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ABSTRACT: We report the first examples of selective 
and regiodivergent opening of unsymmetrical 
phenonium ions with chloride ions. These reactions 
are enabled by the dual role of SnCl4 and TiCl4 as Lewis 
acids and chloride nucleophiles. Reagent control 
dictates addition of chloride at either the substituted 
internal position (SnCl4) or unsubstituted terminal 
position (TiCl4) of the phenonium ion. These reactions 
are highly selective, stereospecific, operationally 
simple, and proceed in good to excellent yield. Diverse 
product utility is demonstrated.

Benzylic and homobenzylic stereocenters are 
present in numerous pharmaceuticals and 
agrochemicals, often embedded within common 
structural motifs (Figure 1, top). For example, 
phenethyl alcohol scaffold “A” contains a secondary 
aryl substituent (blue), a terminal homobenzylic 
substituent (green, X = aryl or heteroatom), and a 
secondary homobenzylic stereocenter bearing a 
heteroatom (purple).1 Alternatively, phenethylamino 
alcohol scaffold “B” contains a terminal aryl 
substituent (green) and a ‘phenethylamino alcohol’ 
motif (blue and purple).2 When assessing these two 
common substructures, we recognized that strategic 
functional group interconversion to chlorides 2 and 4 
could enable a unified approach to both targets via a 
common phenonium ion intermediate 3 (Figure 1, 
bottom). Herein, we report the development of such 
an approach that is predicated on the selective and 
regiodivergent opening of a phenonium ion derived 
from a simple epoxide starting material (1).3

Phenonium ion formation results from neighboring 
group participation of an aryl ring. Its formation has 
been studied extensively as a fundamental 
phenomenon,4-6 but its utility in synthesis is, perhaps, 
less appreciated.7 Our reaction design centered on 
phenonium ion formation from epoxide 1 followed by 
selective ring opening at C1 or C2 (Figure 1, bottom). A 
chloride nucleophile was targeted because it would 

serve as a useful functional handle for product 
diversification. We hypothesized that with the 
appropriate Lewis acid, formation of chloride 2 may 
be favored through intermolecular chloride addition 
(path A).8 Alternatively, chloride 4 may be favored by 
intramolecular addition at C2 (path B).7c The ability to 
dictate regioselectivity of nucleophilic addition to a 
phenonium ion in this way has not been reported. 
Additionally, phenonium ion formation would need to 
(i) outcompete direct epoxide opening, (ii) suppress 
Meinwald rearrangement,9 and (iii) proceed with high 
levels of stereofidelity. Gaining such control would 
represent a significant expansion in the synthetic 
utility of phenonium ions.10

Figure 1. A regiodivergent approach to benzylic 
and homobenzylic motifs present in medicinally-
relevant molecules
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Racemic epoxide 5a was selected as a model 
substrate for reaction development (Table 1). Early 
experiments using exogenous chloride sources (e.g., 
HCl) afforded a mixture of anti chlorohydrins A and B 
(Table 1, entry 1). This result suggested that free 
chloride ions in solution outcompete the pendant aryl 
ring in opening the epoxide. We hypothesized that 
Lewis acids of general formula MCln may promote 
phenonium ion formation over direct epoxide opening 
because chloride would be generated only after aryl 
participation. Epoxide decomposition was observed 
with AlCl3 (entry 2) and no reaction occurred with 
MgCl2 (entry 3). Exposure of epoxide 5a to SnCl4 at 
0 C afforded syn-chlorohydrin 6a in 25% isolated 
yield alongside 41% of Meinwald rearrangement 
products C and D (entry 4). The regioselectivity of 
chloride addition to epoxide 5a was determined after 
oxidation to the corresponding ketone and 
subsequent analysis of the splitting pattern of the 
benzylic hydrogens in the 1H NMR. The 
stereochemistry of 6a was determined after 
cyclization to the corresponding cis epoxide and 
comparison of the 1H and 13C NMR to an authentic 
sample.11 The use of ZrCl4 at this temperature afforded 
chlorohydrin 6a exclusively in 88% yield (entry 5). 
GaCl3 afforded chlorohydrin 6a in 65% yield, 
alongside aldehyde C (via Meinwald rearrangement, 
entry 6). The use of InCl3 resulted in a mixture of 
chlorohydrin 6a (65% yield) and alcohol 7a (30% 
yield, entry 7). Selectivity for alcohol 7a was obtained 
when TiCl4 was employed (80%, 10:1 7a:6a, entry 
8).12 The stereochemistry of alcohol 7a was 
determined after cyclization to oxetane 16 and 
subsequent nOe analysis (see Figure 4B).11 Ultimately, 
it was found that use of SnCl4 at -78 C in toluene 
afforded chlorohydrin 6a in 90% yield (entry 9). The 
yield of alcohol 7a increased to 96% with TiCl4 after 
cooling the reaction to  -78 C (entry 10). Use of SnBr4 
and TiBr4 in place of SnCl4 and TiCl4 enabled 
installation of bromide in high yield and selectivity in 
both cases (6aBr and 7aBr).11,13

Table 1. Reaction discovery and optimization

aYields determined by 1H NMR of the crude reaction 
mixture using an internal standard. bToluene as solvent. 
cIsolated yield.

With the optimized conditions in hand, the scope of 
both reaction conditions was evaluated. A large 
selection of substituted arenes work efficiently under 
both sets of reaction conditions (Table 2, top). 
Electron-rich arenes such as 3,4-dimethoxyphenyl 
(5b), benzodioxole (5c), and 2-naphthyl (5d) all work 
well. Electron-neutral arenes such as phenyl (5e) and 
4-tolyl (5f) derivatives were tolerated. Indole 
derivative 5g was also efficient in both cases.

A common requirement for phenonium ion 
formation is an electron-rich arene.7d,7e It was 
important, therefore, to determine the limit of aryl 
participation in these reactions.14 Introduction of 
halogen atoms in the para position of the aryl ring 
afforded the desired products in good to excellent 
yield (5h-k). Inductively-withdrawing substituents at 
the meta position were also tolerated (5l-o) in good to 
excellent yields. 3,4-Difluoro derivative 5p performed 
well in both cases however, a 3,4,5-
trifluorosubstituted arene failed to engage in 
phenonium ion formation (vide infra). The formation 
of phenonium ions with the deactivated arenes 
discussed above greatly surpasses a common 
limitation for using such intermediates in synthesis.

A number of functional groups were examined 
under the two reaction conditions (Table 2, bottom). 
A primary chloride (5q) and Lewis basic nitrile (5r) 
performed well. A series of oxygen-containing 
derivatives were surveyed: primary tosylate 5s was 
stable to the SnCl4 conditions (6s, 96%) but 
underwent substantial decomposition with TiCl4;15 
benzyl ether 5t was not compatible under the SnCl4 
conditions but performed well with the TiCl4 (7t, 82% 
yield); silyl ether 5u was stable to SnCl4 (6u, 89% 
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yield) but underwent deprotection with TiCl4, 
although the desired rearrangement still occurred to 
afford diol 7u (78% yield); aryl ether 5v proceeded in 
high yield under both reaction conditions. The 
reactions of phthalimide 5w and sulfone 5x gave 
excellent yields of the desired products. Epoxide 5y, 
derived from an ,-unsaturated ketone, underwent 
rearrangement in 93% yield with TiCl4. Epoxides 
bearing saturated heterocyclic scaffolds such as 

tetrahydropyran 5z, piperidine 5aa, and azetidine 
5ab afforded the corresponding products 6 and 7, in 
good to excellent yields. Use of a tosyl protecting 
group is required in the case of SnCl4 whereas a Boc 
group is compatible with TiCl4. Overall, both sets of 
reaction conditions display excellent functional group 
tolerance and the respective products are formed in 
excellent yield and selectivity.

Table 2. Reaction scopea,b

aIsolated yield reported. In all cases the ratio of major:minor regioisomer (6 or 7 depending on the conditions 
employed) was determined to be >25:1 in favor of the reported product, based on 1H NMR analysis of the crude reaction 
mixture. bThe connectivity and relative stereochemistry of all products were assigned by analogy to 6a or 7a, with the 
exception of 6z and 7c for which crystallographic analysis was carried out. cTBS deprotection occurred under the 
reaction conditions.

To explain the high levels of stereo- and 
regiocontrol in this divergent reaction, the 
mechanism in Figure 2A is proposed. Coordination of 
epoxide 5 to the Lewis acid promotes formation of 
phenonium ion-‘ate’ complex 8. In the case of SnCl4, 

intramolecular ‘5-exo’ chloride delivery to C2 is 
proposed to afford chlorohydrin 6.16-18 With TiCl4, 
phenonium ion formation may occur with 
concomitant loss of a chloride from titanium.19 
Subsequent intermolecular addition of chloride could 
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then occur at C1 of phenonium ion 8 to afford alcohol 
7.20,21 The use of a metal chloride as a Lewis acid and 
chloride source is important because nucleophilic 
chloride is generated in situ only as a consequence of 
phenonium ion formation. The stereospecific nature 
of the reactions was confirmed through 
transformation of enantioenriched epoxide (R,R)-5a 
into  chlorohydrin (R,R)-6a and alcohol (R,R)-7a with 
>99% enantiospecificity in both cases (Figure 2B).11,22 

It should be noted that the ability to use 
electron-deficient arenes in this chemistry represents 
a significant expansion of the ‘electronic window’ for 
reactions involving phenonium ions. Only one prior 
example of phenonium formation from a 
benzyl-substituted acyclic epoxide is reported and an 
electron-rich arene is required.23 In the present work, 
phenonium ion formation occurs with electron 
deficient arenes (5k,m,o,p), albeit with decreased 
efficiency (Figure 2C).14 In these cases, Meinwald 
rearrangement becomes competitive with formation 
of 6 (SnCl4) and generation of chlorohydrin 9 becomes 
competitive with formation of 7 (TiCl4, Figure 2D). 
Chlorohydrin 9ac was isolated in 73% yield as the 
sole product from reaction of epoxide 5ac with TiCl4. 
Thus, the limit of aryl participation exists when the 
arene substituents’ + values are >+0.61. The 
exclusive regioselectivity observed for formation of 9 
from 5 is noteworthy for an unsymmetrical, 
unactivated epoxide and may be dictated by inductive 
effects of the arene.24

Figure 2. Mechanistic discussion 
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Ring opening of unbiased epoxides typically 
proceeds with poor regioselectivity. For example, 
treatment of epoxide 5a with azide under 
conventional conditions25 affords a mixture of anti-
azido alcohols 10a (21%) and 10b (47%) (Figure 3A). 
Our process can address this limitation. 
Regioselective opening of epoxide (R,R)-5a and 
subsequent azide displacement of the chloride 
provides azido alcohol (S,R)-10a (99% es) as the sole 
product in 84% yield over two steps.26 Azido alcohol 
10a is a precursor to the phenethylamino alcohol 
substructure, an important motif in pharmaceutical 
and agrochemical agents.27 For example, a 
cycloaddition between the azide and  phenyl 
acetylene affords 11, a 1,2,3-triazole analog of plant 
growth regulator paclobutrazol (Figure 3B).28 In 
general, the two-step sequence from 5 to 10a 
potentially enables direct, modular access to a broad 
range of unnatural phenethylamino alcohol 
derivatives with complete control of absolute and 
relative stereochemistry, while avoiding the need for 
expensive unnatural phenylalanine starting materials.
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Figure 3. Phenethylamino alcohol derivatives 
from alcohol 6

Alcohol 7 is a versatile chiral building block. 
Displacement of the primary chloride enables 
installation of a variety of nucleophiles, such as 
cyanide (12, 82%), azide (13, 77%), and thiolate (14, 
70%) (Figure 4A). Introduction of alkyl substituents is 
also possible. For example, treatment of bromide 7aBr 
with allylmagnesium bromide affords alcohol 15 in 
91% yield. The ability to install a (representative) 
variety of nucleophiles from 7 obviates the need to 
develop individual reaction conditions for opening 
epoxide 5 with each nucleophile of interest.

Treatment of alcohol 7a with base promotes 
Williamson ether formation of oxetane 16 (89%, 
>99% es). Oxidation of the secondary alcohol to 
ketone 17 and subsequent reduction, under Felkin-
Ahn control, followed by cyclization of the crude 
material provides cis-oxetane 18 (58% yield over 
three steps, >99% es). Alternatively, addition of 
MeMgBr to ketone 18 proceeds with excellent 
diastereocontrol and cyclization of the resultant 
alcohol affords trisubstituted oxetane 19 (69% yield 
over three steps, 99% es). Oxetanes are an important 
scaffold in medicinal chemistry,29 however, 
enantioselective construction of multi-substituted 
oxetanes is challenging.30 The chemistry described 
above enables the synthesis of multi-substituted 
oxetanes from simple starting materials with control 
over absolute and relative stereochemistry. 
Incorporation of these oxetane cores into molecules of 
interest should be possible via cross coupling onto an 
appropriately substituted aryl ring. Alternatively, 
oxidation of the arene to the corresponding carboxylic 
acid (20) provides an alternative functional handle for 
coupling.

Alcohol 7a is amenable to alternate annulation 
reactions (Figure 4C). For example, treatment with 
4-nitrophenyl isocyanate and catalytic Et3N followed 
by K2CO3 affords oxazinan-2-one 21 in 67% yield (two 
steps). Cyclic carbonate 22 is accessible in 42% yield 
(67% in situ) via reaction with Na2CO3 under a CO2 
atmosphere.31 Cyclic carbonate 22 and related 
compounds may find use as monomers for the 
synthesis of biocompatible polymers.32 Finally, 
treatment of 7d with MOMCl33 and catalytic ZnCl2 
results in an ‘oxa’-Pictet Spengler reaction to generate 
isochromane 23 (Figure 4D). Isochromanes are 
present in several natural products and bioactive 
compounds.34

Figure 4. Diversification of alcohol 7
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In conclusion, we have developed a reagent-
controlled, divergent chlorination of unsymmetrical 
benzyl-substituted epoxides. Our collective 
observations are consistent with the intermediacy of 
a phenonium ion. The regioselectivity of nucleophilic 
addition to this intermediate is dependent on the 
Lewis acid. In both cases, the reactions are 
operationally-simple, exhibit a broad scope 
(especially in terms of the arene), and proceed with 
excellent regioselectivity, stereospecificity, and yield. 
These features combined with the ease of 
(enantioenriched) substrate synthesis renders this a 
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potentially useful method for the synthesis of drug-
like building blocks. We, therefore, anticipate this 
chemistry to find utility in drug discovery programs. 
Future work is focused on uncovering the selectivity 
differences between SnCl4 and TiCl4 in the reaction of 
epoxide 5 as well as broadening the utility of the 
phenonium ion as a control element in synthesis. 
These studies will be reported in due course.
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