Chinese Chemical Letters xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Chinese Chemical Letters

journal homepage: www.elsevier.com/locate/cclet

Communication

Boronic acid-containing diarylpyrimidine derivatives as novel HIV-1 NNRTIs: Design, synthesis and biological evaluation

Da Feng^a, Fenju Wei^a, Yanying Sun^a, Prem Prakash Sharma^b, Tao Zhang^a, Hao Lin^a, Brijesh Rathi^b, Erik De Clercq^c, Christophe Pannecouque^c, Dongwei Kang^{a,e,*}, Peng Zhan^{a,d,*}, Xinyong Liu^{a,d,*}

^a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China

^b Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India

^c Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium

^d China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Ji'nan 250012, China

^e Suzhou Research Institute, Shandong University, Suzhou 215123, China

ARTICLE INFO

Article history: Received 29 January 2021 Received in revised form 5 February 2021 Accepted 17 February 2021 Available online xxx

Keywords: HIV-1 NNRTIS NNIBP DAPY Boronic acid Molecular dynamics simulation

ABSTRACT

Drug resistance remains to be a serious problem with type I human immunodeficiency virus (HIV-1) nonnucleoside reverse transcriptase inhibitors (NNRTIs). A series of novel boronic acid-containing diarylpyrimidine (DAPY) derivatives were designed *via* bioisosterism and scaffold-hopping strategies, taking advantage of the ability of a boronic acid group to form multiple hydrogen bonds. The target compounds were synthesized and evaluated for their anti-HIV activities and cytotoxicity in MT-4 cells. Compound **10** jielded the most potent activity and turned out to be a single-digit nanomolar inhibitor towards the HIV-1 IIIB [wild-type (WT) strain], L100I and K103N strains, with 50% effective concentration (EC₅₀) values of 7.19–9.85 nmol/L. Moreover, **10** jinhibited the double-mutant strain RES056 with an EC₅₀ value of 77.9 nmol/L, which was 3.3-more potent than that of EFV (EC₅₀ = 260 nmol/L) and comparable to that of ETR (EC₅₀ = 32.2 nmol/L). **10** j acted like classical NNRTIs with high affinity for WT HIV-1 reverse transcriptase (RT) with 50% inhibition concentration (IC₅₀) value of 0.1837 µmol/L. Furthermore, molecular dynamics simulation indicated that **10** ji was proposed as a promising molecule for fighting against HIV-1 infection through inhibiting RT activity. Overall, the results demonstrated that **10j** could serve as a lead molecule for further modification to address virus-drug resistance. © 2021 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

Published by Elsevier B.V. All rights reserved.

With the morbidity and mortality increasing rapidly worldwide, the acquired immunodeficiency syndrome (AIDS) keeps to be one of the most serious global public health problems, and the type I human immunodeficiency virus (HIV-1) is the main causative agent for it [1]. In the life cycle of HIV-1, the reverse transcriptase (RT) utilizes RNA genome to synthesize doublestranded viral DNA, which was one of the most important enzymes in viral infection and a major target for antiretroviral therapies [2,3]. RT inhibitors can be divided into the nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). NNRTIs distort the enzyme's active site and perturb the alignment of the primer terminus by interacting in a noncompetitive manner with the allosteric site (NNRTIs binding pocket, NNIBP) about 10 angstroms distant from the polymerase active site of RT, resulting in inhibition of the reverse transcription step of HIV-1 replication [4,5]. NNRTIs are a component of highly active antiretroviral therapy (HAART) regimens used to fight HIV-1 due to their potent antiviral activity, high selectivity and modest toxicity [6].

Up to now, six NNRTIs have been approved by the U.S. Food and Drug Administration (FDA). Nevirapine (NVP), delavirdine (DLV) and efavirenz (EFV) constitute the first-generation, but the rapid emergence of drug-resistance and toxicities limit their clinical use [7]. Etravirine (ETR), rilpivirine (RPV) and doravirine (DOR) are the second-generation NNRTIs (Fig. 1), in which ETR and RPV belong to the diarylpyrimidine (DAPY) family and exhibit a broad spectrum of activity against the clinically relevant NNRTIs-resistance strains. However, their clinical application has also been complicated by

https://doi.org/10.1016/j.cclet.2021.02.033

1001-8417/© 2021 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Please cite this article as: D. Feng, F. Wei, Y. Sun et al., Boronic acid-containing diarylpyrimidine derivatives as novel HIV-1 NNRTIS: Design, synthesis and biological evaluation, Chin. Chem. Lett., https://doi.org/10.1016/j.cclet.2021.02.033

^{*} Corresponding authors at: Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China.

E-mail addresses: kangdongwei@126.com (D. Kang), zhanpeng1982@sdu.edu.cn (P. Zhan), xinyongl@sdu.edu.cn (X. Liu).

D. Feng, F. Wei, Y. Sun et al.

Fig. 1. Chemical structures of six NNRTIs approved by the U.S. FDA.

emergence of drug-resistance mutations (such as E138K and RES056) [7]. Besides, multiple lipophilic aromatic rings in their structure led to their poor solubility and lower oral bioavailability [7]. In 2017, elsulfavirine was marketed as a prodrug in Russia for the treatment of HIV, which displayed antiviral nanomolar potency $[EC_{50} \text{ wild-type (WT) HIV-1 strain (IIIB})=1.2 \text{ nmol/L}]$ [7,8]. Therefore, it is imperative to discover novel NNRTIs with improved drug resistance profiles and favorable solubility.

Our previous studies have discovered a series of novel DAPY derivatives with more potent activity against the WT and mutant HIV-1 strains than the approved drug ETR [9–14]. Especially, the two piperidine-substituted thiophene[3,2-*d*]pyrimidine derivatives, **K-5a2** and **25a** (Fig. 2A), exhibited highly effective anti-HIV-1 activities and improved resistance profiles [15]. The co-crystal structure of HIV-1 RT in complex with **K-5a2** confirmed the "fourpoint pharmacophore model" of DAPY in NNIBP, which includes the hydrophobic domain, the hydrogen bonding domain, tolerant region I and tolerant region II (Fig. 2B) [15]. Specifically, the interactions between **K-5a2** and RT were elucidated. As depicted in Fig. 2C, the central thiophene[3,2-*d*]pyrimidine core could

Fig. 2. (A) Chemical structures of our previously reported potent HIV-1 NNRTIs; (B) The co-crystal structure of **K-5a2**/RT complexes (PDB code: 6c0J) and the four-point pharmacophore model; (C) The detailed interactions with WT RT of **K-5a2**.

Chinese Chemical Letters xxx (xxxx) xxx-xxx

establish hydrogen bond with K101 and E138 directly or through a bridging water molecule; the piperidine nitrogen develops water-mediated hydrogen bonds with K103 and P236; and the surface-positioned sulfonamide group of the right wing developed a double-hydrogen bond with the carbonyl oxygen of K104 and the backbone nitrogen of V106. These extensive hydrogen-bonding networks between the inhibitor and the backbone of residues proved to be responsible for the stabilization of **K-5a2** to the NNIBP.

Similar to the sulfonamide group, the boronic acid group proves to have the distinct ability to form hydrogen bonds [16,17]. Recently, boronic acid have been extensively used for the purposes of biological probe development and drug discovery [18], especially for antiviral drugs, such as HIV-1 protease and hepatitis C virus (HCV) non-nucleoside polymerase (NS5B) inhibitors [16,19,20]. In boronic acid, there are two hydroxy groups acting as both donors and acceptors of hydrogen bonds. The hydroxy groups display four lone pairs and two hydrogen-bond donors, which provide six opportunities to form hydrogen bonds with one group [16]. Inspired by this, we tried boronic acid to replace the sulfonamide group in the lead K-5a2 by utilizing the bioisosterism strategy in this work. We anticipated that the hydroxy groups of boronic acid could form interactions with K104 and V106. Meanwhile, bioisosterism and scaffold-hopping strategies were also employed to displace the center core of **K-5a2** with different fused pyrimidine rings and yielded twelve novel boronic acidcontaining DAPY derivatives [21]. Moreover, the privileged 4cyanovinyl-2,6-dimethylphenyl structure was introduced to the left wing of the most potent inhibitor 5j (Fig. 3). The detailed structure – activity relationship (SAR) study of the derivatives and molecular dynamics simulation were also studied.

The synthetic protocols for the newly designed compounds **5a–k** and **10j** are outlined in Schemes 1 and 2, respectively. All derivatives were prepared by well-established methods as described in our previous articles [10–13]. Commercially available 2,4-dichloropyrimidines **1a–k** were selected as the starting materials, which were reacted with 4-hydroxy-3,5-dimethylbenzonitrile or 4-hydroxy-3,5-dimethylbenzaldehyde through nucle-ophilic substitution to afford **2a–k** and **6j**. Then, **6j** was treated with (EtO)₂P(O)CH₂CN in the presence of *t*-BuOK to give **7j**. Next, **2a–k** or **7j** were reacted with 4-amino-1-Boc-piperidine to afford **3a–k** or **8j** *via* Buchwald-Hartwig reaction. Removal of the Boc protecting group gave the corresponding key analogues **4a–k** or **9j**, which led to the desired compounds by nucleophilic substitution with (4-(chloromethyl)phenyl)boronic acid.

The antiviral potency of the synthesized compounds was evaluated in cultured MT-4 cells infected with WT HIV-1 strain (IIIB) or a panel of NNRTIs-resistant single and double mutant strains, including L100I, K103N, Y181C, Y188L, E138K, F227L+V106A and K103N+Y181C (RES056). ETR and EFV were selected as control drugs. The values of 50% effective concentration (EC₅₀, anti-HIV potency), 50% cytotoxicity concentration (CC₅₀, cytotoxicity) and selectivity index (SI, CC₅₀/EC₅₀ ratio) are summarized in Table 1 and Table S1 (Supporting information).

As shown in Table 1, compounds containing sulfur atom in the central ring (**5a**–**d**) exhibited nanomolar antiviral activity against HIV-1 IIIB, L100I, K103N, Y181C, Y188L and E138K. For the K103N mutation, **5a**–**d** displayed the most potent activities with EC₅₀ values of 6.19, 8.18, 11.3 and 14.6 nmol/L, they were 12-, 9-, 7-, and 5-fold more potent than the reference drug EFV (EC₅₀ = 75.4 nmol/L) but a little bit lower than ETR (EC₅₀ = 3.33 nmol/L). However, all derivatives showed weaker efficacy against the double-mutant strain RES056.

With the aim to effectively occupy the tolerant region II and establish more interactions with NNIBP, the five-membered thiophene ring of **K-5a2** was changed to six-membered aromatic and alicyclic rings, yielding derivatives **5e**-**g** and **5h**-**k**. Among

D. Feng, F. Wei, Y. Sun et al.

Chinese Chemical Letters xxx (xxxx) xxx-xxx

Fig. 3. Design and optimization of the boronic acid-containing DAPY derivatives.

Scheme 1. Synthesis of 5a-k^a. ^aReagents and conditions: i) 3,5-dimethyl-4-hydroxybenzonitrile, K₂CO₃, DMF, r.t.; ii) BINAP, Pd₂(dba)₃, Cs₂CO₃, 1,4-dioxane, 90 °C, N₂; iii) TFA, DCM, r.t.; iv) (4-(chloromethyl)phenyl)boronic acid, K₂CO₃, DMF, r.t.

them, **5e**-**g** turned out to be nanomolar inhibitors of HIV-1 IIIB, K103N and E138K, with EC₅₀ values ranging from 2.73 nmol/L to 24.5 nmol/L. In addition, compound 5g, with a single pyrimidine central core, displayed extremely potent activity against HIV-1 IIIB $(EC_{50} = 2.73 \text{ nmol/L})$, which was comparable to that of ETR $(EC_{50} = 3.13 \text{ nmol/L})$ and EFV $(EC_{50} = 2.49 \text{ nmol/L})$. Compound **5e** with the quinazoline central core showed acceptable activity against HIV-1 IIIB and K103N ($EC_{50} = 6.06$ and 16.2 nmol/L, respectively), and introducing nitrogen atom at the C-8 position of the quinazoline core led to a similar potency (**5f**, EC_{50} = 6.53 and 12.2 nmol/L, respectively). However, these compounds still showed low activities against the double-mutant strain RES056. 5i exhibited high potency against WT HIV-1 ($EC_{50} = 4.87 \text{ nmol/L}$) and the single mutant K103N (EC_{50} = 5.98 nmol/L), being equipotent to that of ETR (EC_{50} = 3.13 and 3.33 nmol/L, respectively). Moreover, **5k** displayed moderate activity ($EC_{50} = 15.1 - 71.8 \text{ nmol/L}$) against L100I, Y181C, Y188L and E138K. Introduction of sulfur or oxygen atoms at the C-6 position of 5i yielded compounds 5h and 5j, among which, 5h displayed moderate potency against HIV-1 IIIB and K103N (EC₅₀ = 6.60 and 10.2 nmol/L, respectively). Compound 5j was also effective against IIIB and K103N (EC_{50} = 7.01 and

Scheme 2. Synthesis of **10***j*^{*a*}. ^{*a*}Reagents and conditions: i) 4-hydroxy-3,5dimethylbenzaldehyde, K_2CO_3 , DMF, r.t.; ii) (EtO)₂P(O)CH₂CN, *t*-BuOK, THF, 0 °C to r.t.; iii) BINAP, Pd₂(dba)₃, Cs₂CO₃, 1,4-dioxane, 90 °C, N₂; iv) TFA, DCM, r.t.; v) (4-(chloromethyl)phenyl)boronic acid, K_2CO_3 , DMF, r.t.

D. Feng, F. Wei, Y. Sun et al.

Table 1

Anti-HIV activity and cytotoxicity of **5a-k** and **10j**.

Compd.	R	Central core	EC ₅₀ (nmol/L) ^a							CC ₅₀ (µmol/L) ^b	
			IIIB	L100I	K103N	Y181C	Y188L	E138K	F227L + V106A	RES056	
5a	CN		$\textbf{8.10} \pm \textbf{1.98}$	49.7 ± 29.8	6.19 ± 2.03	34.5 ± 9.62	51.6 ± 19.9	$\textbf{39.4} \pm \textbf{5.83}$	158 ± 58.9	1300 ± 407	> 244
5b	CN		$\textbf{7.85} \pm \textbf{2.12}$	46.5 ± 18.2	$\textbf{8.18} \pm \textbf{1.18}$	$\textbf{47.5} \pm \textbf{10.6}$	52.4 ± 11.8	$\textbf{39.3} \pm \textbf{13.1}$	$\textbf{225} \pm \textbf{70.0}$	1111 ± 461	126 ± 5.35
5c	CN	S N	13.5 ± 10.9	59.9 ± 12.4	11.3 ± 1.69	32.1 ± 5.22	98.5 ± 29.5	$\textbf{35.6} \pm \textbf{5.93}$	381 ± 100	618 ± 98.7	$\textbf{30.8} \pm \textbf{6.13}$
5d	CN		6.71 ± 2.12	133 ± 117	14.6 ± 3.16	26.0 ± 6.27	125 ± 44.6	$\textbf{36.0} \pm \textbf{4.74}$	374 ± 59.1	760 ± 196	99.4 ± 9.11
5e	CN		$\textbf{6.06} \pm \textbf{1.94}$	162 ± 90.6	16.2 ± 4.69	66.1 ± 20.2	136 ± 48.7	16.0 ± 5.11	319 ± 84.0	2219 ± 336	$\textbf{25.9} \pm \textbf{0.661}$
5f	CN		$\textbf{6.53} \pm \textbf{1.61}$	55.2 ± 26.6	12.2 ± 5.77	$\textbf{35.3} \pm \textbf{6.44}$	$\textbf{61.8} \pm \textbf{6.71}$	24.5 ± 6.60	134 ± 29.5	1439 ± 213	$\textbf{27.2} \pm \textbf{1.56}$
5g	CN	AN STA	$\textbf{2.73} \pm \textbf{0.521}$	94.1 ± 37.3	7.44 ± 2.14	$\textbf{20.4} \pm \textbf{2.95}$	326 ± 101	15.7 ± 1.86	288 ± 121	1003 ± 221	17.0 ± 2.48
5h	CN	S N N N N N N N N N N N N N N N N N N N	$\textbf{6.60} \pm \textbf{1.91}$	45.5 ± 21.8	10.2 ± 2.45	29.4 ± 3.10	$\textbf{40.8} \pm \textbf{18.7}$	31.5 ± 3.02	311 ± 126	1776 ± 542	> 243
5i	CN	N N N	$\textbf{4.87} \pm \textbf{1.54}$	$\textbf{71.8} \pm \textbf{37.1}$	5.98 ± 1.82	$\textbf{27.1} \pm \textbf{11.4}$	$\textbf{30.7} \pm \textbf{9.81}$	15.1 ± 4.79	$\textbf{94.4} \pm \textbf{15.7}$	861 ± 317	> 251
5j	CN		$\textbf{7.01} \pm \textbf{2.09}$	$\textbf{37.7} \pm \textbf{12.8}$	$\textbf{7.11} \pm \textbf{1.21}$	$\textbf{20.4} \pm \textbf{4.49}$	$\textbf{47.9} \pm \textbf{9.18}$	13.6 ± 0.633	146 ± 38.6	1262 ± 580	$\textbf{82.2} \pm \textbf{4.96}$
5k	CN	N N N	15.6 ± 6.02	105 ± 10.5	33.8 ± 2.78	$\textbf{76.3} \pm \textbf{13.1}$	$\textbf{79.9} \pm \textbf{31.9}$	50.5 ± 8.64	$\textbf{387} \pm \textbf{57.9}$	3312 ± 901	> 244
10j	2	$ = \sum_{i=1}^{j_{i} \neq i} \sum_{j=1}^{N_{i}} \sum_{j=1}^{j_{i} \neq j} \sum_{j=1}^{N_{i}} \sum_{j=1}^{$	$\textbf{7.23} \pm \textbf{1.82}$	$\textbf{9.85} \pm \textbf{2.21}$	$\textbf{7.19} \pm \textbf{0.547}$	19.7 ± 6.45	$\textbf{39.9} \pm \textbf{6.02}$	17.3 ± 3.78	43.2 ± 9.66	$\textbf{77.9} \pm \textbf{11.2}$	25.6 ± 0.929
EFV ETR	-	-	$\begin{array}{c} 2.49 \pm 0.547 \\ 3.13 \pm 0.902 \end{array}$	$\begin{array}{c} 33.9 \pm 8.39 \\ 5.94 \pm 1.60 \end{array}$	$\begin{array}{c} 75.4 \pm 10.8 \\ 3.33 \pm 0.589 \end{array}$	$\begin{array}{c} 5.42 \pm 0.994 \\ 14.8 \pm 2.47 \end{array}$	$\begin{array}{c} 196 \pm 54.8 \\ 14.1 \pm 3.83 \end{array}$	$\begin{array}{c} 4.36\pm1.05\\ 6.46\pm1.71\end{array}$	$\begin{array}{c} 254 \pm 65.5 \\ 15.7 \pm 3.69 \end{array}$	$\begin{array}{c} 260\pm47.6\\ 32.2\pm12.2\end{array}$	> 6.34 > 4.59

^a EC₅₀: concentration of compound required to achieve 50% protection of MT-4 cell cultures against HIV-1-induced cytopathic effect, as determined by the MTT method. ^b CC₅₀: concentration required to reduce the viability of mock-infected cell cultures by 50%, as determined by the MTT method.

7.11 nmol/L). Moreover, it turned out to be an effective inhibitor with EC₅₀ values of 13.6 – 47.9 nmol/L against the other mutant strains, except for RES056.

Although compounds 5j and 5i exhibited potent activities against most mutant HIV-1 strains, their activities against the double-mutant strain RES056 (EC₅₀ = 1262 and 861 nmol/L) need to be improved. Our previous research has demonstrated that dihydrofuro[3,4-d]pyrimidine was a privileged scaffold for improving the anti-HIV-1 activity and physiochemical properties [13]. So, the cyano group in the left wing of 5j was replaced by cyanovinyl to obtain derivative 10j, with the aim to establish more stronger interactions with highly conserved residues F227 and W229. As

D. Feng, F. Wei, Y. Sun et al.

Table 2

Inhibitory activity against WT HIV-1 RT.

Compd.	$IC_{50} (\mu mol/L)^a$	Compd.	$IC_{50} (\mu mol/L)^{a}$	Compd.	$IC_{50} \left(\mu mol/L\right)^{a}$
5a	0.1977 ± 0.0234	5f	0.2804 ± 0.0153	5k	$\textbf{0.2425} \pm \textbf{0.0083}$
5b	0.1091 ± 0.0028	5g	0.0678 ± 0.0155	10j	0.1837 ± 0.0094
5c	0.2644 ± 0.0082	5h	0.1504 ± 0.0124	NVP	0.4766 ± 0.2099
5d	0.2391 ± 0.0137	5i	0.1267 ± 0.0228	EFV	0.0067 ± 0.0014
5e	0.1232 ± 0.0042	5j	0.1663 ± 0.0057		

^a IC₅₀: inhibitory concentration of test compound required to inhibit biotin deoxyuridine triphosphate (biotin-dUTP) incorporation into WT HIV-1 RT by 50%.

shown in Table 1, **10** showed good inhibition against L100I with an EC_{50} value of 9.85 nmol/L, which was about 3.8-fold more potent than **5** ($EC_{50} = 37.7 \text{ nmol/L}$). Especially, it is noteworthy that **10** inhibited the double-mutant F227L + V106A strain and RES056 with EC_{50} values of 43.2 and 77.9 nmol/L, which were 3.4- and 16.2-fold more potent than those of **5** ($EC_{50} = 146$ and 1262 nmol/L). Besides, **10** showed acceptable antiviral activity against other viral strains, it was equipotent (IIIB, $EC_{50} = 7.23 \text{ nmol/L}$; K103N, $EC_{50} = 7.19 \text{ nmol/L}$; Y181C, $EC_{50} = 19.7 \text{ nmol/L}$; Y188L, $EC_{50} = 39.9 \text{ nmol/L}$; E138K, $EC_{50} = 17.3 \text{ nmol/L}$) with **5** ($EC_{50} = 7.01$, 7.11, 20.4, 47.9 and 13.6 nmol/L). These results verified that introducing the cyanovinyl group in the left wing of **10** remarkably increased the antiviral activities, especially against the double-mutant strains. Moreover, **10** demonstrated higher SI values towards HIV-1 IIIB and all the tested mutant strains (Table S1).

In order to confirm their binding target, all derivatives were evaluated for their inhibitory activity against recombinant WT HIV-1 RT enzyme (Table 2). All compounds showed high binding-affinity with WT HIV-1 RT ($IC_{50} = 0.0678-0.6585 \mu mol/L$) as compared to that of NVP ($IC_{50} = 0.4766 \mu mol/L$). Among these, compound **5g**, with a pyrimidine scaffold, exhibited the highest RT inhibitory activity ($IC_{50} = 0.0678 \mu mol/L$), which was in accordance with the anti-HIV-1 potency. These results suggest that the newly synthesized derivatives behave as typical NNRTIs.

Furthermore, we carried out the molecular dynamics analysis of **10j**–RT complexes (Supporting information). The results were substantiated with molecular dynamics simulation for 100 ns that indicated the stability of all three protein structures with < 0.5% outlier residues in the Ramachandran plot (Fig. S2 and Table S4 in Supporting information). The boronic acid group of the compound **10j** displayed H-bond interaction to K223 residue for wildtype RT while the similar interaction was shown with K104 for mutant K103N/Y181C RT (Fig. S5 in Supporting information). Therefore, the boronic acid group helps formation of multiple hydrogen bonds to improve the antiviral activity of the compounds.

In this study, a series of boronic acid-containing diarylpyrimidine derivatives were designed, synthesized and evaluated for their anti-HIV-1 potency. The results demonstrated that compounds 5j and 5i displayed nanomolar activities against HIV-1 IIIB and single-mutant strains ($EC_{50} = 4.87 - 71.8 \text{ nmol/L}$), while their activities against the double-mutant strains F227L+V106A and RES056 decreased sharply. Equipment with a cyanovinyl group at the left wing of **5***j* yielded the most potent inhibitor **10***j* with EC_{50} values of 7.23 nmol/L (IIIB), 9.85 nmol/L (L100I), 7.19 nmol/L (K103N), 19.7 nmol/L (Y181C), 39.9 nmol/L (Y188L), 17.3 nmol/L (E138K), 43.2 nmol/L (F227L+V106A) and 77.9 nmol/L (RES056), which was comparable with those of ETR. The HIV-1 RT enzyme activity inhibition assay suggest that 10j (IC₅₀ = 0.1837 μ mol/L) acted as a typical NNRTIs. Finally, based on molecular dynamics simulation, we propose the molecule **10** promising for fighting against HIV-1 infection through inhibiting RT activity. Consequently, the compound 10j, the best inhibitor of this series, could serve as

a lead for further modification to get more potent NNRTIs of important practical significance.

Declaration of competing interest

The authors report no declarations of interest.

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 81973181, 81903453), Shandong Provincial Natural Science Foundation (No. ZR2019BH011), Natural Science Foundation of Jiangsu Province (No. BK2019041035), China Postdoctoral Science Foundation (Nos. 2019T120596, 2018M640641). Science Foundation for Outstanding Young Scholars of Shandong Province (ZR2020JQ31), Science Foundation for Excellent Young Scholars of Shandong Province (ZR2020YQ61), National Science and Technology Major Projects "Major New Drugs Innovation and Development" for (2019ZX09301126), Shandong Provincial Key Research and Development Project (Nos. 2017CXGC1401, 2019JZZY021011), Foreign cultural and educational experts Project (GXL20200015001), the Taishan Scholar Program at Shandong Province and KU Leuven (No. GOA 10/014).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cclet.2021.02.033.

References

- P. Zhan, C. Pannecouque, E. De Clercq, X. Liu, J. Med. Chem. 59 (2016) 2849– 2878.
- [2] M. Katane, S. Yamada, G. Kawaguchi, et al., J. Med. Chem. 58 (2015) 7328-7340.
- [3] D. Kang, T. Zhao, Z. Wang, et al., Commun. Chem. 2 (2019) 74.
- [4] G. Bec, B. Meyer, M.A. Gerard, et al., J. Am. Chem. Soc. 135 (2013) 9743-9752.
- [5] B. Huang, W. Chen, T. Zhao, et al., J. Med. Chem. 62 (2019) 2083-2098.
- [6] D. Kang, D. Feng, T. Ginex, et al., Acta Pharm. Sin. B 10 (2020) 878-894.
- [7] V. Namasivayam, M. Vanangamudi, V.G. Kramer, et al., J. Med. Chem. 62 (2019) 4851–4883.
- [8] D. Feng, X. Zuo, L. Jing, et al., Eur. J. Med. Chem. 211 (2021) 113063.
- [9] D. Kang, X. Ding, G. Wu, et al., ACS Med. Chem. Lett. 8 (2017) 1188-1193.
- [10] D. Kang, Z. Fang, B. Huang, et al., J. Med. Chem. 60 (2017) 4424-4443.
- [11] D. Kang, Z. Fang, Z. Li, et al., J. Med. Chem. 59 (2016) 7991-8007.
- [12] D. Kang, F.X. Ruiz, D. Feng, et al., J. Med. Chem. 63 (2020) 1298-1312.
- [13] D. Kang, H. Zhang, Z. Wang, et al., J. Med. Chem. 62 (2019) 1484-1501.
- [14] P. Zhan, X. Chen, D. Li, et al., Med. Res. Rev. 33 (Suppl 1) (2013) E1-E72.
- [15] Y. Yang, D. Kang, L.A. Nguyen, et al., Elife 7 (2018) e36340.
- [16] I.W. Windsor, M.J. Palte, J.C. Lukesh 3rd, et al., J. Am. Chem. Soc. 140 (2018) 14015–14018.
- [17] P.C. Trippier, C. McGuigan, Med. Chem. Commun. 1 (2010) 183-198.
- [18] J. Plescia, N. Moitessier, Eur. J. Med. Chem. 195 (2020)112270.
- [19] P.Y. Chong, J.B. Shotwell, J. Miller, et al., J. Med. Chem. 62 (2019) 3254-3267.
- [20] P. Zhan, D. Kang, X. Liu, J. Med. Chem. 62 (2019) 3251-3253.
- [21] J. Du, J. Guo, D. Kang, et al., Chin. Chem. Lett. 31 (2020) 1695-1708.