 9'-O-Si(Ph)2C(CH3)3), 7.43-7.29 (complex m, 9H; 4-CH2Ph, 9'-O-Si(Ph)₂C(CH₃)₃), 7.26–7.21 (complex m, 2H; 4-CH₂Ph), 5.68 (d, J=3.3 Hz, 1H; 2'-H), 4.72 (dddd, J=3.3, 3.6, 6.9, 9.6 Hz, 1H; 4-H), 4.32 (ddd, J=3.3, 5.9, 7.2 Hz, 1H; 3'-H), 4.26 (d, J=6.9 Hz, 1H; 4-C H_2 Ph), 4.26 (d, J=3.6 Hz, 1H; 4-C H_2 Ph), 4.15 (m, 1H; 6'-H), 4.07 (m, 1H; 7'-H), 3.81 (t, J=6.9 Hz, 2H; 9'-H₂), 3.33 (dd, J=3.3, 13.5 Hz, 1H; 5- H_2), 2.83 (dd, J = 9.6, 13.5 Hz, 1H; 5- H_2), 1.89–1.57 (complex m, 6H; 4'- H_2 , 5'-H₂, 8'-H₂), 1.38 (s, 3H; 6', 7'-O-iPr), 1.32 (s, 3H; 6', 7'-O-iPr), 1.05 ppm (s, 9H; 9-O-Si(Ph)₂C(CH₃)₃); 13 C NMR (67.5 MHz, CDCl₃): $\delta = 167.8$, 152.5, 135.5 (2C), 135.3 (2C), 134.5, 133.6, 133.5, 129.4 (2C), 129.2 (2C), 128.8 (2C), 127.6, 127.4 (2C), 127.2, 107.4, 77.2, 74.3, 71.0, 66.3, 60.7, 59.8, 55.2, 36.9, 32.4, 30.6, 28.3, 26.8, 26.7 (3 C), 26.0, 25.8, 18.9 ppm; IR (NaCl): $\tilde{v} = 3558$ (-OH), 3431 (-NH), 1782 (C=O, imide), 1711 (C=O, amide), 1389, 1213, 1111, 1084, 760, 742, 702 cm⁻¹; HRMS (FAB, NBA+ NaI matrix): m/z calcd for $C_{38}H_{49}NO_7SiClNa$: 716.2796 [M+Na]; found: 716.2786 [M+Na]+.

(S)-(-)-5-tert-Butyldimethylsiloxy-1,2-pentanediol (68): Nitrosobenzene (13.1 g, 122 mmol) was added to a solution of D-proline (2.81 g, 24.4 mmol) in CHCl₃ (250 mL). A solution of 39 (31.8 g, 147 mmol) in CHCl₃ (44.0 mL) was added dropwise to the reaction mixture over 10 min at 0°C under argon, and stirred for 105 min. Then a solution of NaBH₄ (10.9 g, 294 mmol) in EtOH (118 mL) was added to the reaction solution. After stirring for 30 min at 0 °C, a saturated aqueous solution of NaHCO₃ (100 mL) was poured into the reaction solution. The organic layer was separated, washed with brine (100 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The crude product of 40 was dissolved in EtOAc (735 mL) and 10% wt Pd/C (15.6 g, 14.7 mmol) was added. After stirring for 4 h under H2, the reaction solution was filtered through a Celite pad to remove the Pd catalyst, then the pad was washed with EtOAc. The filtrate solution was evaporated to remove the solvent. Purification by flash chromatography on silica gel (hexane/ EtOAc=1:1) gave **68** as a colorless oil (13.7 g, 40 % for 2 steps). R_f =0.10 (silica gel, hexane/EtOAc=1:1); $[\alpha]_D^{27} = -4.29$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 3.76 - 3.58$ (complex m, 4H; 1- H_2 , 2-H, 5- H_2), 3.45 (dd, J=7.3, 9.9 Hz, 1H; 1- H_2), 1.76–1.56 (complex m, 3H; 3- H_2 , 4- H_2), 1.48 (m, 1H; 4-H₂), 0.89 (s, 9H; 5-OSi[CH₃]₂C(CH₃)₃), 0.05 ppm (s, 6H; 5-OSi[$CH_3J_2C(CH_3)_3$); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 71.9$, 66.9, 63.6, 31.0, 29.1, 25.9 (3 C), 18.3, -5.4 ppm (2 C); IR (NaCl): $\tilde{v} = 3363 \text{ cm}^{-1}$ (OH); HRMS (FAB, NBA matrix): m/z calcd for C₁₁H₂₇O₃Si: 235.1729 [M+H]; found: 235.1732 $[M+H]^+$.

 $(4S) \hbox{-} 4 \hbox{-} (1' \hbox{-} tert \hbox{-} Butyldimethylsiloxypropane-3'-yl) \hbox{-} 2 \hbox{-} (p\hbox{-} methoxyphenyl) \hbox{-}$ **1,3-dioxolane (69)**: *p*-Anisaldehyde dimethylacetal (3.92 mL, 23.0 mmol) and PPTS (386 mg, 1.53 mmol) were added to a solution of 68 (3.60 g, 15.3 mmol) in CH₂Cl₂ (153 mL) at 0 °C. After stirring for 100 min, the reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ (70 mL), and the resulting two layers were separated. The aqueous layer was extracted with CHCl₃ (100 mL×), the combined organic layers were washed with H₂O (50 mL) and brine (50 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was diluted with EtOH (40 mL) and treated with NaBH₄ (1.5 g, 39.7 mmol) under stirring for 10 min. H_2O (100 mL) was added to the resulting mixture, and it was extracted with CHCl₃ (120 mL×3). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. Flash chromatography on NH-silica(NH, 100≈200 μm; purchased from Fuji Silysia; hexane/EtOAc=200:1) afforded **69** as a colorless oil (5.00 g, 92%). R_f =0.64 (silica gel, hexane/ EtOAc=1:1); ¹H NMR (270 MHz, CDCl₃), as a mixture of two diastereomers $\delta = 7.41$ (t, J = 6.6 Hz, 4/5 H; 2-O-Ph-CH₃), 7.40 (t, J = 5.0 Hz, 6/5H; 2-O-Ph-CH₃), 6.90 (d, J=8.3 Hz, 2H; 2-O-Ph-CH₃), 5.87 (s, 2/5H; 2-H), 5.76 (s, 3/5 H; 2-H), 4.36–4.15 (m, 7/5 H; 5-H₂), 4.09 (t, J=6.9 Hz, 3/55H; 5-H₂), 3.81 (s, 3H; 2-CH-Ph-OCH₃), 3.75-3.54 (complex m, 1H; 4-H), 3.75-3.54 (complex m, 2H; 1'-H₂), 1.85-1.53 (complex m, 2H; 2'-H₂), $1.85 - 1.53 \ \, (complex \ \, m, \ \, 2\,H; \ \, 3' - H_2), \ \, 0.90 \ \, (s, \ 9\,H; \ \, 1' - OSi[CH_3]_2C(CH_3)_3),$ 0.05 ppm (s, 6H; 1'-OSi[CH_3]₂ $C(CH_3$)₃); ¹³C NMR (67.5 MHz, CDCl₃), as a mixture of two diastereomers $\delta = 161.0$, 131.0 (3/5 C), 130.0 (2/5 C), 128.0, 127.8, 113.7 (2 C), 104.0 (3/5 C), 102.9 (2/5 C), 76.3, 70.8 (3/5 C), 70.0 (2/5 C), 62.8, 55.2, 30.0 (3/5 C), 29.8 (2/5 C), 29.0, 25.9 (3 C), 18.3, -5.3 ppm (2C); HRMS (FAB, NBA matrix): m/z calcd for $C_{19}H_{33}O_4Si$: 353.2148 [M+H]; found: 351.1995 [M+H]⁺.

(S)-(+)-5-(tert-Butyldimethylsiloxy)-2-(p-methoxybenzyloxy)-1-pentanol (70): DIBAL-H solution (0.94 m in hexane, 45.3 mL, 42.5 mmol) was added dropwise over 20 min to a solution of 69 (5.00 g, 14.1 mmol) in CH₂Cl₂ (141 mL) at −78 °C under argon. After stirring for 1 h, the solution was quenched by the addition of a saturated aqueous solution of Rochelle's salt (100 mL) and stirred for 1 h at RT. The organic layer was then separated, and the aqueous layer was extracted with CHCl₃ (150 mL×3). The combined organic extracts were washed with a saturated aqueous solution of Rochelle's salt (75 mL×3), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=5:1) gave 70 as colorless oil (4.69 g, 93%; >99% ee). R_f =0.15 (silica gel, hexane/EtOAc=1:1); $[\alpha]_{\rm D}^{27} = +16.0 \ (c=1.00, \text{ CHCl}_3); ^{1}\text{H NMR } (270 \text{ MHz, CDCl}_3); \ \delta = 7.27 \ (d,$ $J=8.6 \text{ Hz}, 2 \text{H}; 2-\text{O-CH}_2-\text{Ph-OCH}_3), 6.88 \text{ (d, } J=8.6 \text{ Hz}, 2 \text{H}; 2-\text{O-CH}_2-\text{Hz}_3)$ Ph-OCH₃), 4.56 (d, J=11.2 Hz, 1H; 2-O-C H_2 -Ph-OCH₃), 4.46 (d, J= 11.2 Hz, 1H; 2-O-CH₂-Ph-OCH₃), 3.80 (s, 3H; 2-O-CH₂-Ph-OCH₃), 3.61

 $(t, J=5.9 \text{ Hz}, 2\text{ H}; 5\text{-H}), 3.73-3.48 \text{ (complex m}, 3\text{ H}; 1\text{-H}_2, 2\text{-H}), 1.70-1.51$ (complex m, 4H; 3-H₂, 4-H₂), 0.89 (s, 9H; 5-OSi[CH₃]₂C(CH₃)₃), 0.05 ppm (s, 6H; 5-OSi[CH_3]₂ $C(CH_3$)₃); ¹³C NMR (67.5 MHz, $CDCl_3$): $\delta = 159.3, 130.5, 129.4 (2 C), 113.9 (2 C), 79.2, 71.1, 64.2, 63.0, 55.3, 28.5,$ 27.0, 26.0 (3 C), 18.3, -5.3 ppm (2 C); IR (NaCl): $\tilde{v} = 3437 \text{ cm}^{-1}$ (-OH); HRMS (FAB, NBA matrix): m/z calcd for $C_{19}H_{35}O_4Si$: 355.2305 [M+H]; found: $355.2312 [M+H]^+$.

(3S,4S)-(+)-S-Ethyl-7-tert-butyldimethylsiloxy-3-hydroxy-4-(p-methoxybenzyloxy)thioheptanate (42): Oxalyl chloride (0.956 mL, 10.9 mmol) was slowly added over 5 min to a solution of DMSO (1.55 mL, 21.9 mmol) in CH₂Cl₂ (50.0 mL) at -78°C under argon. The solution was stirred over 15 min, then **70** (1.94 g, 5.48 mmol) in CH₂Cl₂ (4.8 mL) was added dropwise at -78°C. After stirring for 30 min at -78°C, TEA (3.82 mL, 27.4 mmol) was added to the solution, and then it was warmed to 0 °C. The mixture was stirred for 15 min, and quenched with H₂O (20 mL). Then the two layers were separated, and the aqueous layer was extracted with hexane/EtOAc (1/1; 100 mL). The combined organic extracts were washed with H₂O (30 mL×2), saturated aqueous NH₄Cl (30 mL), saturated aqueous NaHCO₃ (30 mL), and brine (10 mL×2), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to give crude aldehyde 41, which was used in the next reaction without further purification. TiCl₄ (1.0 m in CH₂Cl₂; 4.52 mL, 4.52 mmol) was added to a solution of $Ti(O-iPr)_4$ (441 μL , 1.51 mmol) in CH_2Cl_2 (14.8 mL) at 0 °C. After stirring for 30 min, the mixture, as a solution of TiCl₃(O-iPr), was then cooled to -78°C. Crude aldehyde 41 in CH₂Cl₂ (40 mL) was added by using a cannula to a solution of TiCl₃(O-iPr) in CH₂Cl₂ at -78 °C, and the resulting mixture was stirred for 10 min. 1-Ethylthio-1-trimethylsilyloxyethene (1.95 mL, 9.90 mmol) was then added to the mixture. After stirring for 2 h, the cooled mixture was added to a saturated aqueous solution of NaHCO₃ (60 mL)by using a cannula with stirring at RT over 30 min. The resulting mixture was extracted with CHCl₃ (80 mL) and the extracts was washed with a saturated aqueous solution of NaHCO3 (60 mL) and brine (60 mL), dried over Na₂SO₄, filtered, and concentrated. Flash chromatography (hexane/EtOAc=5:1) gave 42 as a colorless oil (1.61 g, 64% for 2 steps; >99 % ee). $R_f = 0.5$ (silica gel, hexane/EtOAc=2:1); $[\alpha]_D^{25} = +1.93$ $(c=1.00, \text{ CHCl}_3); \text{ }^1\text{H NMR} \text{ (270 MHz, CDCl}_3); \delta = 7.27-7.20 \text{ (complex)}$ m, 2H; 4-OCH₂-Ph-OCH₃), 6.91-6.85 (complex m, 2H; 4-OCH₂-Ph- OCH_3), 4.57 (d, J=10.9 Hz, 1 H; 4-OC H_2 -Ph-OC H_3), 4.45 (d, J=10.9 Hz, 1H; 4-OC H_2 -Ph-OC H_3), 4.12 (ddd, J=2.3, 6.3, 10.6 Hz, 1H; 3-H), 3.81 (s, 3H; 4-OCH₂-Ph-OCH₃), 3.61 (t, J=5.6 Hz, 2H; 7-H₂), 3.37 (dd, J=4.6, 8.9 Hz, 1 H; 4-H), 2.90 (q, J = 7.6 Hz, 2 H; 1-SC H_2 CH₃), 2.74 (apparent d, J = 7.0 Hz, 2H; 2-H₂), 1.76–1.54 (complex m, 2H; 5-H₂), 1.76–1.54 (complex m, 2H; 6-H₂), 1.25 (t, J = 7.3 Hz, 3H; 1-SCH₂CH₃), 0.90 (s, 9H; 7-OSi[CH₃]₂C(CH₃)₃), 0.05 ppm (s, 6H; 7-OSi[CH₃]₂C(CH₃)₃); ¹³C NMR $(67.5 \text{ MHz}, \text{CDCl}_3): \delta = 198.5, 159.3, 130.2, 129.5 (2 \text{ C}), 113.8 (2 \text{ C}), 80.1,$ 71.8, 69.4, 63.0, 55.2, 47.4, 28.6, 26.0, 25.9 (3 C), 23.4, 14.5, 18.3, -5.3 ppm (2C); IR (NaCl): $\tilde{v} = 3425 \text{ cm}^{-1}$ (-OH), 1685 (C=O, ester); HRMS (FAB, NBA matrix): m/z calcd for $C_{23}H_{40}O_5SSiNa$: 479.2263 [M+Na]; found: $479.2245 [M+Na]^+$.

(3S,4S)-(+)-7-(tert-Butyldimethylsiloxy)-3-hydroxy-4-(p-methoxybenzy-1loxy)heptanol (71): The solution of 42 (4.06 g, 8.90 mmol) in THF (44.5 mL) was treated with LiBH $_4$ (0.969 g, 44.5 mmol) under stirring for 2 h at $-10\,^{\circ}\text{C}$. A saturated aqueous solution of NaHCO₃ (20 mL), then H₂O (20 mL), and EtOAc (200 mL) were added to the resulting mixture. The two layers mixture was separated, and the aqueous layer was extracted with EtOAc (200 mL×4). The combined organic layers were washed with H₂O (80 mL) and brine (80 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Flash chromatography on silica gel (hexane/EtOAc=1:1) afforded **71** as a colorless oil (3.11 g, 88%). R_f = 0.10 (silica gel, hexane/EtOAc=2:1); $[\alpha]_D^{25} = +12.4$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₂): $\delta = 7.28-7.20$ (complex m, 2H; 4-O-CH₂-Ph-OCH₃), 7.00–6.83 (complex m, 2H; 4-O-CH₂-Ph-OCH₃), 4.43 (d, 1H; $J=10.9 \text{ Hz}, 4-O-CH_2-Ph-OCH_3), 4.42 \text{ (d, } J=10.9 \text{ Hz}, 1 \text{ H}; 4-O-CH_2-Ph-OCH_3)$ OCH₃), 3.89–3.74 (complex m, 3H; 1-H₂, 3-H), 3.81 (s, 3H; 4-O-CH₂-Ph- OCH_3), 3.62 (t, J=5.6 Hz, 2H; 7-H₂), 3.34 (apparent dd, J=4.9, 5.9 Hz, 1H; 4-H), 1.75-1.68 (complex m, 2H; 2-H₂), 1.63-1.52 (complex m, 4H; 5-H₂, 6-H₂), 0.90 (s, 9H; 7-OSi[CH₃]₂C(CH₃)₃), 0.05 ppm (s, 6H; 7-OSi- $[CH_3]_2C(CH_3)_3$; ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 159.3$, 130.2, 129.5 (2C), 113.9 (2C), 81.1, 72.7, 71.9, 63.0, 61.3, 55.2, 34.7 (C-2), 28.0, 26.1, 25.9 (3 C), 18.3, -5.3 ppm (2 C); IR (NaCl): $\tilde{v} = 3425 \text{ cm}^{-1}$ (OH); HRMS (FAB, NBA matrix): m/z calcd for $C_{21}H_{39}O_5Si$: 399.2567 [M+H]; found: 399.2561 [M+H]+.

(3S,4S)-(+)-7-(tert-Butyldiphenylsiloxy)-1,4,5-heptanetriol (72): DMAP (93.9 mg, 768 μmol), TEA (1.61 mL, 11.5 mmol) and TBDPSCl (2.36 mL, 9.22 mmol) were added to a solution of 71 (3.06 g, 7.68 mmol) in CH₂Cl₂ (76.8 mL) at 0°C under argon. After stirring for 3 h, the mixture was warmed to RT and stirred for a further 3.5 d. The reaction was quenched with a saturated aqueous solution of NH₄Cl (30 mL) and extracted with CHCl₃ (80 mL×3). The combined extracts were washed with brine (80 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to afford crude product, which was used in the next reaction without further purification. 20 wt % Pd(OH)₂/C (539 mg, 768 μmol) was added to a solution of crude product in EtOAc (76.8 mL) at RT. After stirring for 2 h under H₂, the reaction solution was filtered through a Celite pad to remove the Pd(OH)2 catalyst, then the pad was washed with EtOAc. The filtrate was concentrated, and purification by flash chromatography on silica gel (CHCl₃/MeOH=10:1) gave 72 as a colorless oil (2.80 g, 90 % for 2 steps). $R_f = 0.70$ (silica gel, hexane/EtOAc=2:1); $[\alpha]_D^{26} = -1.22$ $(c=1.00, \text{CHCl}_3)$; ¹H NMR (270 MHz, CDCl₃) $\delta=7.70-7.62$ (complex m, 4H; 7-OSi(Ph)₂C(CH₃)₃), 7.50-7.34 (complex m, 6H; 7-OSi(Ph)₂C- $(CH_3)_3$, 3.90 (d, J=5.3 Hz, 1H; 1- H_2), 3.88 (d, J=4.6 Hz, 1H; 1- H_2), 3.76 (m, 1H; 5-H), 3.73-3.60 (complex m, 2H; 7-H₂), 3.50 (m, 1H; 4-H), 1.89-1.47 (complex m, 2H; 6-H₂), 1.89-1.47 (complex m, 4H; 3-H₂, 2- H_2), 1.04 ppm (s, 9H; 7-OSi(Ph)₂C(CH₃)₃); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 135.4$ (4C), 132.9 (2C), 129.8 (2C), 127.7 (4C), 74.3, 73.5, 62.6, 60.4, 35.1, 30.4, 29.1, 26.7 ppm (3C); IR (NaCl) $\tilde{v} = 3425 \text{ cm}^{-1}$ (-OH), 1513 (Ar-C); HRMS (FAB, NBA PEG 200+400+NaI matrix): m/z calcd for $C_{23}H_{34}O_4SiNa: 425.2124 [M+Na];$ found: 425.2126 [M+Na]⁺.

(3S,4S)-(-)-7-(tert-Butyldiphenylsiloxy)-3,4-O-isopropylideneheptanol (73): 2,2-Dimethoxypropane (1.60 mL, 13.0 mmol) and $TsOH \cdot H_2O$ (124 mg, 651 µmol) were added to a solution of **72** (2.62 g, 6.51 mmol) in acetone (65.1 mL) at RT. After stirring for 5 min, the reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ (20 mL). The resulting two layers were separated, and the aqueous layer was extracted with CHCl₃ (60 mL×3), the combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. Flash chromatography on silica gel (hexane/EtOAc=2:1) afforded 73 as a colorless oil (2.80 g, 97 %). $R_f = 0.30$ (silica gel, hexane/EtOAc=3:1); $[\alpha]_D^{25} =$ -19.1 (c = 1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.69 - 7.64$ (complex m, 4H; 7-OSi(Ph)₂C(CH₃)₃), 7.46-7.34 (complex m, 6H; 7-OSi(Ph)₂C(CH₃)₃), 3.83 (m, 1H; 5-H), 3.88-3.78 (complex m, 2H; 1-H₂), 3.71-3.61 (complex m, 2H; 7-H₂), 3.66 (m, 1H; 4-H), 1.87-1.64 (complex m, 6H; 2-H₂, 3-H₂, 6-H₂), 1.38 (s, 3H; 3,4-OiPr), 1.36 (s, 3H; 3,4-OiPr), 1.05 ppm (s, 9H; 1-OSi(Ph)₂C(CH₃)₃); ¹³C NMR (67.5 MHz, CDCl₃): δ = 135.5 (4C), 133.6 (2C), 129.6 (2C), 127.6 (4C), 108.1, 80.8, 77.6, 62.6, 60.6, 35.5, 29.5, 29.2, 27.2, 27.1, 26.8 (3C), 19.1 ppm; IR (NaCl): $\tilde{\nu}$ = 3425 cm⁻¹ (OH); HRMS (FAB, NBA matrix): m/z calcd for $C_{26}H_{39}O_4Si$: 443.2618 [M+H]; found: 443.2626 [M+H]+.

(4*S*,2'*S*,3'*R*,6'*S*,7'*S*)-(-)-3-[9'-(*tert*-Butyldiphenylsilyloxy)-2'-chloro-3'-hydroxy-6',7'-O-isopropylidenenonanoyl]-4-benzyloxazolidinone (74): According to the procedure for 67, compound 74 (2.69 g, 62% for 2 steps) was obtained from 73 (2.69 g, 6.08 mmol). R_f =0.39 (silica gel, hexane/ EtOAc=2:1); $[\alpha]_D^{25} = -6.0$ (c=1.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.70-7.66$ (complex m, 4H; 9'-O-Si(Ph)₂C(CH₃)₃), 7.43–7.29 (complex m, 3H; 4-CH₂Ph), 7.43-7.29 (complex m, 6H; 9'-O-Si(Ph)₂C- $(CH_3)_3$, 7.26–7.21 (complex m, 2H; 4- CH_2Ph), 5.70 (d, J=3.2 Hz, 1H; 2'-H), 4.73 (dddd, J=3.2, 3.5, 7.0, 9.1 Hz, 1H; 4-H), 4.27 (dd, J=7.0, 9.0 Hz, 1 H; 4- CH_2 Ph), 4.23 (dd, J=3.5, 9.0 Hz, 1 H; 4- CH_2 Ph), 4.17 (ddd, $J=3.2, 5.0, 8.7 \text{ Hz}, 1\text{H}; 3'-\text{H}), 3.86 \text{ (ddd}, } J=5.0, 8.5, 9.0 \text{ Hz}, 1\text{H}; 7'-\text{H}),$ 3.84 (t, J = 6.0 Hz, 2H; 9'-H₂), 3.68 (ddd, J = 2.7, 8.5, 8.5 Hz, 1H; 6'-H), 3.35 (dd, J=3.2, 13.5 Hz, 1H; 5- H_2), 2.84 (dd, J=9.1, 13.5 Hz, 1H; 5- H_2), 1.88 (m, 1H; 8'-H₂), 1.87 (m, 1H; 5'-H₂), 1.86-1.78 (complex m, 2H; 4'-H₂), 1.75 (m, 1H; 8'-H₂), 1.58 (m, 1H; 5'-H₂), 1.39 (s, 3H; 6', 7'-O-iPr), 1.36 (s, 3H; 6', 7'-O-iPr), 1.06 ppm (s, 9H; 9-O-Si(Ph)₂C(CH₃)₃); 13 C NMR (75.0 MHz, CDCl₃): δ = 168.2 (C-1'), 152.6 (C-2), 135.5 (2 C, 9'- $O-Si(Ph)_2C(CH_3)_3$, 135.5 (2 C, 9'-O-Si(Ph)_2C(CH₃)₃), 134.6 (1 C, 4- CH_2Ph), 133.8 (1 C, 9'-O-Si(Ph)₂C(CH_3)₃), 133.7 (1 C, 9'-O-Si(Ph)₂C-

Chem. Eur. J. 2008, 14, 8220-8238

(CH₃)₃), 129.6 (1 C, 9'-O-Si(Ph)₂C(CH₃)₃), 129.5 (1 C, 9'-O-Si(Ph)₂C-(CH₃)₃), 129.4 (2 C, 4-CH₂Ph), 129.0 (2 C, 4-CH₂Ph), 127.6 (2 C, 9'-O-Si(Ph)₂C(CH₃)₃), 127.6 (2 C, 9'-O-Si(Ph)₂C(CH₃)₃), 127.5 (1 C, 4-CH₂Ph), 108.1 (1 C, 6',7'-O-iPr), 80.6 (C-6'), 77.5 (C-7'), 71.3 (C-3'), 66.5 (C-5), 60.6 (C-9'), 59.8 (C-2), 55.4 (C-4), 37.2 (1 C, 4-CH₂Ph), 35.5 (C-8), 30.6 (C-4'), 28.3 (C-5'), 27.3 (1 C, 6',7'-O-iPr), 27.2 (1 C, 6',7'-O-iPr), 26.8 (3 C, 9'-O-Si(Ph)₂C(CH₃)₃), 19.1 ppm (1 C, 9'-O-Si(Ph)₂C(CH₃)₃); IR (KBr): $\bar{\nu}$ =3444 (-OH), 1782 (C=O, imide), 1711 cm⁻¹ (C=O, amide); HRMS (FAB, NBA matrix): m/z calcd for $C_{38}H_{49}NO_7SiCl$: 694.2967 [M+H]; found: 694.2987 [M+H]⁺.

(2S,3R,6R,7S)-Ethyl-9-(tert-butyldiphenylsilyloxy)-2,3-epoxy-6,7-O-isopropylidenenonanate (major) and (2R,3R,6R,7S)-ethyl-9-(tert-butyldiphenylsilyloxy)-2,3-epoxy-6,7-O-isopropylidenenonanate (minor) (75): NaH (60 wt % in mineral oil, 176 mg, 4.39 mmol) was added to a solution of chlorohydrin 74 (2.77 g, 3.99 mmol) in EtOH (20.0 mL) at 0°C. After stirring for 20 min, a saturated aqueous solution of NH₄Cl (15 mL) and CHCl₃ (80 mL) were added to the reaction mixture. The organic layer was separated, and the aqueous layer was extracted with CHCl₃ (40 mL× 2), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=10:1) gave a mixture of trans- and cis-75 (5.8:1) as a colorless oil (1.85 g, 88%). $R_f = 0.58$ (silica gel, hexane/EtOAc = 2:1); $[\alpha]_D^{25} = +11.2$ (c = 1.00, CHCl₃) as mixture of trans and cis (5.8:1); ¹H NMR (270 MHz, CDCl₃), major isomer is indicated. $\delta = 7.70-7.63$ (complex m, 4H; 9-O-Si(Ph)₂C(CH₃)₃), 7.47-7.33 (complex m, 6H; 9-O-Si(Ph)₂C(CH₃)₃), 4.32-4.11 (complex m, 2H; 1-OC H_2 CH₃), 4.27 (m, 1H; 7-H), 4.07 (ddd, J = 3.6, 5.3, 9.2 Hz, 1H; 6-H), 3.81 (t, J = 6.6 Hz, 2H; 9-H₂), 3.23 (d, 1.7 Hz, 1H; 2-H), 3.21 (m, $1\,H;\,3\text{-}H),\,1.92\text{--}1.42$ (complex m, $6\,H;\,4\text{-}H_2,\,5\text{--}H_2,\,8\text{--}H_2),\,1.37$ (s, $3\,H;\,6,7\text{--}H_2,\,4\text{--}H_2$), $1.3\,H;\,6,7\text{--}H_2$ O-iPr), 1.32 (s, 3H; 6,7-O-iPr), 1.30 (t, J=7.3 Hz, 3H; 1-OCH₂CH₃), 1.5 ppm (s, 9H; 9-O-Si(Ph)₂C(C H_3)₃); ¹³C NMR (67.5 MHz, CDCl₃). major isomer is indicated. $\delta = 168.8$, 135.3 (2C), 135.2 (2C), 133.4, 133.3, 129.3 (2C), 127.4 (2C), 127.4 (2C), 107.3, 76.5, 74.3, 61.1, 60.7, 57.5, 52.7, 32.3, 28.2, 27.8, 26.6 (3 C), 25.8, 25.6, 18.9, 13.8 ppm; IR (NaCl): $\tilde{v} = 1751$ (C=O, ester), 1736, 1429, 1369, 1248, 1196, 1111, 1086, 1030, 823, 741, 702, 615 cm⁻¹; HRMS (FAB, NBA+NaI matrix): m/z calcd for $C_{30}H_{42}O_6SiNa: 549.2648 [M+Na];$ found: $549.2659 [M+Na]^+$.

(2R,3R,6R,7S)-Ethyl-2-azido-9-(*tert*-butyldiphenylsilyloxy)-3-hydroxy-6,7-*O*-isopropylidenenonanate (major) and (2S,3S,6R,7S)-ethyl-3-azido-9-(*tert*-butyldiphenylsilyloxy)-2-hydroxy-6,7-*O*-isopropylidenenonanate

(minor) (76): NH₄Cl (282 mg, 5.27 mmol) and NaN₃ (343 mg, 5.27 mmol) were added to a solution of mixture of 75 (1.85 g, 3.52 mmol) in EtOH/ H₂O (20:1) (35.2 mL) at RT and the reaction mixture was warmed to 60 °C. After stirring for 38 h, the reaction mixture was cooled to RT and diluted with EtOAc (200 mL). The resulting single layer was washed with H₂O (20 mL) and brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=8:1) gave a 3:1 mixture of 76 as a inseparable mixture (1.08 g, 56%). R_f =0.59 (silica gel, hexane/EtOAc=2:1); IR (NaCl) \tilde{v} =3458 (-OH), 2110 (-N=N⁺=N⁻), 1739 (C=O, ester), 1473, 1429, 1369, 1248, 1219, 1111, 1088, 1026, 823, 740, 704, 613 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{30}H_{44}N_3O_6Si$: 570.2999 [M+H]; found: 570.2999 [M+H]⁺.

(2R, 3S, 6R, 7S) - (-) - Ethyl-9 - (tert-butyldiphenylsilyloxy) - 2, 3-imino-6, 7-O-1000 - (2R, 3S, 6R, 7S) - (-)isopropylidenenonanate (major) and (2S,3S,6R,7S)-(+)-ethyl-9-(tert-bu $tyldiphenyl silyloxy) \hbox{-} 2, \hbox{3-imino-} 6, \hbox{7-} O \hbox{-} is opropylidene nonanate}$ (77): PPh₃ (1.03 g, 3.93 mmol) was added to a solution of the mixture of 76 (1.72 g, 3.02 mmol) in MeCN (30.2 mL) under Ar at RT. After stirring for 30 min, the reaction solution was warmed to 80 °C and stirred for 21 h. Then the solution was cooled to RT and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/ EtOAc=8:1) gave trans-77 (1.21 g, 76%; single isomer) and cis-77 (157 mg, 13%; single isomer) as colorless oils. trans-77: R_f =0.39 (silica gel, hexane/EtOAc=1:1); $[\alpha]_D^{26} = -35.0$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.70-7.62$ (complex m, 4H; 9-O-Si(Ph)₂C(CH₃)₃), 7.46–7.33 (complex m, 6H; 9-O-Si(Ph)₂C(CH₃)₃), 4.25 (dq, J=6.3, 12.5 Hz, 2H; 1-OC H_2 CH₃), 4.18 (m, 1H; 7-H), 4.03 (ddd, J=5.6, 5.6, 8.3 Hz, 1H; 6-H), 3.81 (t, J=6.3 Hz, 2H; 9-H₂), 2.34 (d, J=2.3 Hz, 1H; 2-H), 2.28 (brm, 1H; 3-H), 1.82–1.65 (complex m, 4H; 5-H₂, 8-H₂), 1.60–

1.33 (complex m, 2H; 4-H₂), 1.37 (s, 3H; 6,7-O-iPr), 1.31 (s, 3H; 6,7-O*i*Pr), 1.31 (t, J=7.3 Hz, 3H; 1-OCH₂CH₃), 1.05 ppm (s, 9H; 9-O-Si(Ph)₂C(CH₃)₃); ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 172.4$, 135.4 (4C), 133.6, 133.5, 129.4 (2C), 127.5 (2C), 127.5 (2C), 107.4, 77.5, 74.4, 61.3, 60.8, 39.2, 35.2, 32.5, 29.6, 28.4, 27.5, 26.7 (3 C), 25.8, 19.0, 14.0 ppm; IR (NaCl): $\tilde{v} = 3286$ (NH), 1741 (C=O, ester), 1462, 1429, 1369, 1217, 1111, 1088, 823, 702, 688, 613 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{30}H_{44}NO_5Si: 526.2989 [M+H];$ found: $526.2993 [M+H]^+$. cis-77: $R_f=$ 0.23 (silica gel, hexane/EtOAc=1:1); $[\alpha]_D^{26} = +14.6$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.75-7.62$ (complex m, 4H; 9-O-Si(Ph)₂C(CH₃)₃), 7.46–7.30 (complex m, 6H; 9-O-Si(Ph)₂C(CH₃)₃), 4.26 (m, 1H; 7-H), 4.21 (dq, J=2.3, 6.9 Hz, 2H; 1-OC H_2 CH₃), 4.05 (dd, J=5.9, 12.9 Hz, 1H; 6-H), 3.81 (t, J=6.3 Hz, 2H; 9-H₂), 2.65 (brd, J=5.6 Hz, 1H; 2-H), 2.28-2.18 (brm, 1H; 3-H), 1.82-1.45 (complex m, 6H; 4-H₂, 5-H₂, 8-H₂), 1.36 (s, 3H; 6,7-O-iPr), 1.31 (s, 3H; 6,7-O-iPr), 1.29 (t, $J = 6.9 \text{ Hz}, 2 \text{ H}; 1-\text{OCH}_2\text{C}H_3), 1.05 \text{ ppm (s, 9H; 9-O-Si(Ph)}_2\text{C}(\text{C}H_3)_3); \text{ IR}$ (NaCl): $\tilde{v} = 3446$ (-NH), 1728 (C=O, ester), 1653, 1462, 1423, 1379, 1248, 1217, 1198, 1111, 1086, 1032, 823, 741, 704 cm⁻¹; HRMS (FAB, NBA+ NaI matrix): m/z calcd for $C_{30}H_{44}NO_5Si$: 548.2808 [M+Na]; found: 548.2784 [M+Na]+.

(2S,3S,6R,7S)-(-)-Ethyl-2-azido-9-(tert-butyldiphenylsilyloxy)-3-(p-nitrobenzensulfonylimino)-6,7-O-isopropylidenenonanate **(78)**: (327 uL. 2.35 mmol). 4-nitrobenzenesulfonyl chloride (312 mg, 1.41 mmol), and DMAP (28.7 mg, 235 µmol) were added to a solution of trans-77 (247 mg, 470 µmol) in CH₂Cl₂ (9.40 mL) under argon at 0 °C, and then warmed to RT. After stirring for 4 h at RT, the reaction solution was quenched with a saturated aqueous solution of NH₄Cl (7.0 mL), the organic layer was separated and the aqueous layer was extracted with CHCl₃ (10 mL×3). The combined organic extracts were washed with a saturated aqueous solution of NaHCO3 (10 mL), a saturated aqueous solution of NH₄Cl (10 mL×2), H₂O (10 mL), and brine (10 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. The residue was roughly purified with silica gel (hexane/EtOAc=2:1) to provide the residue of Ns-aziridine. The residue was dissolved in DMF (4.70 mL), and then NaN₂ (61.2 mg, 0.940 mmol) was added to the solution at 0°C under argon, and then the reaction mixture was warmed to RT. After stirring for 1 h, the solution was diluted with hexane/EtOAc (2:1; 20 mL). The mixture was washed with H2O (10 mL×6), dried over Na2SO4, filtered, and evaporated under reduced pressure to provide a crude mixture. Flash chromatography on silica gel (hexane/EtOAc=6:1) gave 78 as a colorless oil (331 mg, 93 % for 2 steps; $> 20:1 = \alpha - /\beta - N_3$). $R_f = 0.62$ (silica gel, hexane/EtOAc=1:1); $[\alpha]_D^{27} = -24.1$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 8.34$ (ddd, J = 2.2, 2.2, 8.6 Hz, 2H; N''-S(O₂)-Ph- NO_2), 8.08 (ddd, J=2.2, 2.2, 8.6 Hz, 2H; $N''-S(O_2)-Ph-NO_2$), 7.70–7.62 (complex m, 4H; 9-O-Si(Ph)₂C(CH₃)₃), 7.48-7.34 (complex m, 6H; 9-O- $Si(Ph)_2C(CH_3)_3$, 5.44 (d, J=9.5 Hz, 1H; 3-NH), 4.26 (m, 1H; 7-H), 4.24 $(q, J = 7.0 \text{ Hz}, 2 \text{ H}; 1-\text{OC}H_2\text{CH}_3), 4.14 (d, J = 4.3 \text{ Hz}, 1 \text{ H}; 2-\text{H}), 3.87 (ddd, J = 4.3 \text{ Hz}, 1 \text{ H}; 2-\text{H}), 3.87 (ddd, J = 4.3 \text{ Hz}, 1 \text{ H}; 2-\text{H}), 3.87 (ddd, J = 4.3 \text{ Hz}, 1 \text{ H}; 2-\text{H}), 3.87 (ddd, J = 4.3 \text{ Hz}, 1 \text{ H}; 2-\text{H}), 3.87 (ddd, J = 4.3 \text{ Hz}, 1 \text{ Hz}; 2-\text{H}), 3.87 (ddd, J = 4.3 \text{ Hz}, 1 \text{ Hz}; 2-\text{Hz}), 3.87 (ddd, J = 4.3 \text{ Hz}; 2-\text{Hz}; 2-\text{H$ J=5.7, 9.7, 15.1 Hz, 1 H; 6-H), 3.78 (m, 1H; 3-H), 3.76 (t, J=8.6 Hz, 2 H;9-H₂), 1.72–1.38 (complex m, 6 H; 4-H₂, 5-H₂, 8-H₂), 1.34 (s, 3 H; 6,7-O*i*Pr), 1.30 (s, 3H; 6,7-*O*-*i*Pr), 1.30 (t, J=7.0 Hz, 3H; 1-OCH₂CH₃), 1.05 ppm (s, 9H; 9-O-Si(Ph)₂C(CH₃)₃); 13 C NMR (67.5 MHz, CDCl₃): $\delta =$ 167.7, 149.8, 146.6, 135.4 (4C), 133.6, 133.4, 129.5 (2C), 128.1 (2C), 127.6 (4C), 124.2 (2C), 107.5, 74.1, 65.3, 62.3, 60.6, 60.2, 55.3, 36.5, 28.1, 27.4, 26.7 (3 C), 26.5, 25.6, 19.1, 14.0 ppm; IR (NaCl) $\tilde{\nu} = 3292$ (-NH), 2114 (- $N=N^+=N^-$), 1741 (C=O, ester), 1533 (NO₂), 1427, 1350 (SO₂), 1217, 1167 (N-SO₂), 1111, 1092, 854, 737, 704, 687 cm⁻¹; HRMS (FAB, NBA+ NaI matrix): m/z calcd for $C_{36}H_{47}N_5O_9SiSNa$: 776.2761 [M+Na]; found: 776.2771 $[M+Na]^+$.

(2*S*,3*S*,6*R*,7*S*)-(-)-Ethyl-3-amino-2-azido-9-(*tert*-butyldiphenylsiloxy)-6,7-*O*-isopropylidenenonanate (43): Compound 78 (331 mg, 439 μmol) was dissolved in MeCN (4.39 mL), and then thiophenol (226 μL, 2.20 mmol) and DIPEA (382 μL, 2.20 mmol) were added to the solution at RT under Ar. After stirring for 6 h, the reaction was quenched with a saturated aqueous solution of NaHCO₃ (10 mL). Then the mixture was extracted with CHCl₃ (20 mL×3). The organic extracts were dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=2:1) gave 43 as a colorless oil (161 mg, 65%). R_f =0.24 (silica gel, hexane/EtOAc=1:1); [α]²⁵_D=-22.4 (*c*=1.00, CHCl₃); ¹H NMR (270 MHz, CD₂Cl₂): δ =7.70–

7.62 (complex m, 4H; 9-O-Si(Ph)₂C(CH₃)₃), 7.47–7.33 (complex m, 6H; 9-O-Si(Ph)₂C(CH₃)₃), 4.26 (m, 1H; 7-H), 4.25 (dq, J=1.0, 6.9 Hz, 2H; 1-OCH₂CH₃), 4.02 (ddd, J=3.3, 5.9, 9.3 Hz, 1H; 6-H), 3.87 (d, J=5.3 Hz, 1H; 2-H), 3.82 (d, J=5.6 Hz, 1H; 9-H₂), 3.79 (d, J=5.6 Hz, 1H; 9-H₂), 3.12 (ddd, J=4.0, 5.3, 8.9 Hz, 1H; 3-H), 1.78–1.32 (complex m, 6H; 4-H₂, 5-H₂, 6-H₂), 1.34 (s, 3H; 6,7-O-iPr), 1.29 (s, 3H; 6,7-O-iPr), 1.30 (t, J=7.3 Hz, 3H; 1-OCH₂CH₃), 1.04 ppm (s, 9H; 9-O-Si(Ph)₂C(CH₃)₃); i3C NMR (67.5 MHz, CDCl₃): δ =168.8, 135.4 (3C), 135.4, 133.6, 133.6, 129.5, 129.4, 127.5 (4C), 107.4, 77.9, 74.5, 67.7, 61.7, 60.9, 53.2, 32.5, 30.2, 28.4, 26.7 (3C), 26.7, 25.8, 19.1, 14.1 ppm; IR (NaCl): $\bar{\nu}$ =3394 (-NH), 2108 (-N=N⁺=N⁻), 1739 (C=O, ester), 1379, 1367, 1246, 1217, 1194, 1169, 1111, 1088, 1028, 823, 741, 702, 615 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for C₃₀H₄₅N₄O₅Si: 569.3159 [M+H]; found: 569.3149 [M+HI†.

(2S,3S,6R,7S,2'R)-(-)-Ethyl-2-azido-3-(2'-bromopropanamido)-9-(tertbutyldiphenylsilyloxy)-6,7-O-isopropylidenenonanate (79): Compound (R)-10 (50.5 μL, 562 μmol), PyBOP (292 mg, 562 μmol), and DIPEA (120 μL, 0.703 mmol) were added to a solution of **43** (160 mg, 281 μmol) in CH₂Cl₂ (9.37 mL) at RT under argon. After stirring for 60 min, a saturated aqueous solution of NH₄Cl (3.0 mL) was added to the reaction mixture. Then, the organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (7.0 mL×3). The combined organic extracts were washed with a saturated aqueous solution of NaHCO3 (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=15:1) gave **79** as a colorless oil (188 mg, 95%). R_f =0.52 (silica gel, hexane/EtOAc= 1:1); $[\alpha]_D^{23} = -21.1$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta =$ 7.70-7.61 (complex m, 4H; 9-O-Si(Ph)₂C(CH₃)₃), 7.47-7.34 (complex m, 6H; 9-O-Si(Ph)₂C(CH₃)₃), 6.56 (d, J=8.6 Hz,1H; 3-NH), 4.37 (m, 1H; 3-H), 4.32 (q, J=7.3 Hz, 1H; 2'-H), 4.29 (q, J=6.9 Hz, 2H; 1-OC H_2 CH₃), 4.27 (m, 1H; 7-H), 4.26 (d, J=4.3 Hz, 1H; 2-H), 3.99 (dd, J=5.6, 12.5 Hz, 1H; 6-H), 3.80 (t, J = 5.9 Hz, 2H; 9-H₂), 1.85 (d, J = 7.3 Hz, 3H; 3'-H₃), 1.84 (m, 1H; 8-H₂), 1.77–1.62 (complex m, 3H; 5-H₂, 8-H₂,), 1.61– 1.28 (complex m, 2H; 4-H₂), 1.37 (s, 3H; 6,7-O-iPr), 1.31 (s, 3H; 6,7-O*i*Pr), 1.33 (t, J=6.9 Hz, 3H; 1-OCH₂CH₃), 1.05 ppm (s, 9H; 9-O- $Si(Ph)_2C(CH_3)_3$; ¹³C NMR (67.5 MHz, CDCl₃): $\delta = 169.4$, 168.1, 135.4 (2C), 135.4 (2C), 133.7, 133.5, 129.5 (2C), 127.6 (4C), 107.5, 77.4, 74.5, 64.1, 62.2, 60.9, 51.1, 44.4, 32.3, 30.8, 28.3 (2 C), 26.8 (3 C), 25.8, 22.6, 19.1, 14.1 ppm; IR (NaCl): $\tilde{v} = 3296$ (-NH), 2112 (-N=N⁺=N⁻), 1741 (C=O, ester), 1658 (C=O, amide), 1379, 1369, 1248, 1217, 1111, 1086, 1026, 823, 702 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{33}H_{48}N_4O_6BrSi: 703.2527 [M+H];$ found: $703.2532 [M+H]^+$.

(3S,5S,6S,3'S,4'R)-(+)-4-(tert-Butoxycarbonyl)-6-[1'-(tert-butyldiphenylsiloxy)-3',4'-O-isopropylidenehexane-6'-yl]-5-ethyloxycarbonyl-3-metyl-2piperazinone (81): PPh₃ (197 mg, 1.02 mmol) and TEA (143 μ L, 1.02 mmol) were added to a solution of 79 (239 mg, 339 µmol) in MeCN (3.39 mL) under argon at RT. After stirring for 1 h, H₂O (730 µL) was added to the reaction mixture. The resulting mixture was warmed to 60°C and stirred for 7 h. Then the solution was cooled to RT and evaporated under reduced pressure. The crude product was roughly purified by flash chromatography on silica gel (CHCl₃/MeOH = 120:1) to provide piperazinone 80. Di-tert-butyl dicarbonate (519 mg, 2.37 mmol) was added to a solution of crude 80 in EtOAc (3.39 mL) at RT under argon. After stirring for 60 min at 80 °C, the reaction solution was cooled to RT. Then the reaction mixture was diluted with CHCl₃ (20 mL), the mixture was washed with brine (10 mL), dried over Na2SO4, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=10:1) gave 81 as a colorless oil (160 mg, 68 % for 2 steps). $R_f = 0.29$ (silica gel, hexane/EtOAc=1:1); $[\alpha]_D^{26} = +2.77$ (c=0.50, CHCl₃); ¹H NMR (270 MHz, CDCl₃), as two rotamers. $\delta = 7.70-7.62$ (complex m, 4H; 1'-O-Si(Ph)₂C(CH₃)₃), 7.47-7.32 (complex m, 6H; 1'-O- $Si(Ph)_2C(CH_3)_3$, 5.92 (brs, 1H; 1-H), 5.02 (brs, 5/6H; 5-H), 4.75 (brs, 1/ 6H; 5-H), 4.52–4.36 (brm, 1H; 3-H), 3.80 (dd, J=6.3, 12.9 Hz, 1H; 3'-H), 4.19 (q, J=7.3 Hz, 2H; 1-OC H_2 CH₃), 4.02 (br m, 1H; 4'-H), 3.81 (t, J=5.9 Hz, 2H; 1'-H₂), 3.64 (brm, 1H; 6-H), 1.98–1.85 (brm, 1H; 2'- H_2), 1.69 (dd, J = 6.6, 13.2 Hz, 1H; 2'- H_2), 1.70–1.38 (complex m, 4H; 5'- H_2), 6'-H₂), 1.59 (d, J = 6.9 Hz, 3H; 3-CH₃), 1.50 (s, 9H; 4-CO-OC(CH₃)₃), $1.38 \text{ (s, 3H; } 3',4'-O-i\text{Pr}), \ 1.33 \text{ (s, 3H; } 3',4'-O-i\text{Pr}), \ 1.28 \text{ (t, } J\!=\!7.3 \text{ Hz, 3H;}$ 1-OCH₂CH₃), 1.05 ppm (s, 9H; 1'-O-Si(Ph)₂C(CH₃)₃); 13 C NMR

(67.5 MHz, CDCl₃): δ =171.0, 168.6, 154.0, 135.5 (2 C), 135.4 (2 C), 133.7, 133.5, 129.5, 129.5, 127.5 (2 C), 127.5 (2 C), 107.6, 81.3, 77.1, 74.3, 61.1, 60.8, 54.1, 54.0, 52.3, 32.5, 28.6, 28.3, 28.2 (3 C), 26.7 (3 C), 26.5, 25.7, 19.1, 18.2, 14.0 ppm; IR (NaCl): \bar{v} =3205 (-NH), 1745 (C=O, ester), 1699 (C=O, urethane), 1676 (C=O, amide), 1473, 1429, 1369, 1329, 1186, 1171, 1111, 1092, 1028, 823, 742, 669 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{38}H_{57}N_{2}O_{8}Si$: 697.3884 [M+H]; found: 697.3909 [M+H]⁺.

(3S,5S,6S,3"S,4"R)-(-)-4-(tert-Butoxycarbonyl)-6-[1"'-(tert-butyldiphenylsiloxy)-3"',4"'-O-isopropylidenehexane-6"'-yl]- 5-(O1-tert-butyl-L-valinyl-L-alanyl)carbonyl-3-metyl-2-piperazinone (82): Lithium hydroxide (49.9 mg, 2.08 mmol) was added to a solution of **81** (145 mg, 208 μmol) in MeOH/THF/H2O (2:2:1; 4.16 mL) was added at RT. After stirring for 60 min, a saturated aqueous solution of NH₄Cl (6.0 mL) was added to the reaction mixture and then it was extracted with CHCl₃ (10 mL×3). The combined organic extracts were washed with brine (10 mL), dried over Na2SO4, filtered, and evaporated under reduced pressure to give the crude product, which was used in the next reaction without further purification. The residue was dissolved in CH₂Cl₂ (2.08 mL) and then 19 (102 mg, 416 μmol), DIPEA (72.5 μL, 416 μmol), HOBt (28.1 mg, 208 μmol), and PyBOP (163 mg, 312 μmol) were added at 0°C under Ar. After stirring for 1 h at 0 °C, the reaction mixture was warmed to RT, and stirred for further 4 h. Then, the reaction solution was quenched with a saturated aqueous solution of NH₄Cl (4.0 mL), the organic layer was separated and the aqueous layer was extracted with CHCl₃ (10 mL×3). The combined organic extracts were washed with a saturated aqueous solution of NH₄Cl (10 mL), a saturated aqueous solution of NaHCO₃ (10 mL), and brine (10 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=3:1) gave 82 as a colorless oil (131 mg, 70% for 2 steps). $R_f = 0.25$ (silica gel, hexane/EtOAc=1:2); $[\alpha]_D^{26} = -31.0$ (c=1.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃) $\delta = 7.72-6.84$ (complex m, 4H; 1"'- $O-Si(Ph)_2C(CH_3)_3$, 7.44–7.32 (complex m, 6H; 1'''-O-Si(Ph)_2C(CH_3)_3), 6.92 (br d, J = 6.3 Hz, 1H; 2'-NH), 6.53 (br d, J = 8.6 Hz, 1H; 2"-NH), 6.36 (brs, 1H; 1-H), 4.67 (brs, 1H; 5-H), 4.53-4.35 (complex m, 3H; 3-H, 2'-H, 2"-H), 4.30 (dd, J=6.6, 12.9 Hz, 1H; 3"'-H), 3.99 (dd, J=6.3, 12.9 Hz, 1 H; 4"'-H), 3.80 (t, J = 5.9 Hz, 2 H; 1"'-H₂), 3.60 (dd, J = 6.3, 12.6 Hz, 1 H; 6-H), 2.17 (m, 1H; 3"-H), 1.93-1.82 (complex m, 2H; 6""-H₂, 2""-H₂), 1.72-1.62 (complex m, 2H; 6"'-H₂, 2"'-H₂), 1.55-1.45 (complex m, 2H; 5"'-H₂), 1.52 (s, 9H; 4-CO-OC(CH_3)₃), 1.46 (d, J=7.2 Hz, 3H; 3- CH_3), 1.46 (s, 9H; 1"-OC(CH₃)₃), 1.36 (s, 3H; 3"',4"'-O-iPr), 1.30 (s, 3H; 3"',4"'-O-iPr), 1.33 (d, J=6.9 Hz, 3H; 3'-H₃), 1.04 (s, 9H; 1"'-O-Si(Ph)₂C- $(CH_3)_3$, 0.90 (d, J=6.6 Hz, 3H; 3"- $(CH_3)_2$), 0.88 ppm (d, J=6.9 Hz, 3H; 3"-(CH₃)₂); ¹³C NMR (67.5 MHz, CDCl₃): δ = 171.5, 170.8, 170.0, 168.1, 154.6, 135.5 (2C), 135.4 (2C), 133.7, 133.6, 129.5, 129.5, 127.5, (2C), 127.5 (2C), 107.6, 81.9, 81.8, 76.9, 74.3, 60.9, 57.4, 53.5, 53.2, 52.1, 48.4, 32.6, 31.1, 28.4, 28.2 (3 C), 28.1, 28.0 (6 C), 26.8 (2 C), 25.7, 19.1, 18.9, 18.1, 18.0, 17.5 ppm; IR (NaCl) $\tilde{v} = 3317$ (-NH), 1732 (C=O, ester), 1672 (C= O, urethane), 1656 (C=O, amide), 1539, 1369, 1155, 1111, 1086, 756, 704 cm⁻¹; HRMS (FAB, NBA+NaI matrix): m/z calcd for $C_{48}H_{74}N_4O_{10}SiNa: 917.5072 [M+Na]; found: 917.5096 [M+Na]^+$

(3S, 5S, 6S, 3'''S, 4'''R)-(-)-4-(tert-Butoxycarbonyl)-5- $(O^1$ -tert-butyl-L-valinyl-L-alanyl)carbonyl-6-[1"'-hydroxy-3"',4"'-O-isopropylidenehexane-6"'yl]-3-metyl-2-piperazinone (83): Compound 82 (129 mg, 145 µmol) was dissolved in THF (1.45 mL) and TBAF (1.0 m THF solution, 362 µL, 362 µmol) was added at RT. After stirring for 3 h, a saturated aqueous solution of NH₄Cl (5.0 mL) and CHCl₃ (5.0 mL) were added, then the two layers were separated, and the aqueous phase was extracted with CHCl₃ (10 mL×3). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (CH3Cl/MeOH= 10:1) gave 83 as a colorless oil (75 mg, 79 %). R_f =0.30 (silica gel, CHCl₂/ MeOH=10:1); $[\alpha]_D^{21} = -47.5$ (c=2.00, CHCl₃); ¹H NMR (270 MHz, CDCl₃): $\delta = 7.04$ (brs, 1H; 2'-NH), 6.95 (brs, 1H; 1-H), 6.82 (brd, J =7.0 Hz, 1H; 2"-NH), 4.72 (brs, 1H; 5-H), 4.63-4.43 (complex m, 2H; 3-H, 2'-H), 4.30 (dd, J=4.6, 8.9 Hz, 1H; 2"-H), 4.24 (ddd, J=4.9, 5.3, 10.2 Hz, 1H; 3"'-H), 4.05 (ddd, J=3.0, 5.3, 9.6 Hz, 1H; 4"'-H), 3.89–3.71 (complex m, 2H; 1"'-H), 3.68 (dd, J=6.6, 10.9 Hz, 1H; 6-H), 2.88 (brs, 1H; 1"'-OH), 2.15 (m, 1H; 3"-H), 1.94-1.78 (complex m, 2H; 6"'-H₂), 1.81–1.60 (complex m, 3H; 2"'- H_2 , 5"'- H_2), 1.51 (m, 1H; 5"'- H_2), 1.51 (s,

9H; 1"-OC(CH_3)₃), 1.45 (s, 9H; 4-CO-OC(CH_3)₃), 1.44 (d, J=7.3 Hz, 3H; 3- CH_3), 1.32 (s, 6H; 3",4"-O-iPr), 1.30 (d, J=7.0 Hz, 3H; 3'- H_3), 0.90 (d, J=6.9 Hz, 3H; 3"-(CH_3)₂), 0.70 ppm (d, J=6.9 Hz, 3H; 3"-(CH_3)₂); 13 C NMR (67.5 MHz, CDCl₃): δ =171.8, 170.8, 170.4, 168.3, 154.6, 107.8, 83.9, 82.3, 81.9, 76.3, 60.4, 57.4, 53.4, 52.0, 49.9, 48.3, 32.3, 31.2, 28.3 (2 C), 28.2 (3 C), 28.0 (3 C), 26.7, 25.7, 18.9, 18.3, 17.9, 17.5 ppm; IR (NaCl): \bar{v} =3327 (NH), 1732 (C=O, ester), 1686 (C=O, urethane), 1666 (C=O, amide), 1539, 1456, 1369, 1315, 1219, 1157, 850, 789 cm⁻¹; HRMS (FAB, NBA+NaI matrix): m/z calcd for $C_{32}H_{36}N_4O_{10}Na$: 679.3894 [M+Na]; found: 679.3920 [M+Na]+.

(3S,5S,6S,2'S,4'S,5'R)-(-)-4-(tert-Butoxycarbonyl)-5- $(O^1$ -tert-butyl-L-valinyl-L-alanyl)carbonyl-6-[2'-hydroxy-4',5'-O-isopropylidene-1'-nitrohexane-7'-yl]-3-methyl-2-piperazinone (46): DMSO (73.0 μL, 1.03 mmol), TEA (72.3 μ L, 515 μ mol), and SO₃-Py (41.0 mg, 2.57 mmol) were added to a solution of 83 (67.7 mg, 103 µmol) in CH₂Cl₂ (2.58 mL) at 0 °C under argon. After stirring for 5 min, then the reaction mixture was warmed to RT and stirred for further 1 h. Then the reaction was quenched with a saturated aqueous solution of NH₄Cl (5 mL), diluted with EtOAc (10 mL), and the two layers were separated. The aqueous layer was extracted with EtOAc (10 mL×3). The combined organic extracts were washed with a saturated aqueous solution of NH₄Cl (20 mL×2), H₂O (20 mL), and brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to give crude aldehyde 44, which was used in the next reaction without further purification. Compound (R,R)-45 (31.0 mg, 52 μmol) and MeNO₂ (167 μL, 3.09 mmol) were added to a solution of 44 in CH₂Cl₂ (2.58 mL) at room temperature. Then the solution was cooled to -40 °C and DIPEA (44.9 μL, 257 μmol) was added. After stirring for 46 h, the reaction was quenched with a saturated aqueous solution of NH_4Cl (3.0 mL), then the aqueous layer was extracted with $CHCl_3$ (10 mL \times 3). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (CHCl₃/MeOH= 20:1) gave 46 as a colorless oil (38.9 mg, 53 % for 2 steps; 90 % de). The de was determined by HPLC (CHIRALCEL OD $4.6\phi \times 250$ mm, hexane/ 2-propanol = 99:1, 0.9 mL min⁻¹, 25 °C, 210 nm). R_f = 0.50 (silica gel, CHCl₃/MeOH = 10:1); $[\alpha]_D^{22} = -52.0$ (c = 1.00, CHCl₃); $(270 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: $\delta = 6.83 \text{ (brs, 1H; 2'''-NH)}, 6.70 \text{ (brs, 1H; 2''-NH)},$ 6.60 (brs, 1H; 1-H), 4.58 (brs, 1H; 5-H), 4.52-4.33 (complex m, 2H; 3-H, 2'-H), 4.46 (d, J=9.3 Hz, 1H; 1'- H_2), 4.33 (d, J=9.3 Hz, 1H; 1'- H_2), 4.25 $(\mathrm{dd}, J\!=\!4.3, 7.9\,\mathrm{Hz}, 1\,\mathrm{H}; 2^{\prime\prime\prime}\!-\!\mathrm{H}), 4.19\;(\mathrm{dd}, J\!=\!5.9, 13.5\,\mathrm{Hz}, 1\,\mathrm{H}; 4^\prime\!-\!\mathrm{H}), 3.96$ (m, 1H; 5'-H), 3.96 (m, 1H; 6-H), 2.04 (m, 1H; 3"'-H), 1.79-1.60 (complex m, 2H; 3'-H₂, 7'-H₂), 1.59-1.36 (complex m, 4H; 3'-H₂, 6'-H₂, 7'-H₂), 1.38 (s, 9H; 1'''-OC(C H_3)₃), 1.34 (s, 9H; 4-CO-OC(C H_3)₃), 1.27 (d, J=6.8 Hz, 3H; 3-C H_3), 1.19 (s, 3H; 4',5'-O-iPr), 1.15 (d, J=6.8 Hz, 3H; 3"- H_3), 1.14 (s, 3H; 4',5'-O-iPr), 0.78 (d, J=6.9 Hz, 3H; 3"'-(CH_3)₂), 0.74 ppm (d, J = 6.9 Hz, 3H; 3"'-(CH_3)₂); ¹³C NMR (67.5 MHz, CD_2Cl_2): $\delta\!=\!171.9,\,171.0,\,170.7,\,168.4,\,154.7,\,108.1,\,82.1,\,81.9,\,81.4,\,77.6,\,77.0,\,74.2,$ 67.2, 57.7, 52.8, 52.3, 48.2, 34.5, 31.3, 29.7, 28.2, 28.1 (3 C), 27.9, 27.8 (3 C), 27.1, 18.9, 18.7, 18.1, 17.4 ppm; IR (NaCl): $\tilde{v} = 3327$ (-OH, -NH), 1728 (C=O, ester), 1687 (C=O, urethane), 1665 (C=O, amide), 1554 (NO₂), 1520, 1381, 1369, 1315, 1219, 1157, 1074, 877, 847, 756 cm⁻¹; HRMS (FAB, NBA+NaI matrix): m/z calcd for $C_{33}H_{57}N_5O_{12}Na$: 738.3901 [M+Na]; found: 738.3908 [M+Na]⁺.

 $(3.S,5.S,6.S,2'S,4'S,5'R)-(-)-4-(tert-Butoxycarbonyl)-5-(O^1-tert-butyl-L-valinyl-L-alanyl)carbonyl-6-\{1'-[N,N-di-(tert-butoxycarbonyl)guanidino]-2'-hydroxy-4',5'-O-isopropylidenehexane-7'-yl\}-3-methyl-2-piperazinone$

(48): 10% Pd/C (54.4 mg, 51.1 μmol) and ammonium formate (34.3 mg, 54.4 μmol) were added to a solution of 46 (38.9 mg, 54.4 μmol) in MeOH (1.09 mL) under Ar at RT. After stirring for 2 h, the reaction mixture was filtered through a Celite pad, and the pad was washed with MeOH. The solvent was removed and the residue was dissolved in CHCl₃ (30 mL), washed with a saturated aqueous solution of NaHCO₃ (10 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to afford crude amine, which was used in the next reaction without further purification. The crude amine was dissolved in CH₃CN (1.09 mL) and then added 47 (25.3 mg, 81.6 μmol) and iPrNEt (14.2 μL, 81.6 μmol) were added at RT. After stirring for 60 min, the solution was evaporated under reduced pressure. Purification by flash chromatography on silica gel (CHCl₃/MeOH=100:1) gave 48 as a colorless amorphous solid (28.9 g,

57% for 2 steps). $R_f = 0.32$ (silica gel, CHCl₃/MeOH = 10:1); $[\alpha]_D^{22} = -25.6$ $(c=1.00, \text{CHCl}_3)$ ¹H NMR (300 MHz, CD₂Cl₂): $\delta=11.48$ (s, 1 H; 1'-NH- $C[NHCO-OC(CH_3)_3][NCO-OC(CH_3)_3])$, 8.64 (t, J=5.5 Hz, 1H; 1'-NH- $C[NHCO-OC(CH_3)_3][NCO-OC(CH_3)_3])$, 7.00 (br s, 1 H; 1-H), 6.81 (d, J = 0) 8.0 Hz, 1 H; 2"-NH), 6.57 (brs, 1 H; 2""-NH), 5.02-4.86 (brs, 1 H; 5-H), 4.71 (brs, 1H; 2"-H), 4.60-4.46 (brm, 1H; 3-H), 4.40 (m, 1H; 2"'-H), 4.31 (m, 1H; 2'-H), 4.05 (ddd, J=3.0, 5.8, 9.2 Hz, 1H; 4'-H), 3.88 (m, 1 H; 5'-H), 3.66 (m, 1 H; 6-H), 3.61 (ddd, J=2.5, 6.0, 13.8 Hz, 1 H; 1'- H_2), 3.34 (ddd, J = 5.0, 7.2, 13.8 Hz, 1 H; 1'- H_2), 2.15 (m, 1 H; 3"'-H), 1.72–1.48 (complex m, 4H; 3'-H2, 7'-H2, 7'-H2), 1.51 (s, 9H; 1'-NH-C[NHCO-OC- $(CH_3)_3][NCO-OC(CH_3)_3]), 1.45 (s, 18H; 1'-NH-C[NHCO-OC(CH_3)_3]-$ [NCO-OC(CH_3)₃], 4-CO-OC(CH_3)₃), 1.42 (d, J=7.0 Hz, 3H; 3-C H_3), 1.40 (s, 9H; 1'''-OC(C H_3)₃), 1.31 (s, 6H; 4',5'-O-iPr), 1.28 (d, J=7.0 Hz, 3H; 3"-H₃), 0.92 (d, J=7.0 Hz, 3H; 3"'-(CH_3)₂), 0.89 ppm (d, J=7.0 Hz, 3H; 3'''-(CH₃)₂); 13 C NMR (67.5 MHz, CD₂Cl₂): δ =171.7, 170.9, 170.0, 168.4, 163.0, 157.3, 154.4, 153.0, 107.9, 83.3, 81.9, 81.8, 81.6, 79.1, 77.0, 74.7, 69.1, 57.7, 52.8, 52.2, 48.5, 47.8, 35.0, 31.3, 29.7, 28.3, 28.1 (3 C), 28.0 (3C), 27.8 (3C), 27.8 (3C), 26.9, 25.6, 18.9, 18.2, 18.0, 17.5 ppm; IR (NaCl): $\tilde{v} = 3329$ (-NH), 3298 (-OH), 1726 (C=N, guanidyl), 1726 (C=O, ester), 1664 (C=O, urethane), 1654 (C=O, amide), 1620, 1568, 1369, 1327, 1157, 1142, 1055, 877, 849, 810 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{44}H_{78}N_7O_{14}$: 928.5607 [M+H]; found: 928.5644 [M+H]⁺.

(3S,5S,6S,2'S,3'R,4"R)-(-)-6-{1'-[N,3"-Di-(tert-butoxycarbonyl)-2"imino-imidazolidin-4"-yl]-2',3'-O-isopropylidenehexan-5'-yl}-4-(tert-butoxycarbonyl)-5-(O1-tert-butyl-L-valinyl-L-alanyl)carbonyl-3-methyl-2-piperazinone (50): Pyridine (4.90 μL, 60.3 μmol), methanesulfonic anhydride (34.0 mg, 0.197 mmol), and DMAP (one crystal) were added to a solution of 48 (5.6 mg, 6.03 µmol) in CH₂Cl₂ (0.603 mL) at 0°C under argon. After stirring for 30 min, the reaction mixture was quenched with a saturated aqueous solution of NH₄Cl (2.0 mL). Then the mixture was extracted with CHCl₃ (5 mL×3). The combined organic extracts were washed with a saturated aqueous solution of NH₄Cl (5.0 mL), a saturated aqueous solution of NaHCO₃ (5.0 mL), and brine (5.0 mL), dried over Na2SO4, filtered, and evaporated under reduced pressure to give the crude product, which was used in the next reaction without further purification. The crude mesylate was dissolved in MeCN (603 µL), DIPEA (2.60 µL) was added, and the mixture was heated to 65 °C and stirred for 4 h. The reaction mixture was then cooled to RT and concentrated to afford the crude material, which was purified by preparative TCL (CHCl₃/MeOH = 10:1) to give **50** as a colorless amorphous solid (4.5 mg, 82% for 2 steps).

Alternative method: PPh₃ (14.8 mg, 56.4 µmol), imidazole (4.82 mg, 70.5 μ mol), and I₂ (6.3 mg, 49.4 μ mol) were added to a solution of 48 (13.1 mg, 14.1 μmol) in CH₂Cl₂ (0.282 mL) 0 °C. After stirring for 60 min at 0°C, the reaction mixture was warmed to RT and stirred for further 2 h. Then the reaction mixture was diluted with CHCl₃ (5.0 mL). The mixture was washed with a saturated aqueous solution of NH₄Cl (3.0 mL) and brine (3.0 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash column chromatography $(CHCl_3/MeOH = 90:1)$ gave **50** as an amorphous solid (11.3 mg, 88%). $R_f = 0.32$ (silica gel, CHCl₃/MeOH = 10:1); $[\alpha]_D^{20} = -27.4$ (c = 0.75, CHCl₃); 1 H NMR (300 MHz, CD₂Cl₂): δ = 6.90 (br d, J = 7.3 Hz, 1 H; 2""-NH), 6.54 (brd, J = 8.6 Hz, 1H; 2""-NH), 6.20 (brs, 1H; 1-H), 4.69 (brs, 1 H; 5-H), 4.43 (dq, J = 6.8, 7.3 Hz, 1 H; 2"'-H), 4.42 (q, J = 6.8 Hz, 1 H; 3-H), 4.38 (m, 1H; 4"-H), 4.35 (dd, J=4.2, 8.6 Hz, 1H; 2""-H), 4.15–4.03 (complex m, 2H; 2'-H, 3'-H), 3.74 (dd, J = 8.5, 10.5 Hz, 1H; 5"- H_2), 3.66 (ddd, J=4.5, 5.5, 8.2 Hz, 1H; 6-H), 3.50 (dd, J=3.5, 10.5 Hz, 1H; 5"-H₂),2.15 (dqq, J = 6.5, 6.5, 8.6 Hz, 1H; 3""-H), 1.86 (m, 1H; 1'- H_2), 1.95–1.85 (complex m, 2H; 5'-H₂), 1.72-1.48 (complex m, 3H; 1'-H₂, 4'-H₂), 1.52 (s, 9H; 2"-N-CO-O-C(CH₃)₃), 1.48 (s, 9H; 3"-CO-O-C(CH₃)₃), 1.47 (s, 9H; 1''''-O-C(C H_3)₃), 1.42 (d, J=7.3 Hz, 3H; 3-C H_3), 1.42 (s, 9H; 4-CO-O-C- $(CH_3)_3$, 1.41 (s, 3 H; 2',3'-O-iPr), 1.30 (d, J=7.3 Hz, 3 H; 3'''-H₃), 1.29 (s, 3H; 2',3'-O-iPr), 0.92 (d, J=6.5 Hz, 3H; 3""-(CH_3)₂), 0.90 ppm (d, J=6.5 Hz, 3 H; 3''''-(C H_3)₂); 13 C NMR (75.0 MHz, CD₂Cl₂): $\delta = 171.5$ (C-1'''), 170.8 (C-1""), 169.8 (C-2), 168.5 (1 C, 5-CO-NH-), 155.7 (C-2"), 154.9 (1C, 4-CO-O-C(CH₃)₃), 152.5 (1C, N-CO-O-C(CH₃)₃), 152.0 (1C, 3"- $CO-O-C(CH_3)_3$, 108.5 (1 C, 2',3'-O-iPr), 83.0 (1 C, 2"-N-CO-O-C(CH₃)₃), 82.0 (1 C, 1""-O-C(CH₃)₃), 82.0 (1 C, 3"-CO-O-C(CH₃)₃), 82.0 (1 C, 4-CO-O-C(CH₃)₃), 77.0 (C-3'), 73.6 (C-2'), 57.8 (C-2""), 54.3 (C-4"), 54.2 (C- 5"), 53.4 (C-6), 53.2 (C-5), 52.3 (C-3), 48.8 (C-2"'), 33.5 (C-1'), 31.4 (C-3""), 29.9, 27.1 (each 1 C, 2',3'-O-iPr), 28.4 (C-5'), 28.3 (C-4'), 28.1 (3 C, 2"-N-CO-O-C(CH₃)₃), 28.1 (3 C, 4-CO-O-C(CH₃)₃), 28.0 (3 C, 3"-CO-O-C(CH₃)₃), 27.9 (3 C, 1""-O-C(CH₃)₃), 18.9 (1 C, 3""-(CH₃)₂), 18.0 (C-3""), 17.9 (1 C, 3-CH₃), 17.6 ppm (1 C, 3""-(CH₃)₂); IR (NaCl): \bar{v} =3319 (-OH; -NH), 1761 (C=N, guanidyl), 1732 (C=O, carboxylic acid), 1668 (C=O, amide), 1608 (C=O, amide), 1531, 1379, 1369, 1317, 1254, 1146, 999, 849, 769 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{44}H_{76}N_7O_{13}$: 910.5501 [M+H]; found: 910.5538 [M+H][†].

(3S,5S,6S,2'S,3'R,4''R)-(-)-5-(L-Valinyl-L-alanyl)carbonyl-6-[2',3'-dihydroxy-1'-(1"-carbamoyl-2"-iminoimidazolidinyl)heptan-5'-yl]-3-methyl-2piperazinone ((3'R)-4): p-Methoxyphenyl isocyanate (2.21 μL, 16.9 μmol) was added to a solution of 50 (13.1 mg, 14.1 µmol) in PhH (0.470 mL) at RT under argon. After stirring for 10 min, the reaction mixture was quenched with a saturated aqueous solution of NH₄Cl (1.0 mL). Then the mixture was extracted with CHCl₃ (5.0 mL×3). The combined organic extracts were dried over Na2SO4, filtered, and evaporated under reduced pressure to give the crude product, which was used in the next reaction without further purification. Cerium(IV) ammonium nitrate (15.8 mg, 28.2 μmol) was added to a solution of the crude material in CH₃CN/H₂O (1:1; 470 µL) at 0 °C. After stirring for 2.5 h, the reaction mixture was diluted with CHCl₃ (6.0 mL) and a saturated aqueous solution of NaHCO₃ (3.0 mL). The mixture was extracted with CHCl₃ (10 mL×3), the combined organic extracts were dried over Na₂SO₄, filtered, and evaporated under reduced pressure to give the crude product, which was used in the next reaction without further purification. The crude material was dissolved in TFA/H₂O (3:1) (470 µL) and the reaction mixture was stirred for 5 h at RT. The reaction mixture was then concentrated and purified by preparative HPLC (Develosil C30 UG-5, $20\varphi \times 250$ mm, 15 % MeOH in H₂O/with 0.1 % TFA, 8.0 mLmin⁻¹, UV at 210 nm) to give (3'R)-4 as a colorless oil (7.3 mg, 60 % for 3 steps). t_R = 9.71 min (Analytical HPLC, Develosil C30 UG-5, 4.6 $\phi \times 250 \,\mathrm{mm}$, 0.1% TFA/15% MeOH/H₂O, 1.0 mL min⁻¹, 210 nm); $[\alpha]_D^{27} = -25.7$, ≈ -13.8 (c = 0.10, MeOH), $[\alpha]_D^{20} = -25.7$ -10.7 (c = 0.10, 1% TFA in MeOH) (natural: $[\alpha]_D^{26} = -7.8$ (c = 0.10, MeOH)]; ¹H NMR (400 MHz, D₂O with TFA): $\delta = 4.52$ (d, J = 4.5 Hz, 1H; 5-H), 4.44 (q, J=7.2 Hz, 1H; 2"'-H), 4.25 (dddd, J=5.8, 5.8, 6.0, 8.4 Hz, 1H; 4"-H), 4.21 (dd, J=8.4, 8.4 Hz, 1H; 5"- H_2), 4.10 (q, J=7.2 Hz, 1H; 3-H), 4.08 (d, J=6.0 Hz, 1H; 2""-H), 3.99 (ddd, J=2.5, 4.5, 11.2 Hz, 1H; 6-H), 3.78 (dd, J=5.8, 8.4 Hz, 1H; 5"- H_2), 3.61 (ddd, J=2.1, 5.8, 10.0 Hz, 1 H; 2'-H), 3.48 (ddd, J=3.0, 5.8, 10.0 Hz, 3'-H), 2.12 (dsep, $J\!=\!6.0,\,6.8$ Hz, 1 H; 3""-H), 1.92 (ddd, $J\!=\!2.1,\,6.0,\,14.0$ Hz, 1 H; 1'- H_2), 1.75 (ddd, J = 5.8, 10.0, 14.0 Hz, 1H; 1'- H_2), 1.74 (m, 1H; 4'- H_2), 1.70 (m, 1H; 5'- H_2), 1.59 (m, 1H; 5'- H_2), 1.58 (q, J = 7.2 Hz, 3H; 3- CH_3), 1.43 (m, 1H; 4'- H_2), 1.38 (d, J=7.2 Hz, 3H; 3"'- H_3), 0.92 ppm (d, J=6.8 Hz, 6H; 3""-(CH3)2); 13C NMR (100 MHz, D2O with TFA), reference (0 and 200 ppm): $\delta = 177.8$ (C-1""), 177.1 (C-1""), 170.8 (C-2), 167.5 (1 C, 5-CO-NH), 159.0 (C-2"), 158.4 (1 C, 1"-CO-NH₂), 76.7 (C-3'), 74.2 (C-2'), 61.4 (C-2""), 59.7 (C-5), 54.8 (C-3), 54.0 (C-4"), 53.4 (C-6), 53.1 (C-5"), 52.1 (C-2"'), 38.7 (C-1'), 32.3 (C-3""), 30.4 (C-5'), 30.1 (C-4'), 20.9 (1 C, 3""- $(CH_3)_2$, 20.1 (1 C, 3""- $(CH_3)_2$), 19.2 (C-3""), 16.5 ppm (1 C, 3- CH_3); IR (KBr): $\tilde{v} = 3427$ (-OH), 3217 (-NH), 1730 (C=O, carboxylic acid), 1672 (C=O, amide), 1562, 1427, 1201, 1138, 841, 800, 723 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{23}H_{41}N_8O_8$: 557.3047 [M+H]; found: 557.3036 $[M+H]^+$; see the Supporting Information for the NMR spectra.

(25,35,6R,75)-(+)-Ethyl-2,3-bis(tert-butoxycarbonylamino)-9-(tert-butyl-diphenylsiloxy)-6,7-O-isopropylidenenonanate (84): 10 % Pd/C (146 mg, 137 μmol) was added to a solution of 43 (156 mg, 274 μmol) in EtOAc (5.48 mL) under H₂ at RT. After stirring for 1 h, the reaction solution was filtered through a Celite pad to remove the catalyst, and the pad was washed with EtOAc. The solvent was removed to give crude diamine compound, which was used in the next reaction without further purification. The crude diamine was dissolved in EtOAc (5.48 mL), and then Boc₂O (598 mg, 2.74 mmol) was added, and the mixture was heated to 60 °C with stirring. After 45 min, the reaction solution was cooled to RT and diluted with EtOAc (50 mL). The mixture was washed with brine (10 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=

Compound (3'S)-4: See the Supporting Information for details.

10:1) gave **84** as a colorless oil (185 mg, 91 % in 2 steps). $R_f = 0.55$ (silica gel, hexane/EtOAc=2:1); $[\alpha]_D^{27} = +1.29$ (c=0.75, CHCl₃); ¹H NMR (270 MHz, CD_2Cl_2): $\delta = 7.70-7.61$ (complex m, 4H; 9-O-Si(Ph)₂C(CH_3)₃), 7.47-7.34 (complex m, 6H; 9-O-Si(Ph)₂C(CH₃)₃), 5.37 (m, 1H; 2-NH), 4.77 (brd, J=7.9 Hz, 1H; 3-NH), 4.44-4.27 (brm, 1H; 2-H), 4.27 (m, 1H; 7-H), 4.20 (q, J = 6.9 Hz, 2H; 1-OC H_2 CH₃), 3.99–3.88 (br m, 1H; 3-H), 3.98 (dd, J=5.9, 12.5 Hz, 1H; 6-H), 3.80 (t, J=5.6 Hz, 2H; 9-H₂), 1.82-1.61 (complex m, 3H; 4-H₂, 8-H₂), 1.59-1.32 (complex m, 3H; 5-H₂, 8- H_2), 1.44 (s, 9H; 3-CO-OC(C H_3)₃), 1.43 (s, 9H; 2-CO-OC(C H_3)₃), 1.34, (s, 3H; 6,7-O-iPr), 1.29 (s, 3H; 6,7-O-iPr), 1.26 (t, J=6.9 Hz, 3H; 1-OCH₂CH₃), 1.04 ppm (s, 9H; 9-O-Si(Ph)₂C(CH₃)₃); ¹³C NMR (67.5 MHz, CD_2Cl_2): $\delta = 170.9$, 155.8, 155.5, 135.6 (2 C), 135.6 (2 C), 134.0, 133.9, 129.7 (2 C), 127.7 (4 C), 107.8, 79.9, 79.5, 77.8, 74.6, 74.4, 61.6, 61.2, 60.3, 57.2, 32.7, 28.5, 28.2 (3 C), 28.1 (3 C), 27.0, 26.7 (3 C), 25.8, 20.9, 19.1, 14.1 ppm; IR (NaCl): $\tilde{v} = 3365$ (-NH), 1741 (C=O, ester), 1707 (C=O, urethane), 1512, 1367, 1248, 1219, 1169, 1111, 1086, 1022, 868, 823, 756, 704 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{40}H_{62}N_2O_9SiNa$: 765.4122 [M+Na]; found: 765.4144 [M+Na]+.

$(2.S,3.S,6R,7S,)-(-)-(O^1-tert$ -Butyl-L-valinyl-L-alanyl)-2,3-bis(tert-butoxy-carbonylamino)-9-(tert-butyldiphenylsiloxy)-6,7-O-isopropylidenenona-

nate (51): Lithium hydroxide monohydrate (105 mg, 2.50 mmol) was added to a solution of 84 (185 mg, 250 μ mol) in MeOH/THF/H₂O (2:2:1; 4.99 mL) at RT. After stirring for 30 min, a saturated aqueous solution of NH₄Cl (5.0 mL) was added to the reaction mixture and then it was extracted with CHCl₃ (10 mL×3). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure to give the crude product, which was used in the next reaction without further purification. The residue was dissolved in $CH_{2}Cl_{2}$ (4.99 mL) and then $\boldsymbol{19}$ (91.4 mg, 374 $\mu mol), ADIPEA (69.4 <math display="inline">\mu L,$ $399\ \mu mol),$ and PyBOP (208 mg, 399 $\mu mol)$ were added at RT under Ar. After stirring for 3 h, the reaction was then quenched with a saturated aqueous solution of NH₄Cl (5.0 mL). The organic layer was separated and aqueous layer was extracted with CHCl₃ (10 mL×2). The combined organic extracts were washed with a saturated aqueous solution of NaHCO₃ (10 mL), dried over Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by flash chromatography on silica gel (hexane/EtOAc=4:1) gave 51 as a colorless solid (210 mg, 89% for 2 steps). $R_f = 0.61$ (silica gel, hexane/EtOAc=1:1); m.p. 133–137 °C (CHCl₃); $[\alpha]_D^{26} = -22.3$ (c=1.00, CHCl₃; ¹H NMR (270 MHz, CDCl₃ $\delta =$ 7.70-7.63 (complex m, 4H; 9-O-Si(Ph)₂C(CH₃)₃), 7.46-7.32 (complex m, 6H; 9-O-Si(Ph)₂C(CH₃)₃), 7.17 (m, 1H; 2'-NH), 6.62 (brd, J=8.6 Hz, 1 H; 2"-NH), 5.70 (br d, J = 5.9 Hz, 1 H; 2-NH), 5.39 (br d, J = 7.9 Hz, 1 H; 3-NH), 4.40 (dd, J = 4.6, 8.9 Hz, 1H; 2"-H), 4.37 (m, 1H; 2'-H), 4.27 (m, 1H; 2-H), 4.25 (apparent t, J=5.9 Hz, 1H; 7-H), 3.97 (dd, J=5.6, 12.9 Hz, 1H; 6-H), 3.86–3.77 (brm, 1H; 3-H), 3.80 (t, J=6.3 Hz, 2H; 9-H₂), 2.15 (m, 1H; 3"-H), 1.82 (m, 1H; 8-H₂), 1.71-1.58 (complex m, 3H; 5-H₂, 8-H₂), 1.52-1.40 (complex m, 2H; 4-H₂), 1.46 (s, 9H; 3-CO-OC- $(CH_3)_3$, 1.44 (s, 9H; 2-CO-OC($CH_3)_3$), 1.43 (s, 9H; 1"-OC($CH_3)_3$), 1.39 $(d, J=7.6 Hz, 3H; 3'-H_3), 1.35 (s, 3H; 6,7-O-iPr), 1.29 (s, 3H; 6,7-O-iPr),$ 1.04 (s, 9H; 9-O-Si(Ph)₂C(C H_3)₃), 0.91 (d, J = 6.6 Hz, 3H; 3"-(C H_3)₂), 0.88 ppm (d, J = 6.9 Hz, 3H; 3"-(CH_3)₂); ¹³C NMR (67.5 MHz, CDCl₃): δ = 171.5, 170.8, 170.4, 156.4, 155.7, 135.4 (2C), 135.3 (2C), 133.6, 133.5, 129.4, 129.4, 127.5 (2C), 127.4 (2C), 107.4, 81.7, 80.0, 79.4, 77.6, 74.2, 60.8, 60.2, 57.3, 53.6, 49.2, 32.6, 31.2, 29.3, 28.4, 28.4 (3 C), 28.2 (3 C), 27.9 (3 C), 26.9, 26.7 (3 C), 25.7, 19.0, 18.8, 17.7, 17.5 ppm; IR (NaCl): $\tilde{v} = 3329$ (-NH), 1720 (C=O,ester), 1691 (C=O, urethane), 1643 (C=O, amide), 1523, 1454, 1392, 1367, 1248, 1221, 1169, 1113, 1088, 872, 823, 702 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{50}H_{81}N_4O_{11}Si$: 941.5671 [M+H]; found: 941.5662 $[M+H]^+$.

(2S,3S,6R,7S,4'R)-(-)-(L-Valinyl-L-alanyl)-2,3-diamino-8-(1'-carbamoyl-2'-iminoimidazolidin-4'-yl)-6,7-dihydroxy-octanate (2): $t_{\rm R}$ =16.8 min (Analytical HPLC, Develosil C30 UG-5, 4.6 $\phi \times 250$ mm, 0.1% TFA/10% MeOH/H₂O, 1.0 mL min⁻¹, 210 nm); $[\alpha]_{\rm B}^{\rm 28}$ =+8.5 (c=0.10, 1% TFA in MeOH), {natural: $[\alpha]_{\rm D}^{\rm 27}$ =+13.7 (c=0.10, 1% TFA in MeOH)}; $^{\rm 1}$ H NMR (400 MHz, 1% TFA in D₂O): δ =4.41 (q, J=7.3 Hz, 1H; 2"-H), 4.26 (d, J=3.5 Hz, 1H; 2-H), 4.19 (dddd, J=5.9, 6.0, 6.0, 8.9 Hz, 1H; 4'-H), 4.16 (dd, J=8.9, 14.5 Hz, 1H; 5'-H2), 4.12 (d, J=5.9 Hz, 1H; 2"'-H), 3.78 (ddd, J=3.5, 5.2, 8.6 Hz, 1H; 3-H), 3.72 (dd, J=6.0, 14.5 Hz, 1H; 5'-H2), 3.56 (ddd, J=2.2, 6.0, 10.0 Hz, 1H; 7-H), 3.46 (ddd, J=2.0, 5.5, 9.5 Hz,

1H; 6-H), 2.11 (dsep, J=5.9, 6.9 Hz, 1H; 3"'-H), 1.98 (dddd, J=4.5, 5.2, 10.0, 14.5 Hz, 1 H; 4- H_2), 1.87 (ddd, J=2.2, 5.9, 14.0 Hz, 1 H; 8- H_2), 1.76 (ddt, J=5.0, 8.6, 14.5 Hz, 1 H; 4- H_2), 1.72 (dddd, J=2.0, 5.0, 10.0, 14.5 Hz, 1H; 5- H_2), 1.71 (ddd, J = 6.0, 10.2, 14.0 Hz, 1H; 8- H_2), 1.44 (ddt, J=4.5, 9.5, 14.5 Hz, 1H; 5- H_2), 1.35 (d, J=7.3 Hz, 3"- H_3), 0.89 ppm (d, $J = 6.9 \text{ Hz}, 6 \text{ H}; 3''' - (CH_3)_2); {}^{13}\text{C NMR} (100 \text{ MHz}, 1 \% \text{ TFA in } D_2\text{O}); \delta =$ 177.7 (C-1"'), 177.3 (C-1"), 167.9 (C-1), 159.0 (C-2'), 158.4 (1 C, 1'-CO-NH₂), 76.2 (C-6), 74.3 (C-7), 61.5 (C-2"), 56.2 (C-2), 54.7 (C-3), 54.0 (C-4'), 53.1 (C-5'), 52.5 (C-2"), 38.8 (C-8), 32.3 (C-3""), 29.8 (C-5), 28.5 (C-4), 20.9 (1 C, 3"'-(CH₃)₂), 20.0 (1 C, 3"'-(CH₃)₂), 19.3 ppm (C-3"); IR (KBr): \tilde{v} = 3365 (-OH, -NH), 1734 (C=N, guanidyl), 1732 (C=O, carboxylic acid), 1672 (C=O, amide), 1608 (C=O, amide), 1531, 1379, 1369, 1317, 1254, 1146, 999, 849, 769 cm⁻¹; HRMS (FAB, NBA matrix): m/z calcd for $C_{20}H_{39}N_8O_7$: 503.2942 [M+H]; found: 503.2944 [M+H]⁺; see the Supporting Information for detailed procedures, data (for intermediates) and NMR spectra for synthetic 2.

Acknowledgements

This work was supported by the Grant for the 21st Century COE Program, Ministry of Education Culture, Sports, Science and Technology (18790022). We also thank A. Nakagawa, C. Sakabe, N. Sato, and Y. Kawauchi (all Kitasato University) for various instrumental analyses.

- [1] a) M. Iwatsuki, R. Uchida, H. Yoshijima, H. Ui, K. Shiomi, A. Matsumoto, Y. Takahashi, A. Abe, H. Tomoda, S. Ōmura, J. Antibiot. 2008, 61, 222–229; b) S. Ōmura, H, Tomoda, A. Abe, M. Iwatsuki, Y. Takahashi, PCT WO 2006/304843A1, 2006; c) S. Ōmura, H, Tomoda, A. Abe, M. Iwatsuki, Y. Takahashi, PCT WO 2005/090384A1, 2005.
- [2] R. G. Lingington, M. Robertson, A. Gauthier, B. B. Finlay, R. V. Soest, R. J. Andersen, Org. Lett. 2002, 4, 4089–4092.
- [3] M. Iwatsuki, R. Uchida, H. Yoshijima, H. Ui, K. Shiomi, Y.-P. Kim, T. Hirose, T. Sunazuka, A. Abe, H. Tomoda, S. Ōmura, J. Antibiot. 2008, 61, 230–236.
- [4] A. Abe, U. Heczko, R. G. Hegele, B. B. Finlay, J. Exp. Med. 1998, 118, 1907–1916.
- [5] For a review, see: G. R. Cornelis, F. V. Gijsegem, Annu. Rev. Microbiol. 2000, 54, 735–774.
- [6] a) For a review, see: C. J. Hueck, Microbiol. *Mol. Biol. Rev.* 1998, 62, 379–433; b) K. M. Anna, N. Roland, U. Hanna, W. W. Hans, M. Elofsson, *Chem. Biol.* 2003, 10, 241–249.
- [7] S. Ōmura, Kekkaku 2000, 75, 599-602.
- [8] S. Tsuchiya, T. Sunazuka, T. Hirose, R. Mori, T. Tanaka, M. Iwatsu-ki, S. Ōmura, Org. Lett. 2006, 8, 5577–5580.
- [9] There are no examples for the stereoselective preparation of 5,6-disubstituted piperazinones, and only two examples of the preparation of a racemate and mixture of diastereomers have been reported, see: a) M. Nyerges, A. Arany, I. Fejes, P. W. Groundwater, W. Zhang, D. Bendell, R. J. Anderson, L. Töke, *Tetrahedron* 2002, 58,

- 989–995; b) A. Viso, R. F. de la Pradilla, A. Flores, A. García, M. Tortosa, M. L. López-Rodríguez, *J. Org. Chem.* **2006**, *71*, 1142–1148
- [10] NOE data are described in the Supporting Information (Figure S1).
- [11] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001, 113, 2056–2075; Angew. Chem. Int. Ed. 2001, 40, 2004–2021; b) Y. Luo, M. A. Blaskovich, G. A. Lajoie, J. Org. Chem. 1999, 6, 1587–1588; c) H. Han, J. Yoon, K. D. Janda, J. Org. Chem. 1998, 63, 2045–2048.
- [12] O. Cabon, D. Buisson, M. Larcheveque, R. Azerad, *Tetrahedron: Asymmetry* 1995, 6, 2211–2218.
- [13] a) A. Abdel-Magid, L. N. Pridegen, D. S. Eggleston, I. Lantos, J. Am. Chem. Soc. 1986, 108, 4595-4602; b) D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127-2129.
- [14] J. Farras, X. Ginesta, P. W. Sutton, J. Taltavull, F. Egelar, P. Romea, F. Urpi, J. Vilarrasa, *Tetrahedron* 2001, 57, 7665–7674.
- [15] The configurational integrity of both piperazinones was evaluated by detailed ¹H NMR spectroscopy; see the Supporting Information. (Figures S2 and S3)
- [16] a) C. Xiong, W. Wang, V. J. Hruby, J. Org. Chem. 2002, 67, 3514–3517; b) Y. G. Gololobov, I. N. Zhmurova, L. F. Kasukhin, Tetrahedron 1981, 37, 437–472.
- [17] See Figure S4 in the Supporting Information.
- [18] C. Bonini, L. Chiummiento, M. Pullez, G. Solladié, F. J. Colobert, J. Org. Chem. 2004, 69, 5015-5022.
- [19] The stereochemistry of the anti-diol unit was checked by NOE observation of compound 38; see the Supporting Information. (Figure S5)
- [20] No other diastereomers were detected by ¹H NMR spectroscopy.
- [21] J. A. Marshall, B. G. Shearer, S. L. Crooks, J. Org. Chem. 1987, 52, 1236–1245.
- [22] S. P. Brown, M. P. Brochu, C. J. Sinz, D. W. C. MacMillan, J. Am. Chem. Soc. 2003, 125, 10808–10809.
- [23] The stereochemistry of the newly introduced hydroxy group was checked by mean of the modified Mosher's method; see the Supporting Information. (Scheme S1)
- [24] a) M. T. Reetz, K. Kesseler, J. Org. Chem. 1985, 50, 5434-5436;
 b) H. Hagiwara, K. Kimura, H. Uda, J. Chem. Soc. Perkin Trans. 1
 1992, 693-700;
 c) C. Mukai, M. Miyakawa, M. Hanaoka, J. Chem. Soc. Perkin Trans. 1
 1997, 913-917.
- [25] The stereochemistry of the syn-diol unit was checked by NOE observation of a derivative from 42; see the Supporting Information. (Scheme S2)
- [26] The azidolysis of Ns-aziridine in the real system gave the α -azido adduct with exceptional regioselectivity (>20:1= α/β -N₃) due to the steric hindrance of the isopropylidene acetal (the model system gave $3.7:1=\alpha/\beta$ -N₃).
- [27] a) Y. Kojima, T. Nakajima, T. Ashizawa, S. Kezuka, T. Ikeno, T. Yamada, *Chem. Lett.* 2004, 33, 614–615; b) Y. Kojima, T. Nakajima, T. Ikeno, T. Yamada, *Synthesis* 2004, 12, 1947–1950.
- [28] B. Drake, M. Patek, M. Lebl, Synthesis 1994, 2, 579-582.

Received: May 28, 2008 Published online: July 24, 2008