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The synthesis, photophysical and biological characterization of a small library of fluorescent 5-HT3 recep-
tor ligands is described. Several of these novel granisetron conjugates have high quantum yields and
show high affinity for the human 5-HT3AR.
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Fluorescence is a useful tool in cell biological studies, and fluo-
rescent labeling of target proteins have enabled numerous in vivo
studies of protein function.1 Whilst it has become common
practice to genetically fuse a fluorescent protein, such as GFP, to
a protein of interest, the large size of such fluorescent proteins
(e.g., GFP: 238 aa, 27 kDa) can affect the structure and function
of the target protein.2 Ion channels and transmembrane receptors
typically contain several a-helices which are connected via short
peptide loops and, given that these proteins undergo large confor-
mational changes, they offer few fusion sites for large fluorescent
proteins. An alternative to fusion is to use a low-molecular weight
ligand conjugated to a fluorophore. High-affinity fluorescent li-
gands can be used to visualize the receptor of interest in cells,
and also have potential as tracer compounds in fluorescence polar-
ization, and flow cytometry applications that target specific recep-
tors and ion channels.3

5-HT3Rs are members of the Cys-loop family of ligand-gated ion
channels which also includes nACh, GABAA, and glycine receptors.4

These transmembrane proteins enable rapid synaptic transmission
in the central and peripheral nervous system and are composed of
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five pseudosymmetrically arranged subunits surrounding a central
ion-conducting pore. The neurotransmitter binding sites are
located in the extracellular N-terminal domains at the interface
of two adjacent subunits. Five 5-HT3R subunits have been discov-
ered to date (5-HT3A–5-HT3E)5 which led to the conclusion that
5-HT3R populations most likely comprise several subtypes charac-
terized by distinct functional properties; thus human 5-HT3 signal-
ing is more complex than originally anticipated. To date, only
homomeric 5-HT3A and heteromeric 5-HT3AB receptors have been
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2: R = 4-MeO
3: R = 5-MeO
4: R = 6-MeO
5: R = 7-MeO 6

Figure 1. Reference compound and fluorescent granisetron derivatives.

http://dx.doi.org/10.1016/j.bmcl.2011.11.097
mailto:martin.lochner@dcb.unibe.ch
http://dx.doi.org/10.1016/j.bmcl.2011.11.097
http://www.sciencedirect.com/science/journal/0960894X
http://www.elsevier.com/locate/bmcl


1152 J. Simonin et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1151–1155
extensively characterized in heterologous systems.6 Recent muta-
genesis and cysteine modification studies indicate that agonists
and antagonists bind to an A–A interface both in human homomer-
ic 5-HT3A and heteromeric 5-HT3AB receptors which is consistent
with their observed identical competitive pharmacologies.7,8

Nonetheless, the discovery of subtype-selective molecular tools
for the study of 5-HT3R populations in native cells and tissue re-
mains an important goal.

Antagonists of 5-HT3Rs are used in the clinic to prevent chemo-
therapy- and radiotherapy-induced nausea and vomiting, post-
operative nausea and vomiting, for the treatment of irritable bowel
syndrome, and 5-HT3R antagonists might be beneficial for the
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Scheme 1. Synthesis of intermediates 11–13. Reagents and conditions: (a) for 11 and 12:
; (b) 4 M HCl in 1,4-dioxane, rt.
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Scheme 2. Synthesis of granisetron probes 14–22. Reagents and conditions: (a) for 14: 11
HOBt, Et3N, DMF/CH2Cl2; 7-(diethylamino)coumarin-3-carboxylic acid, rt. For 16, 18 and
22: 13, rhodamine B 5(6)-isothiocyanate, Et3N, DMF, rt.
treatment of psychiatric and neurological disorders, such as
anxiety, drug dependence and bulimia nervosa.9,10 They have also
been shown to reduce pain in certain conditions including rheuma-
toid arthritis, fibromyalgia and migraine.11

As a complementary approach to conventional biological meth-
ods such as site-directed mutagenesis, radioligand binding and
electrophysiology, we are developing biophysical small-molecular
probes to investigate the structure and function of ligand-gated
ion channels. Previously, we undertook a SAR study of the high-
affinity competitive 5-HT3R antagonist granisetron12 (1, Fig. 1,
Ki = 1.45 nM), and identified positions on the granisetron core
which were tolerant to substitution.13 In this initial study we
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, i-Pr2EtN, BODIPY TMR-X succinimidyl ester, DMF, rt. For 15, 17 and 20: 11–13, DCC,
21: 11–13, FITC, Et3N, DMF, rt. For 19: 12, Na2CO3, NBD–Cl, DMF/THF/H2O, 45 �C. For
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discovered that methoxy-substituted granisetrons 2–5 are quite
fluorescent and some of them bound with high affinity to the
5-HT3R. However, their quantum yields were poor (Table 1). We
subsequently conjugated a commercial fluorophore, BODIPY FL,
to the N1-position of granisetron and obtained high-affinity probe
6, which had much higher fluorescence intensity, and was used to
visualize recombinant 5-HT3ARs in mammalian cells.13 Unfortu-
nately, 6 gave high fluorescence background in gut preparations
and primary neurons that could not be washed out. These
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Scheme 3. Synthesis of granisetron probes 26–28. Reagents and conditions: (a) for 23:
Pr2EtN, CH2Cl2/toluene, rt; BF3�Et2O, 50 �C; (c) t-BuOK, THF/DMF 5:1, 0 �C; 23–25, 0 �C t
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Scheme 4. Synthesis of granisetron probes 36–39. Reagents and conditions: (a) N2CHCO2
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limitations prompted us to generate a small library of fluorescent
5-HT3R ligands with improved properties. Herein, we describe
the synthesis, photophysical and biological characterization of
these novel granisetron–fluorophore conjugates.

The synthesis of the N1-conjugated compound series is
depicted in Schemes 1–3. Amide 713 was first N-alkylated with
either aliphatic aminopropyl-, aminobutyl- or more polar PEG-lin-
ker building blocks 8–10. Subsequent Boc-deprotection liberated
the primary amino group that was used to couple various
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Table 1
Photophysical properties of fluorescent granisetron probes and their binding affinities for the human 5-HT3AR

Probe kmax Abs (nm) e (M�1 cm�1) kmax Em (nm) Uf Ki (nM)
mean ± SEM

1 — — — — 1.45 ± 0.13a

2 298b 10,900b 388b 0.01b 26 ± 7c

3 326b — 383b 0.02b 5,300 ± 200c

4 300b — 375b 0.01b 3,000 ± 1,000c

5 302b 7,800b 413b 0.03b 71 ± 8c

6 504b 89,200b 511b 0.61b 2.8 ± 0.7c

14 536b 8,700b 573b 0.48b 0.9 ± 0.3
15 432d 37,100b 476d 0.04d 199 ± 39
16 495d 13,500b 518d 0.66d 1.6 ± 0.3
17 432d 78,000b 471d 0.05d 7.3 ± 2.5
18 493d 18,600b 519d 0.69d 1.1 ± 0.2
19 465b 22,600b 536b 0.13b NB
20 431d 71,900b (29,000d) 480d 0.04d 142 ± 5
21 498d 17,700b (70,700d) 524d 0.68d 6,300 ± 1,600
22 557d 53,100d 584d 0.24d 384 ± 68
26 465b 20,400b 540b 0.10b 8.7 ± 5.8
27 350b 11,500b 524b 0.29b 1.2 ± 0.6
28 497b 78,800b 505b 0.44b 1.6 ± 0.8
36 430d 40,100b 479d 0.02d 1.9 ± 0.9
37 430d 40,600b 478d 0.05d 157 ± 9
38 437d 21,800d 484d 0.06d 1,300 ± 300
39 498d 44,200d 519d 0.19d 208 ± 55

a From Ref. 16.
b In MeOH.
c From Ref. 13.
d In phosphate buffer pH 7; —, not attempted; NB, no binding.

Figure 2. Fluorescent labeling of human 5-HT3AR in live COS-7 cells. Cells were either transfected with human 5HT3A cDNA (left and middle panels), or mock transfected
(right panels). 24 h later they were incubated with 100 nM of probes 16, 18 or 28 in HBS buffer for 1 h at room temperature in the dark. The cells were imaged using a
fluorescence microscope set to the appropriate absorption/emission wavelengths (Table 1). Some cells were also co-incubated with 10 lM ondansetron (OND, middle panels)
to block 5-HT3 receptors. Scale bar represents 50 lm.
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fluorophores F1–F5 to the granisetron-linker constructs 11–13
(Scheme 2). For the synthesis of probes 26–28 it was more
advantageous to couple the linker to the fluorophore first, and then
perform the N1-alkylation in the second step (Scheme 3).



J. Simonin et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1151–1155 1155
Unexpectedly, when we condensed 4-bromobutanoyl chloride
with 2,4-dimethylpyrrole following a literature protocol14 we ob-
tained BODIPY dye 25 as the sole product where two moles of acyl
chloride have reacted with two moles of the pyrrole. The structure
of 25 was confirmed by full spectroscopic characterization and a
crystal structure.

Other than the N1-position on granisetron, we identified the
C7-position as tolerant to substitution in our initial SAR study.13

Therefore we synthesized probes 36–39, where the fluorophores
were conjugated to this latter position via different linkers. The
synthesis of 7-hydroxy granisetron 31 was described previously;
we have, however, found a more practical and scalable route to ac-
cess this intermediate (Scheme 4). The indazole-3-carboxylate 29
was synthesized using a 1,3-dipolar cycloaddition of in situ gener-
ated aryne with a diazo ester.15 Only the C7-substituted regioisom-
er was obtained in this reaction. This was followed by ester
hydrolysis, amide formation with bicyclic amine 30, selective
N1-methylation and methyl ether cleavage. It was crucial to follow
the above order of steps since N-methylation of the indazole ester
29 also yields small amounts of N2-methylated side product which
is extremely difficult to separate from the desired N1-isomer. The
hydroxyl group of 31 was alkylated with protected spacers 8, 10 or
32 and the Boc-group was subsequently cleaved. Finally,
7-(diethylamino)-coumarin-3-carboxylic acid or FITC was coupled
to the spacers to yield probes 36–39.

The photophysical properties of fluorescent granisetron deriva-
tives were measured in MeOH and/or phosphate buffer at pH 7
(Table 1). The granisetron probes that have fluorescein (16, 18
and 21) or BODIPY dyes (6, 14 and 28) appended to N1 show the
highest quantum yields (Uf). The quantum yield of the coumarin-
containing probes 15, 17, 20, 36–38 was low in pH 7 buffer, but
was substantially increased in less polar solvents (e.g., for 15: Uf

(CH2Cl2) = 0.55). The binding affinities of the fluorescent granise-
tron probes for the human 5-HT3AR were determined by competi-
tion binding studies with [3H]granisetron. Probes 14, 16, 18, 27, 28
and 36 exhibited affinities similar to the parent compound granise-
tron (Table 1) and thus could be useful as tracer ligands for fluores-
cence-based binding assays and tools for imaging. In terms of
probe design it appears that optimal binding is obtained if the fluo-
rophore is conjugated to N1 of granisetron via a short (butyl) ali-
phatic spacer.

The utility of granisetron probes 16–18, 26–28 and 36 to fluo-
rescently label the receptor was studied using live cell imaging of
COS-7 cells transiently transfected with human 5-HT3A receptors.
Only probes 16, 18 and 28 gave detectable staining. Probes 16
and 18 produced selective staining for 5-HT3R as demonstrated
by fluorescence at the periphery (plasma membrane) of transfec-
ted cells, whilst this fluorescence was absent in mock transfected
cells (Fig. 2). Furthermore, 5-HT3R staining with these probes
was inhibited by co-incubation with the 5-HT3R antagonist ondan-
setron (OND, 10 lM) (Fig. 2). In contrast, probe 28 produced
intense fluorescence in both 5-HT3A- and mock-transfected cells,
and was not blocked by ondansetron (Fig. 2). These data suggest
nonspecific interactions of this probe with the cells.

In summary, we have designed and synthesized a small library
of fluorescent 5-HT3 receptor ligands. Most notably, novel granise-
tron conjugates 14, 16, 18, 27 and 28 have similar binding affinities
for the human 5-HT3AR as measured for the parent compound 1.
This is in agreement with previous studies which showed that
bulky fluorophores can be appended via short aliphatic linker to
the N1-position of granisetron. Moreover, these high affinity
probes exhibit high quantum yields and emission maxima above
500 nm in polar media. Probes 16 and 18, in particular, show spe-
cific fluorescent labeling of the human 5-HT3AR in live cells. We are
currently focusing our efforts on evaluating our probes in fluores-
cence polarization and flow cytometry applications.
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