

Article

Subscriber access provided by University of Newcastle, Australia

Synthesis of Pentafluoroethyl Ethers by Silver-Mediated Oxidative Pentafluoroethylation of Alcohols and Phenols

Mao-Lin Fu, Jian-Bo Liu, Xiu-Hua Xu, and Feng-Ling Qing

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b00190 • Publication Date (Web): 14 Mar 2017 Downloaded from http://pubs.acs.org on March 16, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Synthesis of Pentafluoroethyl Ethers by Silver-Mediated Oxidative Pentafluoroethylation of Alcohols and Phenols

Mao-Lin Fu,[†] *Jian-Bo Liu*,[†] *Xiu-Hua Xu*,[†] *and Feng-Ling Qing*^{*,†,‡}

^{*}Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

[‡]College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China

E-mail: flq@mail.sioc.ac.cn

Table of Graphic Contents

 $R-OH + TMSR_{f} \xrightarrow{AgOTf, KF \text{ or }NMe_{4}F} R^{-OH} + TMSR_{f} \xrightarrow{2-fluoropyridine}} R^{-O}R_{f}$ $R = alkyl, R_{f} = C_{2}F_{5}, CF_{2}CO_{2}Et, CF_{2}CF_{2}CF_{3}$

Abstract

A silver triflate (AgOTf)-mediated oxidative pentafluoroethylation of alcohols and phenols with nucleophilic (pentafluoroethyl)trimethylsilane (TMSCF₂CF₃) using Selectfluor as oxidant under mild reaction conditions was developed. This oxidative coupling protocol utilizes broadly available substrates and easily handled reagents to afford various pentafluoroethyl ethers in moderate to excellent yields. Furthermore, this extended the heptafluoropropylation method was to oxidative and ethoxycarbonyldifluoromethylation of alcohols and phenols for preparation of the corresponding fluoroalkyl ethers.

Introduction

The demand for organofluorine compounds is rapidly increasing because of their prevalence in pharmaceuticals, agrochemicals and material science.¹ Consequently, research interests are ever increasing concerning not only the fluorine atom, but also the fluoroalkyl, fluoroalkylthio, and fluoroalkoxy groups.² As a typical fluoroalkoxy group, trifluoromethoxy (OCF₃) is prevalent in bioactive compounds and functional materials.³ Thus, various methods have been reported for the preparation of OCF₃-containing compounds.⁴ Compared with the well studied OCF₃ group, its bulkier analogue, pentafluoroethoxy (OC₂F₅) group, has been much less explored. In fact, OC₂F₅ has similar properties to OCF₃ in electronic effect, lipophilicity, and metabolic stability,⁵ which makes it attractive in drugs and agrochemicals discovery process. For example, Jimonet and co-workers evaluated the effect of different polyfluoroalkoxy substituents in the 6-position of 2-benzothiazolamine on the in vivo "antiglutamate" activity.⁶ The ED₅₀ values, the doses of drugs (mg/kg) that totally protected 50% of the rats from clonic convulsions, clearly showed that the OC₂F₅-substituted compound is more active than Riluzole and other polyfluoroalkoxy (OCF₂H,⁷ OCH₂CF₃,⁸ and OCF₂CF₂H⁹) substituted derivatives (Figure 1).

Traditionally, pentafluoroethyl ethers are synthesized by nucleophilic fluorination of trifluoroacetates,^{10a} fluorohaloalkyl ethers^{10b} or trifluoromethyl dithioorthoesters^{10c} with toxic fluorinating reagents (Scheme 1a), all of which suffer from the necessity of prefunctionalized substrates

The Journal of Organic Chemistry

and/or harsh reaction conditions. In 1980, Lerman and Rozen disclosed a novel method for the introduction of OC_2F_5 group by the addition of C_2F_5OF to olefins (Scheme 1b).¹¹ But this protocol also employed poisonous and corrosive C_2F_5OF . Recently, the reaction of alkyl halides with pentafluoroethoxide has been reported as an alternative synthetic method (Scheme 1c),¹² however, the reversible decomposition of pentafluoroethoxide anion hampered the wide application of this method. It is noteworthy that pentafluoroethyl ethers cannot be prepared by nucleophilic substitution of pentafluoroethyl iodide, which is attacked on the iodine atom rather than the carbon atom of pentafluoroethyl group because of the reversed electron density.¹³ Obviously, the efficient and practical synthesis of pentafluoroethyl ethers remains a big challenge. Inspired by our recent discoveries on silver-mediated oxidative trifluoromethylation of phenols and alcohols for direct synthesis of trifluoromethyl ethers pentafluoroethylation of alcohols and phenols would provide a potentially valuable strategy for the preparation of pentafluoroethyl ethers. Herein, we disclose the preparation of these compounds by silver-mediated oxidative pentafluoroethylation of alcohols and phenols and phenols with safe and stable TMSC₂F₅ (Scheme 1d).

Scheme 1. Approaches to Pentafluoroethyl Ethers

Results and Discussion

Initially, we investigated the oxidative pentafluoroethylation of 5-phenylpentan-1-ol (1a) with TMSC₂F₅ in the presence of KF, AgOTf, 2-fluoropyridine and Selectfluor in EtOAc according to the optimized reaction conditions of oxidative trifluoromethylation of alcohols.^{4g} However, the desired pentafluoroethyl ether (2a) was obtained in only 19% yield along with a byproduct trifluoroacetate ester (3a) in 27% yield (Table 1, entry 1). We reasoned that the byproduct 3a was formed by the reaction of alcohol 1a with trifluoroacetyl fluoride. To change the ratio of 2a and 3a, a number of reaction conditions were screened. First, the reaction was carried out at lower concentration, and 2a was produced in higher yield (entry 2). However, further decreasing the concentration did not improve the vield (entry 3). Then, the less-polar solvents PhCH₃ and PhCF₃ or more polar solvent DMF were examined (entries 4-6). No better result was obtained. A binary solvent mixture was beneficial for the chemoselectivity of this reaction (entries 7-11), and EtOAc/PhCF₃ (1:1) was the ideal solvent system to give 2a in 53% yield (entry 9). The observed solvent effect might be due to the solubility of reagents. To improve the reaction yield further, we increased the amounts of reagents. Although a higher yield of 2a was observed, a larger amount of byproduct **3a** was simultaneously formed (entry 12). Finally, different additives including LiBr, LiOTf, NaOTf, and LiNTf₂ were added to the reaction mixture (entries 13-16). Among these salts, only LiOTf was beneficial for this reaction to afford compound 2a in 84% yield (entry 14). However, the exact role of LiOTf for promoting the reaction is unclear at the present stage.

Table 1. Optimization of Reaction Conditions^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), TMSC₂F₅ (0.2 mmol), KF (0.3 mmol), Selectfluor (0.15 mmol), AgOTf (0.2 mmol), 2-fluoropyridine (0.2 mmol), additive (0.1 mmol), solvent (1.0 mL), under N₂, rt, 12 h. ^{*b*}Yields determined by ¹⁹F NMR spectroscopy using trifluoromethoxybenzene as an internal standard. ^{*c*}Solvent (0.5 mL). ^{*d*}Solvent (2.0 mL). ^{*e*}TMSC₂F₅ (0.3 mmol), KF (0.4 mmol), Selectfluor (0.2 mmol), AgOTf (0.3 mmol).

Under the optimized reaction conditions (Table 1, entry 14), the scope of this oxidative pentafluoroethylation was next investigated. As shown in Scheme 2, a variety of alcohols were transformed to the corresponding alkyl pentafluoroethyl ethers in moderate to excellent yields. In most cases the undesired trifluoroacetate esters were formed in low yields, and in some cases the oxidation products (aldehydes) were detected. The primary (1a-h), benzyl (1i-p), and secondary (1r-t) alcohols are almost equally effective in this protocol. The allylic alcohol (1q) underwent this reaction to give ether 2q in low yield (49%). However, the tertiary alcohols are not suitable substrates for this reaction.

The Journal of Organic Chemistry

Different functional groups, such as ether, ketone, ester, amide, chloro, bromo, and iodo, are well

tolerated under the mild reaction conditions.

^aReaction conditions: **1** (0.5 mmol), TMSC₂F₅ (1.5 mmol), KF (2.0 mmol), Selectfluor (1.0 mmol), AgOTf (1.5 mmol), 2-fluoropyridine (1.0 mmol), LiOTf (0.5 mmol), EtOAc/PhCF₃ (1:1, 5.0 mL), under N₂, rt, 12 h, isolated yields.

Notably, complex substrates including rosuvastatin derivative and epiandrosterone were compatible with the reaction conditions to afford pentafluoroethyl ethers (2u and 2v) in good yields (Scheme 3).

These results demonstrated that this oxidative pentafluoroethylation protocol could be applied in the late-stage drug development.

Scheme 3. Late-Stage Oxidative Pentafluoroethylation

Subsequently, we explored the oxidative heptafluoropropylation of alcohols (Scheme 4). The reaction of several primary, benzyl, and secondary alcohols with $TMSCF_2CF_2CF_3$ proceeded well to give the corresponding heptafluoropropyl ethers **4** in moderate to high yields. Similar to the oxidative pentafluoroethylation, this reaction also gave the byproducts (pentafluoropropanoate esters) in low yields. Moreover, the oxidative ethoxycarbonyldifluoromethylation of alcohols **1d** and **1e** with $TMSCF_2CO_2Et$ afforded ethers **4d** and **4e** in moderate yields. However, the analogous oxidative difluoromethylation with $TMSCF_2H$ failed to give the desired product.

Scheme 4. Oxidative Heptafluoropropylation and Ethoxycarbonyldifluoromethylation of Alcohols

^{*a*}Reaction conditions: **1** (0.5 mmol), TMSCF₂CF₃(1.25 mmol), KF (2.0 mmol), Selectfluor (1.0 mmol), AgOTf (1.5 mmol), 2-fluoropyridine (1.0 mmol), LiOTf (0.5 mmol), EtOAc/PhCF₃ (1:1, 5.0 mL), under N₂, rt, 12 h, isolated yields. ^{*b*}Reaction conditions: **1** (0.5 mmol), TMSCF₂CO₂Et (1.5 mmol), KF (2.0 mmol), Selectfluor (1.0 mmol), AgOTf (1.5 mmol), EtOAc/PhCF₃ (1:1, 5.0 mL), under N₂, rt, 12 h, isolated yields.

The phenols were also applicable to this oxidative perfluoroalkylation protocol (Scheme 5). For example, the reaction of phenols **5a** and **5b** with $TMSCF_2CF_3$ and $TMSCF_2CF_2CF_3$ gave the corresponding aryl perfluoroalkyl ethers **6a** and **7b** in moderate yields respectively (for the optimization of reaction conditions: see Table S1 in the Supporting Information). However, the *meta*-substituted phenol (**5c**) was converted to pentafluoroethylated product **6c** in low yield. In the cases of the phenols substituted with an electron-donating group (**5d**) or bromine (**5e**), the desired products (**6d** and **6e**) were also obtained in low yields.

Scheme 5. Oxidative Perfluoroalkylation of Phenols^a

^{*a*}Reaction conditions: **5** (0.5 mmol), TMSR_f (2.0 mmol), NMe₄F (2.5 mmol), Selectfluor (1.0 mmol), AgOTf (2.0 mmol), 2-fluoropyridine (1.0 mmol), toluene (7.5 mL), under air, rt, 16 h, isolated yields. ^{*b*}Yields determined by ¹⁹F NMR spectroscopy using trifluoromethoxybenzene as an internal standard.

To probe for the possible reaction mechanism, preliminary mechanistic experiments were performed. First, treatment of TMSC₂F₅ with KF, AgOTf and 2-fluoropyridine in EtOAc generated AgC₂F₅ (¹⁹F NMR: δ -84.9 ppm, s, 3F; -109.0 ppm, s, 2F).¹⁴ Unlike AgCF₃ which easily disproportionates to Ag(CF₃)₄ anion,^{4g,15} the AgC₂F₅ in solution is stable under inert atmosphere. Then, AgC₂F₅ reacted with **1a** in the presence of Selectfluor to give product **2a** in 28% yield (Scheme 6a). This result revealed that AgC₂F₅ probably is the reaction intermediate. Furthermore, the reaction of **1a** and TMSC₂F₅ in EtOAc under O₂ gave ester **3a** in 78% yield (Scheme 6b), which indicated that O₂ was the source of the oxygen atom of trifluoroacetyl group. This result was further confirmed by the ¹⁸O-labeling experiment (Scheme 6c).

Scheme 6. Mechanistic Investigations

Based on the above results and previous reports, we proposed a plausible reaction mechanism (Scheme 7). First, the initiation of $TMSCF_2R_f$ by fluoride and subsequent reaction with AgOTf produced Ag(I)CF₂R_f **A**. Then the oxidation of **A** with Selectfluor followed by ligand exchange with alcohol **1** or phenol **5** afforded silver complex **B**, which underwent reductive elimination to give the desired products **2**, **4**, **6** and **7**. On the other hand, intermediate **A** might be converted into acyl fluoride **D** after several transformations in the presence of oxygen. The byproduct **3** was formed by the reaction of alcohol **1** with **D**.

Scheme 7. Proposed Reaction Mechanism

The Journal of Organic Chemistry

Conclusion

In summary, we have developed a new method for the preparation of potentially useful but less explored pentafluoroethyl (heptafluoropropyl) ethers. The silver-mediated oxidative coupling of simple alcohols and phenols with safe and stable nucleophilic TMSCF₂CF₃ (TMSCF₂CF₂CF₃) reagents provides a convenient access to the target compounds. Further investigation of the reaction mechanism and extension of oxidative fluoroalkylation reactions are currently in progress.

Experimental Section

General Experimental Methods. ¹H NMR (TMS as the internal standard), ¹³C NMR, and ¹⁹F NMR spectra (CFCl₃ as the outside standard and low field is positive) were recorded on a 400 MHz spectrometer. Chemical shifts (δ) are reported in ppm and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. HRMS data using EI were obtained on a GC-TOF mass spectrometer. Substrates were purchased from commercial sources and used as received. Unless otherwise noted, all reagents were obtained commercially and used without further purification.

General procedure for pentafluoroethylation of alcohols

To a reaction tube that was equipped with a stirring bar, AgOTf (385.4 mg, 1.5 mmol, 3.0 equiv), Selectfluor (354.3 mg, 1.0 mmol, 2.0 equiv), KF (116.5 mg, 2.0 mmol, 4.0 equiv), and LiOTf (78.0 mg, 0.5 mmol, 1.0 equiv) were added in a nitrogen-filled glovebox. Then the reaction tube was removed from the glovebox. Alcohol (0.5 mmol, 1.0 equiv), ethyl acetate (2.5 mL), PhCF₃ (2.5 mL), TMSCF₂CF₃ (288.3 mg, 1.5 mmol, 3.0 equiv), and 2-fluoropyridine (145.5 mg, 1.5 mmol, 3.0 equiv) were added successively under N₂ atmosphere. The reaction mixture was stirred at room temperature for 12 h. The reaction mixture was filtered through a plug of silica (eluted with ethyl acetate). The filtrate was concentrated, and the product was purified by column chromatography on silica gel to give the alkyl pentafluoroethyl ether.

(5-(*Perfluoroethoxy*)*pentyl*)*benzene (2a*). Compound **2a** was obtained as a colorless liquid (110.0 mg, 78%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.31-7.17 (m, 5H), 4.01 (t, J = 6.4 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H), 1.77-1.63 (m, 4H), 1.48-1.40 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.2 (s, 3F), -90.7 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 142.2, 128.4, 128.3, 125.8, 116.8 (qt, J = 282.5, 45.3 Hz), 115.3 (tq, J = 267.6, 41.1 Hz), 65.4 (t, J = 4.8 Hz),

35.7, 30.9, 28.7, 25.1. IR (thin film) *v* 3028, 2938, 2861, 1454, 1217, 1102, 1031, 735, 698 cm⁻¹. MS (EI): *m/z* 282 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₃H₁₅F₅O: 282.1043; Found: 282.1031. *((3-(Perfluoroethoxy)propoxy)methyl)benzene (2b)*. Compound **2b** was obtained as a colorless liquid (108.1 mg, 76%), hexane/Et₂O = 10:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.35-7.28 (m, 5H), 4.50 (s, 2H), 4.15 (t, *J* = 6.0 Hz, 2H), 3.56 (t, *J* = 5.8 Hz, 2H), 2.01-1.95 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.2 (s, 3F), -90.8 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 138.1, 128.4, 127.7, 127.6, 116.8 (qt, *J* = 282.5, 45.4 Hz), 115.3 (tq, *J* = 268.1, 41.1 Hz), 73.2, 65.6, 62.5 (t, *J* = 5.3 Hz), 29.3. IR (thin film) *v* 3033, 2929, 2864, 1496, 1479, 1454, 1216, 1101, 735, 698 cm⁻¹. MS (EI): *m/z* 284 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₂H₁₃F₅O₂: 284.0836; Found: 284.0841.

1-Bromo-4-(2-(perfluoroethoxy)ethyl)benzene (2c). Compound **2c** was obtained as a colorless liquid (120.8 mg, 75%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.43 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 4.17 (t, *J* = 6.8 Hz, 2H), 2.95 (t, *J* = 6.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.1 (s, 3F), -90.9 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 135.6, 131.7, 130.6, 120.9, 116.6 (qt, *J* = 283.1, 44.8 Hz), 115.1 (tq, *J* = 268.4, 41.0 Hz), 65.4 (t, *J* = 5.3 Hz), 34.8. IR (thin film) *v* 3028, 2972, 2926, 2855, 1594, 1490, 1422, 1218, 1104, 1074, 1013, 964, 818, 736, 517 cm⁻¹. MS (EI): *m/z* 318 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₀H₈BrF₅O: 317.9679; Found: 317.9683.

Tert-butyl (S)-(1-(perfluoroethoxy)-3-phenylpropan-2-yl)carbamate (2d). Compound **2d** was obtained as a white solid (154.2 mg, 83%), hexane/ethyl acetate = 7:1 as eluent for the column chromatography. Mp: 72-74 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.32-7.17 (m, 5H), 4.65 (s, 1H), 4.08-3.89 (m, 3H), 2.88-2.81 (m, 2H), 1.41 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -85.9 (s, 3F), -90.3-(-91.2) (m, 2F). ¹³C NMR (125 MHz, CDCl₃) δ ppm 155.1, 136.7, 129.2, 128.7, 126.9, 116.7 (qt, *J* = 282.8, 45.0 Hz), 115.1 (tq, *J* = 268.4, 41.0 Hz), 79.9, 65.3, 50.5, 37.1, 28.2. IR (thin film) *v* 3350, 3030, 2979, 1712, 1498, 1421, 1393, 1250, 1177, 1059, 968, 878, 700 cm⁻¹. MS (EI): *m/z* 369 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₆H₂₀F₅NO₃: 369.1363; Found: 369.1372.

Tert-butyl (S)-(3-methyl-1-(perfluoroethoxy)butan-2-yl)carbamate (2e). Compound **2e** was obtained as a yellow oil (145.5 mg, 91%), hexane/ethyl acetate = 7:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 4.62-4.60 (m, 1H), 4.05-4.01 (m, 2H), 3.60 (s, 1H), 1.85-1.80 (m, 1H), 1.42 (s, 9H), 0.96-0.93 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.0 (s, 3F), -90.5-(-91.3) (m, 2F). ¹³C NMR (125 MHz, CDCl₃) δ ppm 155.5, 116.6 (qt, *J* = 282.6, 45.5 Hz), 115.1 (tq, *J* = 268.4, 41.1 Hz), 79.5, 65.3, 54.4, 28.9, 28.1, 19.1, 18.3. IR (thin film) *v* 3347, 2972, 2879, 1707, 1502, 1421, 1393, 1231, 1174, 1101, 1024 cm⁻¹. MS (EI): *m/z* 306 [M-CH₃]⁺. HRMS (EI-TOF): *m/z* [M-CH₃]⁺ Calculated for C₁₁H₁₇F₅NO₃: 306.1129; Found: 306.1135.

The Journal of Organic Chemistry

Tert-butyl 3-((perfluoroethoxy)methyl)piperidine-1-carboxylate (2f). Compound **2f** was obtained as a colorless liquid (101.4 mg, 62%), hexane/Et₂O = 3:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 3.89-3.82 (m, 4H), 2.86 (s, 2H), 1.90-1.84 (m, 1H), 1.80-1.76 (m, 1H), 1.68-1.60 (m, 1H), 1.42 (s, 10H), 1.30-1.20 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.1 (s, 3F), -91.0 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 154.8, 116.7 (qt, *J* = 282.5, 44.9 Hz), 115.1 (tq, *J* = 267.6, 41.1 Hz), 79.6, 66.9, 46.3, 44.0, 35.2, 28.2, 26.7, 23.8. IR (thin film) *v* 2978, 2860, 1696, 1423, 1393, 1212, 1152, 1100, 972, 736 cm⁻¹. MS (EI): *m/z* 333 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₃H₂₀F₅NO₃: 333.1363; Found: 333.1354.

2,3-Dimethoxy-5-methyl-6-(10-(perfluoroethoxy)decyl)cyclohexa-2,5-diene-1,4-dione (2g). Compound 2g was obtained as a yellow oil (182.5 mg, 80%), hexane/Et₂O = 5:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 4.00-3.97 (m, 7H), 2.45-2.41 (m, 2H), 1.99 (s, 3H), 1.71-1.64 (m, 2H), 1.33-1.19 (m, 14H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.2 (s, 3F), -90.7 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 184.7, 184.1, 144.3, 143.0, 138.6, 116.7 (qt, *J* = 282.5, 45.4 Hz), 115.2 (tq, *J* = 267.6, 41.1 Hz), 65.5 (t, *J* = 4.8 Hz), 61.0, 29.7, 29.3, 29.2, 29.1, 28.9, 28.7, 28.6, 26.3, 25.3, 11.7. IR (thin film) *v* 2930, 2857, 1651, 1611, 1458, 1380, 1266, 1214, 1157, 1096, 1003, 948, 744 cm⁻¹. MS (EI): *m/z* 456 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₂₁H₂₉F₅O₅: 456.1935; Found: 456.1926.

9-((Perfluoroethoxy)methyl)-9H-fluorene (2h). Compound **2h** was obtained as a colorless liquid (125.7 mg, 80%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.82 (d, J = 7.6 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.50-7.47 (m, 2H), 7.41-7.37 (m, 2H), 4.30 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -85.9 (s, 3F), -90.9 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 142.8, 141.4, 128.2, 127.4, 125.2, 120.2, 117.1 (qt, J = 282.2, 45.2 Hz), 115.4 (tq, J = 269.1, 41.3 Hz), 67.6 (t, J = 4.8 Hz), 46.7. IR (thin film) *v* 3069, 1610, 1478, 1420, 1324, 1216, 1099, 810, 737 cm⁻¹. MS (EI): *m/z* 314 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₆H₁₁F₅O: 314.0730; Found: 314.0728.

1-(Tert-butyl)-4-((perfluoroethoxy)methyl)benzene (2i). Compound **2i** was obtained as a colorless liquid (130.1 mg, 74%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.43 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.02 (s, 2H), 1.34 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -85.9 (s, 3F), -90.1 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 152.1, 130.9, 128.1, 125.7, 116.8 (qt, J = 282.5, 44.3 Hz), 115.4 (tq, J = 268.6, 41.2 Hz), 66.9 (t, J = 6.8 Hz), 34.6, 31.2. IR (thin film) v 2966, 2871, 1518, 1466, 1365, 1216, 1100, 1020, 818, 732, 669 cm⁻¹. MS (EI): *m/z* 282 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₃H₁₅F₅O: 282.1043; Found: 282.1046.

Methyl 4-((perfluoroethoxy)methyl)benzoate (2j). Compound **2j** was obtained as a yellow liquid (106.5 mg, 75%), hexane/ethyl acetate = 8:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.04 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 5.07 (s, 2H), 3.90 (s, 3H). ¹⁹F NMR

(376 MHz, CDCl₃) δ ppm -86.2 (s, 3F), -90.7 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.5, 138.8, 130.6, 129.9, 127.4, 116.8 (qt, *J* = 282.2, 44.1 Hz), 115.3 (tq, *J* = 269.1, 41.3 Hz), 66.1 (t, *J* = 5.5 Hz), 52.0. IR (thin film) *v* 2958, 2849, 1727, 1580, 1418, 1220, 1021, 967, 841, 757 cm⁻¹. MS (EI): *m/z* 284 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₁H₉F₅O₃: 284.0472; Found: 284.0466.

 4-((Perfluoroethoxy)methyl)-1,1'-biphenyl (2k). Compound **2k** was obtained as a white solid (102.7 mg, 68%), hexane as eluent for the column chromatography. Mp: 54-56 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.63-7.58 (m, 4H), 7.47-7.34 (m, 5H), 5.08 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -85.9 (s, 3F), -90.1 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 141.9, 140.4, 132.8, 128.9, 128.6, 127.6, 127.5, 127.2, 116.8 (qt, *J* = 283.2, 44.8 Hz), 115.4 (tq, *J* = 269.6, 41.8 Hz), 66.9 (t, *J* = 5.7 Hz). IR (thin film) *v* 3033, 2965, 1489, 1467, 1216, 1100, 1008, 826, 743 cm⁻¹. MS (EI): *m/z* 302 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₅H₁₁F₅O: 302.0730; Found: 302.0741.

1,3-Dichloro-5-((perfluoroethoxy)methyl)benzene (2l). Compound **2l** was obtained as a colorless liquid (80.8 mg, 55%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.37 (t, J = 1.6 Hz, 1H), 7.24 (d, J = 2.0 Hz, 2H), 4.98 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 86.0 (s, 3F), -90.7 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.1, 135.4, 129.0, 126.0, 116.6 (qt, J = 283.2, 44.0 Hz), 115.2 (tq, J = 270.2, 41.8 Hz), 65.2 (t, J = 5.7 Hz). IR (thin film) v 3084, 2927, 2856, 1575, 1413, 1220, 1108, 855, 740 cm⁻¹. MS (EI): m/z 294 [M⁺]. HRMS (EI-TOF): m/z [M⁺] Calculated for C₉H₅Cl₂F₅O: 293.9638; Found: 293.9644.

1-Bromo-4-((perfluoroethoxy)methyl)benzene (2m). Compound **2m** was obtained as a colorless liquid (121.6 mg, 80%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.52 (d, *J* = 8.8 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 4.98 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 86.0 (s, 3F), -90.3 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 132.9, 131.9, 129.6, 123.1, 116.6 (qt, *J* = 283.2, 44.8 Hz), 115.2 (tq, *J* = 270.3, 41.0 Hz), 66.2 (t, *J* = 5.7Hz). IR (thin film) *v* 2964, 2927, 2855, 1598, 1491, 1408, 1217, 1102, 1014, 806, 736 cm⁻¹. MS (EI): *m/z* 304 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₉H₆BrF₅O: 303.9522; Found: 303.9516.

1-Iodo-4-((perfluoroethoxy)methyl)benzene (2n). Compound **2n** was obtained as a colorless liquid (133.8 mg, 76%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.72 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 4.96 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 86.0 (s, 3F), -90.3 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 137.9, 133.6, 129.8, 116.7 (qt, *J* = 282.5, 44.6 Hz), 115.3 (tq, *J* = 269.1, 41.1 Hz), 94.8, 66.4 (t, *J* = 5.6 Hz). IR (thin film) *v* 2963, 2925, 2854, 1594, 1404, 1218, 1101, 1009, 951, 803 cm⁻¹. MS (EI): *m/z* 352 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₉H₆F₅IO: 351.9384; Found: 351.9382.

2-((Perfluoroethoxy)methyl)naphthalene (20). Compound 20 was obtained as a white solid (91.1 mg, 66%), hexane as eluent for the column chromatography. Mp: 58-60 °C. ¹H NMR (400 MHz, CDCl₃) δ

 ppm 7.87-7.81 (m, 4H), 7.52-7.49 (m, 2H), 7.46-7.43 (m, 1H), 5.18 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -85.9 (s, 3F), -90.0 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 133.4, 133.1, 131.3, 128.7, 128.1, 127.8, 127.5, 126.7, 126.6, 125.4, 116.8 (qt, *J* = 282.5, 44.9 Hz), 115.4 (tq, *J* = 269.1, 41.1 Hz), 67.3 (t, *J* = 5.6 Hz). IR (thin film) *v* 3060, 3029, 2966, 1603, 1511, 1420, 1272, 1100, 961, 857, 743 cm⁻¹. MS (EI): *m/z* 276 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₃H₉F₅O: 276.0574; Found: 276.0563.

1-((Perfluoroethoxy)methyl)naphthalene (2p). Compound **2p** was obtained as a colorless liquid (99.4 mg, 72%), hexane as eluent for the column chromatography. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.05 (d, J = 8.5 Hz, 1H), 7.96-7.93 (m, 2H), 7.66-7.53 (m, 3H), 7.51-7.49 (m, 1H), 5.54 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -85.9 (s, 3F), -90.6 (s, 2F). ¹³C NMR (125 MHz, CDCl₃) δ ppm 133.8, 131.4, 130.1, 129.4, 128.8, 127.6, 127.0, 126.2, 125.2, 123.0, 116.9 (qt, J = 283.0, 44.6 Hz), 115.6 (tq, J = 269.2, 41.7 Hz), 65.6 (t, J = 6.2 Hz). IR (thin film) v 3052, 1601, 1513, 1420, 1216, 1101, 930 744 cm⁻¹. MS (EI): m/z 276 [M⁺]. HRMS (EI-TOF): m/z [M⁺] Calculated for C₁₃H₉F₅O: 276.0574; Found: 276.0582.

(*E*)-(*3*-(*Perfluoroethoxy*)*prop-1-en-1-yl*)*benzene* (*2q*). Compound **2q** was obtained as a colorless liquid (61.8 mg, 49%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.42-7.24 (m, 5H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.30-6.23 (m, 1H), 4.69 (d, *J* = 6.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.1 (s, 3F), -90.1 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 135.7, 135.4, 128.7, 128.5, 126.8, 116.8 (qt, *J* = 282.2, 44.5 Hz), 115.4 (tq, *J* = 269.1, 41.2 Hz), 66.1 (t, *J* = 7.3 Hz). IR (thin film) *v* 3086, 3031, 2960, 1498, 1450, 1217, 1098, 966, 745, 691 cm⁻¹. MS (EI): *m/z* 252 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₁H₉F₅O: 252.0574; Found: 252.0573.

Tert-butyl 4-(perfluoroethoxy)piperidine-1-carboxylate (2r). Compound **2r** was obtained as a colorless liquid (118.1 mg, 75%), hexane/Et₂O = 4:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 4.58-4.52 (m, 1H), 3.67-3.61 (m, 2H), 3.28-3.22 (m, 2H), 1.88-1.82 (m, 2H), 1.75-1.67 (m, 2H), 1.41 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.5 (s, 3F), -88.4 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 154.6, 116.6 (qt, *J* = 282.5, 45.9 Hz), 115.5 (tq, *J* = 268.6, 41.7 Hz), 79.8, 73.1(t, *J* = 5.0 Hz), 40.2, 31.6, 28.2. IR (thin film) *v* 2976, 2934, 2873, 1701, 1421, 1325, 1248, 1136, 1016, 734 cm⁻¹. MS (EI): *m/z* 319 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₂H₁₈F₅NO₃: 319.1207; Found: 319.1215.

(*Perfluoroethoxy*)*cyclododecane (2s*). Compound **2s** was obtained as a colorless liquid (150.0 mg, 62%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 4.59-4.53 (m, 1H), 1.86-1.77(m, 2H), 1.66-1.58 (m, 2H), 1.59-1.36 (m, 18H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.5 (s, 3F), -87.7 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 116.8 (qt, *J* = 282.9, 45.4 Hz), 115.5 (tq, *J* = 266.9, 40.9 Hz), 30.0, 23.9, 23.8, 23.2, 23.1, 20.5. IR (thin film) *v* 2934, 2866, 1471, 1447, 1251,

1214, 1152, 1095, 733 cm⁻¹. MS (EI): m/z 302 [M⁺]. HRMS (EI-TOF): m/z [M⁺] Calculated for C₁₄H₂₃F₅O: 302.1665; Found: 302.1669.

2-(Perfluoroethoxy)-2,3-dihydro-1H-indene (2t). Compound **2t** was obtained as a colorless liquid (85.7mg, 68%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.27-7.22 (m, 4H), 5.30-5.25 (m, 1H), 3.38-3.32 (m, 2H), 3.23-3.17 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.3 (s, 3F), -88.6 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 139.2, 127.2, 124.6, 116.8 (qt, J = 283.0, 45.2 Hz), 115.5 (tq, J = 268.3, 41.1 Hz), 77.6 (t, J = 5.4 Hz), 39.9. IR (thin film) v 3029, 2962, 1484, 1414, 1250, 1216, 1097, 998, 824, 738 cm⁻¹. MS (EI): m/z 252 [M⁺]. HRMS (EI-TOF): m/z [M⁺] Calculated for C₁₁H₉F₅O: 252.0574; Found: 252.0571.

N-(4-(4-fluorophenyl)-6-isopropyl-5-((perfluoroethoxy)methyl)pyrimidin-2-yl)-N-(perfluoroethoxy)methyl(p

methylmethanesulfonamide (2u). Compound **2u** was obtained as a white solid (149.8 mg, 64%), hexane/ethyl acetate = 5:1 as eluent for the column chromatography. Mp: 128-130 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.63-7.60 (m, 2H), 7.17 (t, *J* = 8.6 Hz, 2H), 5.00 (s, 2H), 3.56 (s, 3H), 3.50 (s, 3H), 3.35-3.28 (m, 1H), 1.32 (d, *J* = 6.8 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.1 (s, 3F), -91.5 (s, 2F), -110.4-(-110.5) (m, 1F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 178.7, 167.7, 163.9 (d, *J* = 249.2 Hz), 158.9, 133.2(d, *J* = 3.6 Hz), 131.1 (d, *J* = 8.1 Hz), 116.6 (qt, *J* = 282.6, 44.2 Hz), 115.0 (tq, *J* = 270.8, 41.6 Hz), 115.7 (d, *J* = 21.7 Hz), 114.5, 60.7 (t, *J* = 11.7 Hz), 42.5, 33.1, 31.7, 22.0. IR (thin film) *v* 3079, 2877, 1605, 1510, 1420, 1336, 1209, 1095, 998, 821 cm⁻¹. MS (EI): *m/z* 471 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₈H₁₉F₆N₃O₃S: 471.1051; Found: 471.1054.

(3S,5S,8R,9S,10S,13S,14S)-10,13-Dimethyl-3-(perfluoroethoxy)hexadecahydro-17H-

cyclopenta[a]phenanthren-17-one (2v). Compound **2v** was obtained as a white solid (159.3 mg, 78%), hexane/ethyl acetate = 7:1 as eluent for the column chromatography. Mp: 153-155 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 4.33-4.25 (m, 1H), 2.44-2.37 (m, 1H), 2.08-1.99 (m, 1H), 1.93-1.42 (m, 11H), 1.35-0.90 (m, 8H), 0.83 (s, 6H), 0.71-0.64 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.4 (s, 3F), -87.2-(-88.0) (m, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 221.0, 116.8 (qt, *J* = 282.6, 46.1 Hz), 115.4 (tq, *J* = 267.3, 41.5 Hz), 77.0 (t, *J* = 26.2 Hz), 54.3, 51.4, 47.7, 44.7, 36.7, 35.8, 35.4, 35.2, 35.0, 31.5, 30.7, 28.6, 28.2, 21.7, 20.4, 13.8, 12.1. IR (thin film) *v* 2960, 2856, 1740, 1474, 1384, 1214, 1092, 958, 734 cm⁻¹. MS (EI): *m/z* 408 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₂₁H₂₉F₅O₂: 408.2088; Found: 408.2082.

General procedure for heptafluoropropylation of alcohols

To a reaction tube that was equipped with a stirring bar, AgOTf (385.4 mg, 1.5 mmol, 3.0 equiv), Selectfluor (354.3 mg, 1.0 mmol, 2.0 equiv), KF (116.5 mg, 2.0 mmol, 4.0 equiv), and LiOTf (78.0 mg, 0.5 mmol, 1.0 equiv) were added successively in a nitrogen-filled glovebox. Then the reaction tube was removed from the glovebox. Alcohol (0.5 mmol, 1.0 equiv), ethyl acetate (2.5 mL), PhCF₃ (2.5 mL),

The Journal of Organic Chemistry

TMSCF₂CF₂CF₃ (303.0 mg, 1.25 mmol, 2.5 equiv), and 2-fluoropyridine (145.5 mg, 1.5 mmol, 3.0 equiv) were added successively under N_2 atmosphere. The reaction mixture was stirred at room temperature for 12 h. The reaction mixture was filtered through a plug of silica (eluted with ethyl acetate). The filtrate was concentrated, and the product was purified by column chromatography on silica gel to give the alkyl haptafluoropropyl ether.

(5-(*Perfluoropropoxy*)*pentyl*)*benzene (4a*). Compound 4a was obtained as a colorless liquid (127.1 mg, 77%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.33-7.20 (m, 5H), 4.05 (t, J = 6.4 Hz, 2H), 2.66 (t, J = 7.6 Hz, 2H), 1.79-1.65 (m, 4H), 1.49-1.42 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -81.5-(-81.6) (m, 3F), -86.6-(-86.7) (m, 2F), -129.6-(-129.7) (m, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 142.3, 128.4, 128.3, 125.8, 122.2-103.9 (m), 65.5 (t, J = 5.1 Hz), 35.7, 30.8, 28.6, 25.0. IR (thin film) v 3065, 2938, 2861, 1496, 1341, 1236, 1097, 992, 744 cm⁻¹. MS (EI): m/z 332 [M⁺]. HRMS (EI-TOF): m/z [M⁺] Calculated for C₁₄H₁₅F₇O: 332.1011; Found: 332.1006.

Methyl 4-((Perfluoropropoxy)methyl)benzoate (4j). Compound 4j was obtained as a yellow liquid (88.6 mg, 53%), hexane/ethyl acetate = 8:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.05 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 5.10 (s, 2H), 3.91 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -81.4-(-81.5) (m, 3F), -86.4-(-86.5) (m, 2F), -129.4-(-129.5) (m, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.6, 138.7, 130.6, 130.0, 127.3, 122.1-104.2 (m), 66.3 (t, *J* = 5.7 Hz), 52.2. IR (thin film) *v* 2958, 1727, 1617, 1438, 1340, 1284, 1192, 1109, 998, 785 cm⁻¹. MS (EI): *m/z* 334 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₂H₉F₇O₃: 334.0440; Found: 334.0436.

1-Iodo-4-((perfluoropropoxy)methyl)benzene (4n). Compound **4n** was obtained as a colorless liquid (143.3 mg, 72%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.75 (d, *J* = 6.8 Hz, 2H), 7.10 (d, *J* = 6.8 Hz, 2H), 5.02 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 81.7-(-81.8) (m, 3F), -86.5-(-86.6) (m, 2F), -129.8 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 138.0, 133.5, 129.6, 121.7-103.8 (m), 94.7, 66.4 (t, *J* = 5.9Hz). IR (thin film) *v* 2965, 2911, 1594, 1487, 1385, 1231, 1105, 1060, 997, 801, 742 cm⁻¹ MS (EI): *m/z* 402 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₀H₆F₇IO: 401.9352; Found: 401.9364.

1-((Perfluoropropoxy)methyl)naphthalene (4p). Compound **4p** was obtained as a colorless liquid (100.0 mg, 61%), hexane as eluent for the column chromatography. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.00-7.89 (m, 3H), 7.62-7.45 (m, 4H), 5.53(s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -81.3-(-81.4) (m, 3F), -86.4-(-86.5) (m, 2F), -129.3-(-129.4) (m, 2F). ¹³C NMR (125 MHz, CDCl₃) δ ppm 133.7, 131.3, 130.1, 129.3, 128.8, 127.4, 126.8, 126.2, 125.2, 122.9, 119.8-103.8 (m), 65.6 (t, J = 6.2 Hz). IR (thin film) v 3035, 1513, 1336, 1235, 1190, 1102, 993, 773 cm⁻¹. MS (EI): *m/z* 326 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₄H₉F₇O: 326.0542; Found: 326.0545.

2-(*Perfluoropropoxy*)-2,3-dihydro-1H-indene (4t). Compound 4t was obtained as a colorless liquid (100.0 mg, 66%), hexane as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.28-7.23 (m, 4H), 5.34-5.30 (m, 1H), 3.40-3.36 (m, 2H), 3.23-3.19 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -81.4-(-81.5) (m, 3F), -84.5-(-84.6) (m, 2F), -129.6 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 139.2, 127.2, 124.6, 121.8-104.2 (m), 77.7 (t, J =4.6 Hz), 39.9. IR (thin film) v 3088, 2963, 1484, 1382, 1251, 1100, 981, 778 cm⁻¹. MS (EI): m/z 302 [M⁺]. HRMS (EI-TOF): m/z [M⁺] Calculated for C₁₂H₉F₇O: 302.0542; Found: 302.0541.

General procedure for ethoxycarbonyldifluoromethylation of alcohols

To a reaction tube that was equipped with a stirring bar, AgOTf (385.4 mg, 1.5 mmol, 3.0 equiv), Selectfluor (354.3 mg, 1.0 mmol, 2.0 equiv), and KF (116.5 mg, 2.0 mmol, 4.0 equiv) were added successively in a nitrogen-filled glovebox. Then the reaction tube was removed from the glovebox. Alcohol (0.5 mmol, 1.0 equiv), ethyl acetate (2.5 mL), PhCF₃ (2.5 mL), and TMSCF₂CO₂Et (294.4 mg, 1.5 mmol, 3.0 equiv) were added successively under N₂ atmosphere. The reaction mixture was stirred at room temperature for 12 h. The reaction mixture was filtered through a plug of silica (eluted with ethyl acetate). The filtrate was concentrated, and the product was purified by column chromatography on silica gel to give the corresponding ether.

Ethyl (S)-2-(2-((tert-butoxycarbonyl)amino)-3-phenylpropoxy)-2,2difluoroacetate (4d). Compound 4d was obtained as a yellow oil (74.6 mg, 40%), hexane/ethyl acetate = 5:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.30-7.19 (m, 5H), 4.75 (s, 1H), 4.38-4.32 (m, 2H), 4.04 (s, 1H), 3.93-3.83 (m, 2H), 2.87-2.83 (m, 2H), 1.40-1.35 (m, 12H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -79.9 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.1 (t, *J* = 42.5 Hz), 155.1, 137.1, 129.4, 128.6, 126.7, 114.7 (t, *J* = 268.6 Hz), 79.7, 64.8, 63.4, 50.7, 37.3, 28.3, 13.9. IR (thin film) *v* 3336, 2933, 1714, 1498, 1368, 1169, 1061, 855, 701 cm⁻¹. MS (EI): *m/z* 317 [M-C₄H₈]⁺. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₄H₁₇F₂NO₅: 317.1075; Found: 317.1074.

Ethyl (S)-2-(2-((tert-butoxycarbonyl)amino)-3-methylbutoxy)-2,2-difluoroacetate (4e). Compound 4e was obtained as a yellow oil (92.5 mg, 57%), hexane/ethyl acetate = 6:1 as eluent for the column chromatography. ¹H NMR (400 MHz, CDCl₃) δ ppm 4.66-4.64 (m, 1H), 4.31 (q, *J* = 7.2 Hz, 2H), 4.03-3.92 (m, 2H), 3.58-3.55 (m, 1H), 1.86-1.81 (m, 1H), 1.41(s, 9H), 1.35-1.32 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -80.2 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.0 (t, *J* = 41.7 Hz), 155.6, 114.6 (t, *J* = 268.4 Hz), 79.4, 64.9, 63.3, 54.6, 29.0, 28.3, 19.3, 18.5, 13.9. IR (thin film) *v* 3346, 2976, 1777, 1506, 1342, 1175, 973, 778 cm⁻¹. MS (EI): *m/z* 282 [M-C₃H₇]⁺. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₁H₁₈F₂NO₅: 282.1153; Found: 282.1161.

Phenyl 4-(perfluoroethoxy)benzoate (6a). To a reaction tube that was equipped with a stirring bar, AgOTf (513.9 mg, 2.0 mmol, 4.0 equiv), Selectfluor (354.3 mg, 1.0 mmol, 2.0 equiv), NMe₄F (232.9

The Journal of Organic Chemistry

mg, 2.5 mmol, 5.0 equiv), and phenyl 4-hydroxybenzoate (107.1 mg, 0.5 mmol, 1.0 equiv) were added in a nitrogen-filled glovebox. Then the reaction tube was removed from the glovebox. PhCH₃ (7.5 mL), TMSCF₂CF₃ (384.4 mg, 2.0 mmol, 4.0 equiv), and 2-fluoropyridine (194.2 mg, 2.0 mmol, 4.0 equiv) were added successively under Air atmosphere. The reaction mixture was stirred at room temperature for 16 h. The reaction mixture was filtered through a plug of silica (eluted with ethyl acetate). The filtrate was concentrated, and the product was purified by column chromatography (silica gel, hexane/ethyl acetate = 15:1) to give compound **6a** as a white solid (85.3 mg, 51%). Mp: 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.26 (d, *J* = 8.8 Hz, 2H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 1H), 8.26 (d, *J* = 7.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.1 (s, 3F), -87.9 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.0, 152.4, 150.7, 132.1, 129.5, 128.2, 126.1, 121.6, 121.2, 116.5 (qt, *J* = 283.5, 43.4 Hz), 114.3 (tq, *J* = 275.0, 41.8 Hz). IR (thin film) *v* 3017, 2929, 2854, 2258, 1592, 1493, 1409, 1321, 1235, 1149, 989, 909, 768 cm⁻¹. MS (EI): *m/z* 332 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₅H₉F₅O₃: 332.0472; Found: 332.0460.

(*3r*,*5r*,*7r*)-*1*-(*4*-(*Perfluoroethoxy*)*phenyl*)*adamantine* (*6d*). To a reaction tube that was equipped with a stirring bar, AgOTf (513.9 mg, 2.0 mmol, 4.0 equiv), Selectfluor (354.3 mg, 1.0 mmol, 2.0 equiv), NMe₄F (232.9 mg, 2.5 mmol, 5.0 equiv), and 4-(1-adamantyl)phenol (114.2 mg, 0.5 mmol, 1.0 equiv) were added in a nitrogen-filled glovebox. Then the reaction tube was removed from the glovebox. PhCH₃ (7.5 mL), TMSCF₂CF₃ (384.4 mg, 2.0 mmol, 4.0 equiv), and 2-fluoropyridine (194.2 mg, 2.0 mmol, 4.0 equiv) were added successively under Air atmosphere. The reaction mixture was stirred at room temperature for 16 h. The reaction mixture was filtered through a plug of silica (eluted with ethyl acetate). The filtrate was concentrated, and the product was purified by column chromatography (silica gel, hexane) to give compound **6d** as a white solid (40.1 mg, 23%). Mp: 40-42 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.36 (d, *J* = 8.8 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 2.10 (s, 3H), 1.89 (s, 6H), 1.76 (q, *J* = 11.7 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -86.1 (s, 3F), -87.7 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 150.1, 146.1, 126.2, 121.0, 116.8 (qt, *J* = 283.4, 44.2 Hz), 114.3 (tq, *J* = 271.9, 41.5 Hz), 43.1, 36.6, 36.0, 28.8. IR (thin film) *v* 2909, 2360, 1508, 1345, 1213, 1085, 835, 807 cm⁻¹. MS (EI): *m/z* 346 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₈H₁₉F₅O: 346.1356; Found: 346.1359.

1-(Methylsulfonyl)-4-(perfluoropropoxy)benzene (7b). To a reaction tube that was equipped with a stirring bar, AgOTf (513.9 mg, 2.0 mmol, 4.0 equiv), Selectfluor (354.3 mg, 1.0 mmol, 2.0 equiv), NMe₄F (232.9 mg, 2.5 mmol, 5.0 equiv), and 4-(methylsulfonyl)phenol (86.1 mg, 0.5 mmol, 1.0 equiv) were added in a nitrogen-filled glovebox. Then the reaction tube was removed from the glovebox. PhCH₃ (7.5 mL), TMSCF₂CF₂CF₃ (484.4 mg, 2.0 mmol, 4.0 equiv), and 2-fluoropyridine (194.2 mg, 2.0 mmol, 4.0 equiv) were added successively under Air atmosphere. The reaction mixture was stirred at room temperature for 16 h. The reaction mixture was filtered through a plug of silica (eluted with ethyl

acetate). The filtrate was concentrated, and the product was purified by column chromatography (silica gel, hexane/ethyl acetate = 2:1) to give compound **7b** as a white solid (90.6 mg, 53%). Mp: 96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.00 (d, *J* = 8.8 Hz, 2H), 7.39(d, *J* = 8.4 Hz, 2H), 3.06 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -81.6-(-81.7) (m, 3F), -84.0 (s, 2F), -129.7-(-129.8) (m, 2F). ¹³C NMR (100 MHz, CDCl₃) δ ppm 152.2, 139.2, 129.7, 122.1, 119.1-104.4 (m), 44.5. IR (thin film) *v* 3020, 2930, 2258, 1493, 1340, 1232, 1208, 1150, 989, 768, 738 cm⁻¹. MS (EI): *m/z* 340 [M⁺]. HRMS (EI-TOF): *m/z* [M⁺] Calculated for C₁₀H₇F₇O₃S: 340.0004; Found: 340.0007.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (21421002, 21332010) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000, XDB20020000).

Supporting Information Available: Optimization of reaction conditions for oxidative pentafluoroethylation of phenols, preliminary mechanistic experiments, as well as copies of ¹H, ¹⁹F, and ¹³C NMR spectra. These material are available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger, J. *Chem. Soc. Rev.* 2011, 40, 3496.
 (b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. *Chem. Rev.* 2014, 114, 2432. (c) Fujiwara, T.; O'Hagan, D. J. Fluorine *Chem.* 2014, 167, 16. (d) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. *Med. Chem.* 2015, 58, 8315. (e) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. *Chem. Rev.* 2016, 116, 422. (f) Preshlock, S.; Tredwell, M.; Gouverneur, V. *Chem. Rev.* 2016, 116, 719.
- (2) For selected reviews, see: (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (b) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513. (c) Egami, H.; Sodeoka, M. Angew. Chem. Int. Ed. 2014, 53, 8294. (d) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598. (e) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650. (f) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683. (g) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731. (h) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765. (i) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
- (3) (a) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214. (b) Leroux, F. R.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827. (c) Leroux, F. R.; Manteau, M.; Vors, J.; Pazenok, P. S. Beilstein J. Org. Chem. 2008, 4, 13. (d) Rozen, S. Adv. Synth. Catal. 2010, 352, 2691. (e) Manteau,

B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140. (f) Landelle, G.;
Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941. (g) Illendula, A.; Pulikkan, J. A.; Zong, H.; Grembecka, J.; Xue, L.; Sen, S.; Zhou, Y.; Boulton, A.; Kuntimaddi, A.; Gao, Y.;
Rajewski, R. A.; Guzman, M. L.; Castilla, L. H.; Bushweller, J. H. Science 2015, 347, 779. (h)
Besset, T.; Jubault, P.; Pannecoucke, X.; Poisson, T. Org. Chem. Front. 2016, 3, 1004. (i) Tlili, A.;
Toulgoat, F.; Billard, T. Angew. Chem., Int. Ed. 2016, 55, 11726.

- (4) For selected examples, see: (a) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308. (b) Zhang, C.-P.; Vicic, D. A. Organometallics 2012, 31, 7812. (c) Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M.-Y. Angew. Chem., Int. Ed. 2014, 53, 14559. (d) Khotavivattana, T.; Verhoog, S.; Tredwell, M.; Pfeifer, L.; Calderwood, S.; Wheelhouse, K.; Collier, T. L.; Gouverneur, V. Angew. Chem., Int. Ed. 2015, 54, 9991. (e) Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Angew. Chem. Int. Ed. 2015, 54, 11839. (f) Chen, C.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2015, 137, 15648. (g) Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048. (h) Zhang, Q.-W.; Brusoe, A. T.; Mascitti, V.; Hesp, K. D.; Blakemore, D. C.; Kohrt, J. T.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 9758. (i) Zha, G.-F.; Han, J.-B.; Hu, X.-Q.; Qin, H.-L.; Fang, W.-Y.; Zhang, C.-P. Chem. Commun. 2016, 52, 7458. (j) Feng, P.; Lee, K. N.; Lee, J. W.; Zhan, C.; Ngai, M.-Y. Chem. Sci. 2016, 7, 424. (k) Zhou, M.; Ni, C.; He, Z.; Hu, J. Org. Lett. 2016, 18, 3754. (l) Chatalova-Sazepin, C.; Binayeva, M.; Epifanov, M.; Zhang, W.; Foth, P.; Amador, C.; Jagdeo, M.; Boswell, B. R.; Sammis, G. M. Org. Lett. 2016, 18, 4570. (m) Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P. Nature Chem. 2017, DOI: 10.1038/NCHEM.2711.
 - (5) (a) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. J. Med. Chem. 1973, 16, 1207. (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
 - (6) Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J.-C.; Boireau, A.; Bour, Y.; Coléno, M.-A.; Doble, A.; Doerflinger, G.; Huu, C. D.; Donat, M.-H.; Duchesne, J. M.; Ganil, P.; Guérémy, C.; Honoré, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P. M.; Blevec, J. L.; Meunier, M.; Miquet, J.-M.; Nemecek, C.; Pasquet, M.; Piot, O.; Pratt, J.; Rataud, J.; Reibaud, M.; Stutzmann, J.-M.; Mignani, S. J. Med. Chem. 1999, 42, 2828.
 - (7) Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem. Int. Ed. 2016, 55, 9050, and references cited therein.
 - (8) Huang, R.; Huang, Y.; Lin, X.; Rong, M.; Weng, Z. Angew. Chem. Int. Ed. 2015, 54, 5736, and references cited therein.
 - (9) Reinhard, E. J.; Wang, J. L.; Durley, R. C.; Fobian, Y. M.; Grapperhaus, M. L.; Hickory, B. S.; Massa, M. A.; Norton, M. B.; Promo, M. B.; Tollefson, M. B.; Vernier, W. F.; Connolly, D. T.; Witherbee, B. J.; Melton, M. A.; Regina, K. J.; Smith, M. E.; Sikorski, J. A. J. Med. Chem. 2003, 46, 2152.
 - (10) (a) Sheppard, W. A. J. Org. Chem. 1964, 29, 1. (b) Hudlicky, T.; Duan, C.; Reed, J. W.; Yan, F.; Hudlicky, M.; Endoma, M. A.; Eger II M.D. E. I. J. Fluorine Chem. 2000, 102, 363. (c) Sevenard, D. V.; Kirsch, P.; Lork, E.; Röschenthaler, G.-V. Tetrahedron Lett. 2003, 44, 5995.
 - (11) (a) Rozen, S.; Lerman, O. J. Am. Chem. Soc. 1979, 101, 2782. (b) Lerman, O.; Rozen, S. J. Org. Chem. 1980, 45, 4122.

- (12) (a) Kolomeitsev, A. A.; Bissky, G.; Barten, J.; Kalinovich, N.; Lork, E.; Röschenthaler, G.-V. *Inorg. Chem.* 2002, *41*, 6118. (b) Sokolenko, T. M.; Davydova, Y. A.; Yagupolskii, Y. L. *J. Fluorine Chem.* 2012, *136*, 20. (c) Jelier, B. J.; Howell, J. L.; Montgomery, C. D.; Leznoff, D. B.; Friesen, C. M. Angew. Chem., Int. Ed. 2015, *54*, 2945.
- (13) (a) Li, X.-Y.; Pan, H.-Q.; Jiang, X.-K.; Zhan, Z.-Y. Angew. Chem., Int. Ed. Engl. 1985, 24, 871.
 (b) Li, X.-Y.; Jiang, X.-K.; Pan, H.-Q.; Hu, J.-S.; Fu, W.-M. Pure & Appl. Chem. 1987, 59, 1015. (c) Chen, Z.; Zhu, J.; Xie, H.; Li, S.; Wu, Y.; Gong, Y. Org. Biomol. Chem. 2011, 9, 3878.
- (14) (a) Naumann, D.; Wessel, W.; Hahn, J.; Tyrra, W. J. Organomet. Chem. 1997, 547, 79. (b)
 Kremer, S.; Pantenburg, I.; Tyrra, W. Z. Anorg. Allg. Chem. 2014, 640, 2458.
- (15) Dukat, W.; Naumann, D. Rev. Chim. Miner. 1986, 23, 589.