until the evolution of hydrogen chloride ceases (~2 h). Dichloromethane and acetonitrile are distilled at atmospheric pressure; yield of *acetonitrile*: 92%; b.p. 81°. The residue is distilled under reduced pressure to give *dimethylcarbamoyl chloride*; yield: 65%; b.p. 53°/15 torr.

Table. Nitriles (3) from Aldoximes (2) and N,N-Dimethyldichloromethaniminium Chloride (1)

R	Reaction time (h)	Yielda (%)	m.p. or b.p.
H ₃ C —	2	92	b.p. 81°/760 torr
\bigcirc	2	97	b.p. 68–70°/12 torr
cı-()	3-4	90	m.p. 7779°
H ₃ CO-(3-4	96	m.p. 57–59°
H_3C N— \longrightarrow	2-3	82	m.p. 7475°
O ₂ N-\(\)	3-4	98	m.p. 146–148°

The nitriles were identified by their physical properties and by elemental analyses (good accordance with theoretical values).

Nitriles from Aldoximes and N,N-Dimethyldichloromethaniminium Chloride

V. P. KUKHAR and V. I. PASTERNAK

Institute of Organic Chemistry, Academy of Science of the Ukrainian SSR, Kiev-252660, USSR

Many types of reagents have been used for the synthesis of nitriles from aldoximes. We wish to report a new reagent for this synthesis, N,N-dimethyldichloromethaniminium chloride¹ ("phosgeneimmonium chloride") 1. The reaction of 1 with aldoximes is carried out at reflux for 2–4 h in chloroform or dichloromethane and nitriles are obtained in high yields (see Table).

R-CH=NOH +
$$H_{3}C$$
 $H_{3}C$
 $H_{3}C$

Ketoximes undergo the Beckmann rearangement upon reaction with 1; for example, acetophenone oxime is converted into acetanilide.

Acetonitrile:

To a mixture of 1 (0.03 mol) and dichloromethane (50 ml), a solution of acetaldoxime (0.03 mol) in dichloromethane (30 ml) is added with stirring at 0° . The reaction mixture is then refluxed

Benzonitrile:

The solution of benzaldoxime (0.04 mol) in chloroform (50 ml) is added with stirring to a suspension of 1 (0.04 mol) in chloroform (70 ml). The reaction mixture is refluxed until the evolution of hydrogen chloride ceases (\sim 2 h), chloroform is evaporated, and the residue is distilled in vacuo.

4-Chlorobenzonitrile:

A suspension of 4-chlorobenzaldoxime (0.01 mol) in chloroform (30 ml) is added with stirring to a mixture of 1 (0.01 mol) and chloroform (30 ml). The reaction mixture is refluxed for 3-4 h until evolution of hydrogen chloride ceases. Chloroform is evaporated at reduced pressure, the crystaline product is washed with petroleum ether, and recrystallized from hexane.

4-Methoxybenzonitrile and 4-nitrobenzonitrile are obtained similarly.

4-Dimethylaminobenzonitrile:

A solution of 4-dimethylaminobenzaldoxime (0.04 mol) in chloroform (50 ml) is added to a stirred solution of 1 (0.04 mol) in chloroform (70 ml). The reaction mixture is refluxed for 2-3 h. Chloroform and dimethylcarbamoyl chloride are evaporated in vacuo (12 torr). The residue is dissolved in water (100 ml), cooled (5°), and the precipitated 4-dimethylaminobenzonitrile is isolated by filtration and recrystallized from water.

Acetanilide:

A solution of acetophenone oxime (0.04 mol) in chloroform (50 ml) is added to a stirred solution of 1 (0.04 mol) in chloroform (70 ml). The mixture is refluxed for 2 h and then evaporated in vacuo (10–15 torr). The residue is dissolved in water (100 ml) and the solution is neutralized with 10% sodium carbonate solution. The precipitate is collected, dried, and crystallized from water; yield: 86%; m.p. 112–114°. The identity of the product was confirmed by comparison with an authentic sample.

Received: March 29, 1974

H. G. Viehe, Z. Janousek, Angew. Chem. 85, 837 (1973); Angew. Chem. Internat. Edit. 12, 806 (1973).
 Handbook of Organic Chemicals, Aldrich-Europe, Beerse, 1972.