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A divergent and novel protocol for the preparation of both pyrido[2,3,4-kl]acridine and pyrido[4,3,2-kl]acridine alkaloids was devel-
oped. This method featured the remote palladium-catalyzed reductive cyclization with Mo(CO)6 as reductant. A wide range including 
three types of nitro arenes were tolerated and afforded corresponding products in good to excellent yields. This method has been 
successfully applied to the total synthesis of norsegoline, styelsamine C and the skeleton of necatorone. 
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Background and Originality Content 

Pyridoacridine alkaloids are a series of structurally fascinating 
tetracyclic aromatic compounds sharing the pyridine ring fused ac-
ridine framework. There are total 15 isomers according to the dif-
ferent ring systems distributed in a broad range of functional prod-
ucts, but only two isomers sharing two common bonds are well-
known owing to their existence in natural alkaloids (Figure. 1).1 Pyr-
ido[2,3,4-kl]acridine is a large family and more than 100 of these 
polycyclic heteroaromatics have been isolated from sessile marine 
invertebrates.2 Correspondingly, pyrido[4,3,2-kl]acridine is a quite 
small family and only discovered in nature as the necatorone and 
its dimer from fungi Lactarius necator.3 
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Figure. 1 Selective natural products containing pyrido[2,3,4-kl]acri-
dine or pyrido[4,3,2-kl]acridine skeleton. 

Both two types of pyridoacridine alkaloids have received enor-
mous attentions due to the unique biological properties and many 
efforts have been devoted to construct these pyridoacridine frame-
works, involving condensation of amino-ketone substrates,4 cycliza-
tion of anionic nucleophilic addition,5 electrocyclic ring closure,6 Ca-
dogan reaction7 and biomimetic cascade reaction.8 However, these 
methods suffered from the drawbacks such as use of harsh condi-
tions, prolonged reaction times and especially the narrow substrate 
scopes and could not be applied in different ring systems. Accord-
ingly, for further screening biological evaluation, the development 
of a divergent and efficient access for both pyrido[2,3,4-kl]acridine 
and pyrido[4,3,2-kl]acridine analogues is still of great interest. 

In past decades, the use of nitroarenes or nitroalkenes to syn-
thesize N-heterocycles via transition-metal catalyzed reductive cy-
clization have progressed rapidly, which lead to directly generate 
the final products and save several synthetic steps.9 Carbon monox-
ide is the most frequently employed reductant due to the good se-
lectivity and atomic economy.10 Recently, CO-surrogates were de-
veloped to overcome the limitation of hazardous pressurized gas 
manipulation,11 but most cases focus on the construction of 5-
membered ring containing heterocycles. As part of our efforts to 
develop N-heterocycles synthesis, we have demonstrated that pal-
ladium-catalyzed reductive cyclization with Mo(CO)6 can success-
fully applied in nitroalkene system to afford indole alkaloids.11a In-
spired by the pioneered reports and our previous work, we pro-
posed that the tetracyclic pyridoacridine skeleton could be 
achieved by reductive cyclization of nitro biarenes. To the best of 
our knowledge, a relative remote reductive cyclization of nitro 
biarenes to construct new pyridine ring of polycyclic heteroaro-
matic has never been developed. Furthermore, this method pro-
vides a useful synthetic tool to access diverse types of pyridoacri-
dines (Scheme. 1). 
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Scheme 1 Reported and current work on construction of pyridoacri-
dine from nitro-biarenes. 

Results and Discussion 

Table 1 Optimization of palladium-catalyzed reductive cyclization of 
1a.a  

NO2

N N

HN

1a 2a

Pd cat, ligand
reductant, solvent

Me Me

 
Entry Reductant Catalyst/Ligand Solvent Yield[d] % 

1 HCOOPh Pd(OAc)2/phen CH3CN 38 
2 Cr(CO)6 Pd(OAc)2/phen CH3CN 36 
3 W(CO)6 Pd(OAc)2/phen CH3CN 42 
4 Mo(CO)6 Pd(OAc)2/phen CH3CN 56 
5 Mo(CO)6 Pd(CH3CN)2Cl2/phen CH3CN 70 
6 Mo(CO)6 [Pd(Phen)2][BF4]2/ phen CH3CN 62 
7 Mo(CO)6 Pd(dppf)Cl2/phen CH3CN 63 
8 Mo(CO)6 Pd(CH3CN)2Cl2/tmphen CH3CN 68 
9 Mo(CO)6 Pd(CH3CN)2Cl2/phen DMF 62 
10 Mo(CO)6 Pd(CH3CN)2Cl2/ phen DCE 72 
11[b] Mo(CO)6 Pd(CH3CN)2Cl2/ phen DCE 65 
12[c] Mo(CO)6 Pd(CH3CN)2Cl2/ phen DCE 54 

[a] Reaction conditions: 1a (0.1 mmol), Reductant (0.1 mmol), Pd catalyst 
(10 mol %), Ligand (20 mol %), solvent (2 mL), 120 oC, 3h; [b] The reaction 
was carried out at 140 oC; [c] 5 mol % Pd(CH3CN)2Cl2, 10 mol % phen used; 
[d] isolated yield. phen = 1,10-phenanthroline, tmphen = 3,4,7,8-tetrame-
thyl-1,10-phenanthroline, DCE = 1,2-dichloroethane, DMF = dimethyforma-
mide. 

In initial studies, the reductive cyclization of nitro phene-quin-
oline biarene 1a was carried out in the presence of a catalytic 
amount of Pd(OAc)2 and phenanthroline with phenyl formate as re-
ductant in acetonitrile at 120oC for 3h. To our delight, the desired 
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pyrido[2,3,4-kl]acridine 2a was furnished in 38% yield (Table 1, en-
try 1). To improve the yields, different reductants, palladium cata-
lysts and ligands were tested as summarized in Table 1. It was found 
that Mo(CO)6 was most suitable for this reaction and other CO-sur-
rogates gave lower yields (Table 1, entries 2-4). All the commer-
cially available palladium catalysts were active for this reaction and 
Pd(CH3CN)2Cl2 afforded the best result (Table 1, entries 5-7). The 
ligand with bulky substituent was less detrimental than phenan-
throline (Table 1, entry 8). Solvent screening was also conducted 
and DCE was optimal to other solvents. (Table 1, entries 9, 10). In-
creasing the reaction temperature to 140 oC or reducing the cata-
lysts loading (5% mol palladium, 10% mol ligand) were proved to be 
negative for the conversion (Table 1, entries 11, 12). 

This result motivated us to further investigate the substrate 
scope of this transformation. Gratifyingly, the desired pyrido[2,3,4-
kl]acridine 2 were obtained in medium to good yields and the re-
sults are summarized in Table 2. A comparison of the substituents 
on phenyl ring showed that those substrates with electron donating 
substituents produced higher yields than electron withdrawing 
substituents, which could be ascribed to that electron deficient 
substrates were disfavored for this electrophilic reductive cycliza-
tion. To demonstrate the utility of this method, reactions of 1a and 
1b on gram scale (4 mmol) were carried out and the products were 
afforded in reliable yield (Table 2, 2a and 2b). 

Table 2 Substrate scope of reductive cyclization with phene-quinoline 
N-biarene 1a, b 
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[a] Reaction conditions: 1 (0.1 mmol), Mo(CO)6 (0.1 mmol), 
Pd(CH3CN)2Cl2, (10 mol %), Phen (20 mol %), DCE (2 mL), 120 oC, 3h. 
[b] isolated yield. [c] Reaction was carried out on scale of 4 M. 

Next, the transformation from isoquinoline-derived N-biarene 
3 to pyrido[4,3,2-kl]acridine 4 was further investigated. Different 
palladium sources, ligands and solvents were also screened and the 
combination of Pd(OAc)2 and phenanthroline in DCE was proved to 
the optimal for this substrate (see Supporting information). The 
substrate scope investigation was also conducted and the results 
suggest that the substituents on phenyl ring has similar impact on 
the reaction efficiency as quinoline-derived substrates (Table 3). 

Moreover, it should be noted that the carbon-halogen bonds were 
tolerated under the optimal condition, which assures further func-
tionalization through transition-metal catalyzed cross-coupling re-
actions. 

Table 3 Substrate scope of reductive cyclization with phene-isoquino-
line N-biarene 3.a, b 
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[a] Reaction conditions: 3 (0.1 mmol), Mo(CO)6 (0.1 mmol), Pd(OAc)2 (10 
mol %), Phen (20 mol %), DCE (2 mL), 120 oC, 3h; [b] isolated yield. 

Table 4 Substrate scope of reductive cyclization with phene-dihydroi-
soquinoline N-biarene 5.a, b 
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[a] Reaction conditions: 3 (0.1 mmol), Mo(CO)6 (0.1 mmol), Pd(OAc)2 (10 
mol %), Phen (20 mol %), DCE (2 mL), 120 oC, 3h; [b] isolated yield. [c] Re-
action was carried out on scale of 4 M. 

To our surprise, when the nitro phene-dihydroisoquinoline N-
biarene 5 was tested for this reaction, the desired tetracyclic aro-
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matic product 6 was obtained (Table 4), and the yields were signif-
icantly higher than the products from isoquinoline derived N-
biarene 3. Reactions of 5a and 5b on large scale were also tested 
and the corresponding products were obtained in excellent yields. 
The different reactive activity for the two substrates was rational-
ized by density functional theory (DFT) calculations12

, and the dis-
tribution of Mulliken atomic charge13 on carbon 8 of 5l (-0.657) 
showed higher electronic density than on the corresponding car-
bon of 3h (-0.488) (Figure. 2), which is favored for electrophilic cy-
clization process to form hydroxyl intermediate (D in Scheme 2). By 
analogy with the previously reported mechanism10b, 11a and our 
expermental observation, a tentative mechanism was proposed 
with compound 5l: First, in the presenc of Mo(CO)6 and 
phenanthroline, Pd(OAc)2 converts to palladium CO complex A. 
Afterward, complex A reacts with the nitro-biarene 5l through 
single-electron transfer and afforded radical anion B. Third, 
reduction of B provides the nitroso intermediate C, which plays the 
role of aminating species and affords the N-hydroxy tetracyclic 
heterocycle D. Finally, intermediate D was transformed into desired 
product 6l in this reductive system (Scheme 2). To confirm this 
mechanism, nitroso N-biarene 5l’ was synthesized and subjected to 
the optimized conditions, and the expected product 6a was 
obtained in 91 % yield (Scheme 3). 

 
Figure. 2 Mulliken atomic charge distribution for 3h and 5l. 
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Scheme 2 Proposed reaction mechanism. 

N

HN
120 °C, 91%

Mo(CO)6, DCE

N

ON
Pd(OAc)2, phen

5l' 6l  
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To further demonstrate the synthetic utility of this transfor-
mation, total synthesis of three natural products containing the two 
types of skeleton were investigated. Synthesis of natural alkaloid 
with pyrido[2,3,4-kl]acridine starting from nitrobenzoate 7. The 
chloroquinoline 9 was prepared in a three-step procedure via Mel-
drum derivative and quinolinone 8 in 65% overall yield according to 
the literature.14 Next, the cross-coupling reaction of 9 with phenyl-
boronic acid gave the targeted phene-quinoline N-biarene 10 in 85% 
yield. Fortunately, the carboxyl group kept intact when 10 was sub-
jected to the optimal condition and norsegoline 11 was successfully 
afforded in 79% yield. Moreover, after reduction of the ester group 
and the following oxidation, the known compound 127b was pro-
duced (Scheme 4). Thus, starting from commercially available nitro-
benzoate 7, we accomplished the total synthesis of norsegoline and 
formal synthesis of styelsamine C in five steps and seven steps, the 
overall yields were 44% and 29% respectively. Following the litera-
ture procedures, aldehyde 12 could be demethylated to give the 
styelsamine C in one step.7b 

HN

OH
N

O

H

13 styelsamine C

O
NH2

7

NO2

1. Meldrum's acid
HC(OEt)3, 90°C
2. microwave

PCl5

NO2

O H
N

O
8

O

O

O

O

90°C, 79%

NO2

O
N

Cl
9

O

O

Ph(PPh3)4, K2CO3

EtOH, toluene
reflux, 85%

B(OH)2

NO2

O
N

O

O DCE, 120°C
phen, Mo(CO)6
Pd(CH3CN)2Cl2

79%
HN

O
N

11 
norsegoline10

Ph2O
83%, two steps

O

O

HN

O
N

O

H
1. DIBAL-H, 
DCM, 0°C
2. MnO2, rt

12

67%, two steps

Ref. [7b]

POCl3

 
Scheme 4 Total synthesis of norsegoline and formal synthesis of styelsamine 
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Scheme 5. Synthesis of necatorone skeleton. 

The synthesis of natural product with pyrido[4,3,2-kl]acridine 
skeleton was also investigated. The amide 16 was first obtained 
from commercially available phenylethylamine derivative 14 and 2-
nitrobenzoic acid 15 in 85% yield. Subsequent Bischler- Napieralski 
reaction afforded the dihydroisoquinoline N-biarene 17 in 79% 
yield. Next, the catalytic reductive cyclization of 17 successfully 
formed the new pyridine ring and the pyrido[4,3,2-kl]acridine prod-
uct 18 was obtained in 83% yield. Finally, after aromatization and 
oxidation, the skeleton of necatorone15 was acquired in five steps 
and 15% overall yield (Scheme 5). 
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Conclusions 

In summary, we have developed a divergent and novel method 
to synthesize two types of pyridoacridine alkaloids through palla-
dium-catalyzed reductive cyclization with Mo(CO)6 as reductant. 
This transformation has a wide scope demonstrated by the prepa-
ration of total 34 analogues of both pyrido[2,3,4-kl]acridine and 
pyrido[4,3,2-kl]acridine skeletons. The potential of employing this 
method as a valuable synthetic tool to access polycyclic N-hetero-
cycles is attractive and intriguing due to the versatility of N-hetero-
cycle family in marine natural products, and we have demonstrated 
it by the accomplishment of total synthesis of norsegoline, styelsa-
mine C and the necatorone skeleton. 

 

Experimental 

In a 10 mL Schlenk tube, N-biarene (1 mmol, 1 equiv), Pd cata-
lyst  (0.1 mmol, 10 mol%), 1,10-phenanthroline (0.2 mmol, 20 
mol%) and Mo(CO)6 (1 mmol, 1 equiv) was dissolved in DCE (2 ml) 
under nitrogen atmosphere. The solution was allowed to be heated 
at 120 °C for 3-12 hours. After complete conversion of starting ma-
terial, the solvent was removed. Purification was achieved by col-
umn chromatography on silica gel using PE/EA as the eluent to give 
the corresponding pyridoacridine. 
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A divergent and efficient method for preparing pyrido[2,3,4-kl]acridine and pyrido[4,3,2-kl]acridine alkaloid is reported. This method featured a novel 
remote palladium-catalyzed reductive cyclization with Mo(CO)6 as reductant by nitro biarenes, and a wide scope of substrates were tolerated and total 
34 analogues containing the two types of polycyclic heteroaromatic skeleton were prepared. Furthermore, the potential synthetic application of this 
method was demonstrated by the accomplishment of synthesis of norsegoline, styelsamine C and the necatorone skeleton. 
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