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• Organocatalytic one-pot deuteration of aldehydes
• Ar groups include naphthyl, pyrrolyl, indolyl, etc.
• 14 examples, up to 99% yield (>99% D)
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Abstract An N-heterocyclic carbene (NHC)-catalyzed direct deutera-
tion of aldehydes in a mixed solvent of deuterium oxide (D2O) and cy-
clopentyl methyl ether was established. The present deuteration is pos-
sibly initiated by the formation of a Breslow intermediate from the
aldehyde and the NHC, with subsequent trapping by D2O providing the
monodeuterated aldehyde.

Key words deuteration, aldehydes, N-heterocyclic carbenes, organo-
catalysis

Deuterium (2H, D) is a stable isotope of hydrogen (1H),
and deuterium-labeled compounds are widely used in vari-
ous scientific fields related to microanalysis, elucidation of
organic reaction mechanisms, heavy drugs, and isotopic
contrast, among others.1 Consequently, many direct ap-
proaches have been developed for the synthesis of deuteri-
um-labeled materials from mother substrates.2 Because al-
dehydes are useful precursors as electrophiles that can be
transformed into various functional groups, deuterium-
labeled aldehydes (aldehydes-d1) can serve as valuable syn-
thons for syntheses of deuterium-labeled target molecules.
In conventional methods, aldehydes-d1 are constructed by a
stepwise process, such as the reduction of esters to deuteri-
um-labeled alcohols by using an expensive deuteride
source such as LiAlD4, and subsequent oxidation to give the
aldehyde-d1.3 Alternatively, an umpolung reaction via cy-
anohydrin intermediates derived from aldehydes can also
be used to prepare aldehydes-d1.4 Treatment of the cyano-
hydrin intermediates with a strong base such as BuLi and
subsequent quenching by with D2O gives a monodeuterated
cyanohydrin intermediates that can be hydrolyzed to form

the aldehydes-d1. There have been recent reports of plati-
num-group-metal-catalyzed syntheses of derivatives of al-
dehydes-d1 from aryl halides5 or benzoic acids6 by using
D2O as the least expensive source of deuterium among the
various labeling agents that are available. Although the di-
rect deuteration of aromatic aldehyde can be accomplished
by using a homogeneous Ir catalyst under atmospheric D2
gas7 or a Ru catalyst in D2O,8 the deuteration efficiencies are
low to moderate and concomitant deuteration of the aro-
matic moiety cannot be suppressed. We have investigated
platinum-group-metal-catalyzed polydeuterations of vari-
ous compounds,2b,c,9 as well as organocatalyzed deuterium
labeling of alkynes10a,b or nitromethane.10c Furthermore, an
N-heterocyclic carbene (NHC)-catalyzed direct deuteration
of aromatic aldehydes to aldehydes-d1 has recently been
studied in our laboratory (Scheme 1). NHC is known to re-
act with aldehydes 1 to give the corresponding Breslow in-
termediates A, which couple with another molecule of alde-
hyde 1 to give a benzoin product.11 If the Breslow interme-
diate A could be trapped by D2O, the corresponding
monodeuterated aldehyde 1-d1 would be reliably obtained
without deuteration of the aromatic ring of 1. Unfortunate-
ly, an NHC-catalyzed deuteration of aldehydes by D2O in-
volving a similar concept to our present results was pub-
lished in October 2019.12

4-Methoxybenzaldehyde (1a: 0.2 mmol) was treated
with D2O (1 mL) in the presence of 1,3-dimesitylimidazoli-
um chloride (IMes·HCl; 3, 20 mol%) and Na2CO3 at 120 °C for
six hours to give the desired monodeuterated aldehyde 1a-
d1 in 74% yield with 84% D content; this was accompanied
by the formation of 15% of the benzoin derivative 2a-d1 (Ta-
ble 1, entry 1). Whereas the use N,N-dimethylacetamide
(DMA), N,N-dimethylformamide (DMF), or 1,4-dioxane as a
cosolvent suppressed both the desired deuteration and the
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–D
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benzoin condensation (entries 2–4), tetrahydrofuran (THF),

toluene, and cyclopentyl methyl ether (CPME) were effi-
cient cosolvents, giving 1a-d1 in moderate yields with
quantitative D content (entries 5–7). CPME was chosen as
the preferred solvent because of its excellent stability
against oxidation (peroxide formation), which makes it
suitable for use in process chemistry.13 The deuteration was
completed within two hours when CPME was used as the
cosolvent (entry 8). Deuterations at lower temperatures
(80 °C or 25 °C) hardly proceeded (entries 9 and 10). When
the catalyst loading was reduced from 20 mol% to 10 mol%,
1a-d1 was obtained in moderate yield with quantitative D
content (entry 11).

During the deuteration of 1a, the benzoin byproduct 2a-
d1 was also deuterated quantitatively. The unlabeled benzo-
in derivative 2a was also directly deuterated in the presence
of IMes and D2O with generation of the deuterated aldehyde
1a-d1, as shown in Scheme 2 (eq. 1). These results indicated
that the present reaction is an equilibrium that depends on
the substrate (see also Table 3 below). Additionally, the deu-
teration of 2a effectively proceeded in basic D2O to give 2a-
d1 in nearly quantitative yield and D content through a
base-catalyzed keto–enol tautomerism (Scheme 2, eq. 2).

Scheme 2 

Next, we examined the effects of various catalysts
(Table 2). 1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene
(IPr) and 1,3-bis(diphenylmethyl)imidazol-2-ylidene, de-
rived from catalysts 4 and 7, respectively, were also effec-
tive in providing 1a-d1 in moderate yields and with high D
contents (Table 2, entries 2 and 7), whereas other imidaz-
olium salts 5, 6 and 8 and thiazolium salts 9–11 were less

reactive as NHC precursors (entries 3, 4, and 6–9). As a re-
sult of our screening of various catalysts, IMes was chosen
as the optimal organocatalyst for the direct deuteration of
aldehydes (entry 1).

We then examined the scope of the reaction with re-
spect to the aldehyde (Table 3).14,15 2,4-Dimethoxybenzal-
dehyde (1b), 2,6-dimethoxybenzaldehyde (1c), and 4-me-
thoxy-1-naphthaldehyde (1d) were efficiently deuterated
in excellent yields and with excellent D contents (Table 3,
entries 1–3). The deuteration of unsubstituted 1-naphthal-
dehyde (1e) and 4-(benzyloxy)benzaldehyde (1f) gave
moderate yields of the corresponding quantitatively deuter-
ated aldehydes 1e-d1 and 1f-d1, together with benzoin by-
products (entries 4 and 5). 1-Benzyl-1H-indole-3-carbalde-
hyde (1g) and pyrrole-2-carbaldehyde (1h) were also effi-
ciently deuterated (entries 6 and 7), whereas 1-benzyl-1H-
pyrrole-2-carbaldehyde (1i) gave the deuterated derivative
in moderate yield and D content (entry 8). 4-Bromobenz-
aldehyde (1j), 2-bromobenzaldehyde (1k), 3-methoxybenz-
aldehyde (1l), and 2-methoxybenzaldehyde (1m) gave the
corresponding products with high D contents but in low to
moderate yields (entries 9–12). 4-(Dimethylamino)benz-
aldehyde (1n) was also moderately deuterated (entry 13).
Although deuteration efficiencies and yields were strongly

Scheme 1  The concept of direct deuteration of aldehydes by using an 
N-heterocyclic carbene
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Table 1  Effects of the Cosolvent, Temperature, and Catalyst Loading

Entry Cosolvent Time (h) Yield (%) D content 
of 1a-d1 (%)

1a-d1 2a-d1
a

 1 ̶ 6  74 15  84

 2 DMA 6 100 trace   7

 3 DMF 6  95 trace  10

 4 1,4-dioxane 6  91 trace  47

 5 THF 6  45 49 >99

 6 toluene 6  50 50 >99

 7 CPME 6  50 50 >99

 8 CPME 2  60 40 >99

 9b CPME 2  91  7  14

10c CPME 2 100  0   0

11d CPME 3  59 (58)e 41 (38)e >99
a A 100% yield of the benzoin product 2a-d1 means that 0.1 mmol of 2a-d1 
was obtained. Therefore, a 50% yield indicates the isolation of 0.05 mmol of 
2a-d1.
b At 80 ℃.
c At 25 ℃.
d IMes·HCl (10 mol%) was used.
e Isolated yield.
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influenced by the electronic and steric properties of the
substrate, detailed tendencies in the direct deuteration re-
main unclear.

In conclusion, we have established a method for the di-
rect deuteration of aldehydes by using an NHC catalyst in a
mixed solvent of D2O and CPME. The present method is reli-
able for the monodeuteration of aldehydes. D2O is the least
expensive deuterium source, and CPME is a process-
chemistry-friendly solvent. In comparison with the results
reported in a recent publication,12 the range of substrates
that we examined was somewhat different, and the deuter-
ation of the benzoin byproduct was also accomplished. Our
alternative method is also useful for the construction of
deuterated target materials by using the resulting mono-
deuterated aldehydes.

Table 3  Scope of SubstratesTable 2  Effects of Various Catalysts

Entry Catalyst Yield (%) D content of 1a-d1 (%)

1a-d1 2a-d1

1  3 59 41 >99

2  4 41 47  78

3  5 95 ̶   0

4  6 99 ̶   0

5  7 46 50 >99

6  8 97 ̶   0

7  9 87 ̶  11

8 10 97 ̶   2

9 11 99 ̶   4
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Entry Product Time Yield (%) D content of 
aldehyde (%)

 1  3 h 99  90

 2  3 h 91 >99

 3  3 h 98  94

 4  3 h 68 >99

 5  3 h 51 (60)a >99

 6 24 h 70  91b

 7  3 h 86 >99

 8 24 h 79  65

 9  5 min 19 >99

10  5 min 52  90

Ar
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Table 3 (continued)

Supporting Information

Supporting information for this article is available online at
https://doi.org/10.1055/s-0040-1707993. Supporting InformationSupporting Information
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