Novel Synthesis of Naphthobenzazepines from *N*-Bromobenzylnaphthylamines by Regioselective C-H Activation Utilizing the Intramolecular Coordination of an Amine to Pd

Takashi Harayama,* Tomonori Sato, Akihiro Hori, Hitoshi Abe, Yasuo Takeuchi

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan Fax +81(86)2517963; E-mail: harayama@pharm.okayama-u.ac.jp Received 21 April 2003

Abstract: In a biaryl coupling reaction of *N*-bromobenzylnaphthylamine using Pd reagent, the intramolecular coordination of the benzylamino group to Pd causes the regioselective C-H activation at the *peri*-position to the amine group on the naphthalene ring to produce a new skeletal compound, naphthobenzazepine, in good to excellent yield.

Key words: C-H activation, heterocycles, palladium, regioselectivity, synthetic methods

Palladium-assisted aryl-aryl coupling reactions have been used to synthesize many condensed aromatic compounds.¹ Recently, we reported that intramolecular biaryl coupling reactions of *N*-arylbenzamides using palladium reagents were a very versatile way to synthesize condensed aromatic lactams, some of which are transformed into several alkaloids.^{2–5} In the intramolecular biaryl coupling reaction of *N*-naphthylbenzamide (1) using a Pd reagent, a small amount of naphthobenzazepinone (3) is obtained along with the expected benzo[*c*]phenanthridone (2), as shown in Scheme 1.^{2,4–6}

Scheme 1 Pd-assisted biaryl coupling reaction of *N*-naphthylbenzamide (1)

Scheme 2 Palladacycle of naphthylamine (4)

In 1967, Cope et al. reported that cyclopalladation reactions of naphthylamine (**4**) with palladium (II) chlorides gave palladacycle (**5**) selectively, indicating that regioselective C-H bond activation occurs at the *peri*-position to

Synlett 2003, No. 8, Print: 24 06 2003.

Art Id.1437-2096,E;2003,0,08,1141,1144,ftx,en;U07303ST.pdf.

© Georg Thieme Verlag Stuttgart · New York

the amino group of **4** (Scheme 2).⁷ Therefore, we envisioned that the intramolecular biaryl coupling reaction of *N*-bromobenzylnaphthylamine (**A**) using Pd reagent would afford a new skeletal compound, naphthobenzazepine (**B**), via an oxidative addition to Pd(0) and coordination of the amine to Pd(II), followed by the regioselective electrophilic substitution of Pd(II) at the *peri*-position and reductive elimination of Pd(0), as shown in Scheme 3 (phosphine ligands are omitted for clarity).^{8,9}

Scheme 3 Synthetic strategy of naphthylbenzazepine (B) from *N*-benzylnaphthylamine (A) using regioselective C-H activation by Pd

Scheme 4 Synthesis of *N*-(6'-bromobenzyl)-1-naphthylamine (8). *Reagents and conditions*: Method A: K_2CO_3 , Bu_4NI , DMF, 100 °C, 1–2 h; Method B: *i*-Pr₂NEt, DMF, 100 °C, 1 h

First, the biaryl coupling reaction of *N*-(bromobenzyl)naphthylamine (**8a**) was examined in relation to synthetic studies of fagaridine and decarine.⁵ A compound (**8a**) was synthesized from 6-bromo-3-isopropoxy-2methoxybenzyl bromide (**6a**)¹⁰ and *N*-methyl-6,7-methylenedioxy-1-naphthylamine (**7a**)⁴ by applying Method A (see Scheme 4 and run 1, Table 1). Then, the coupling reaction using Pd reagents was investigated. After many experiments, the biaryl coupling reaction using Pd(OAc)₂ (0.2 equiv), (*o*-tol)₃P (0.4 equiv), and K₂CO₃ (2 equiv) in DMF proceeded smoothly to provide naphthobenzazepine (**9a**), a new skeletal compound, in 71% yield. The structures of the products (**9a** and **11a**) were elucidated from elemental analyses and ¹H NMR data, in which **9a** showed

Table 1Results of Reaction of Benzylbromide (6) and Naphthyl-
amines (7)

Substituent	Meth- od	Prod- uct	Yield (%)
$\overline{\mathbf{R}^1 = \mathbf{OMe}, \mathbf{R}^2 = i \cdot \mathbf{PrO}, \mathbf{R}^3 + \mathbf{R}^4 = \mathbf{OCH}_2\mathbf{O}}$	А	8a	71
$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{H}$	А	8b	98
$R^1 = R^2 = H, R^3 + R^4 = OCH_2O$	А	8c	70
$R^1 = R^2 = OMe, R^3 = R^4 = H$	А	8d	63
$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{OMe}, \mathbf{R}^3 + \mathbf{R}^4 = \mathbf{OCH}_2\mathbf{O}$	А	8e	98
$R^1 = R^2 = H, R^3 = R^4 = OMe$	В	8f	95
$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{OMe}$	В	8g	74
$R^1 = R^2 = H, R^3 = OMe, R^4 = i - PrO$	В	8h	quant.
$R^{1} = R^{2} = R^{3} = OMe, R^{4} = i - PrO$	В	8i	96

only one singlet signal ($\delta = 7.02$ ppm) due to the aromatic proton in addition to the signals due to five aromatic protons and *N*-methyl signal ($\delta = 3.01$ ppm).¹²

By contrast, the biaryl coupling reaction of *N*-naphthylbenzamide (1, X = Br) with Pd gave mainly 2, as shown in Scheme 2 and furthermore, the reaction of *N*-acetyl amide (13)¹³ afforded *N*-acetyl benzo[*c*]phenanthridine (14)¹⁵ and *N*-acetyl naphthobenzazepine (15)¹⁵ in 45% and 55% yields, respectively (Scheme 5). These prove the contribution of the benzylamino group to the production of **9a**, as shown in Scheme 3.

Next, the coupling reaction of N-(6'-bromobenzyl)-1naphthylamines (8) using the system combining Pd(OAc)₂, (*o*-tol)₃P, and K₂CO₃ was investigated. The starting materials (8) for the coupling reaction were synthesized from dibromides (6) and *N*-methyl-1-naphthylamines $(7)^{16}$ using Method A or B in high yields, as shown in Scheme 4 and Table 1. The results of the coupling reaction of 8 using Pd reagent are summarized in Table 2. N-Bromobenzylnaphthylamines (8b-e), which possess a methylenedioxy group or no substituent group on the naphthalene ring, produced only naphthobenzazepines $(9b-e)^{18}$ in moderate to high yields (see runs 2–5, Table 2). Interestingly, N-bromobenzylnaphthylamines (8f and g), which possess a methoxy group at C_7 on the naphthalene ring, produced naphthobenzazepines (9f and \mathbf{g}^{18} and benzo[c]phenanthridines (**10f**¹⁹ and \mathbf{g}^{20}) along with debromo-products (**11f** and **g**)²¹ (see runs 6 and 7, Table 2). The methoxy group at C_7 on the naphthalene ring might hinder the coupling reaction at the peri-position (C_8 position) to the amino group on the naphthalene ring.22

N-Bromobenzylnaphthylamines (8h and i) possessing a bulky isopropoxy group relative to a methoxy group at C_7 on the naphthalene ring produced only benzo[c]phenanthridines (10h and 10i) along with debromo- and demethylated-products $(11 \text{ and } 12)^{21}$ (see runs 8 and 9, Table 2). These results strongly indicate that a relatively bulky substituent at the C7 position makes the peri-palladation unfavorable, as shown in Scheme 6. The structures of the products were elucidated from elemental analyses, MS data, and ¹H NMR data. Some selected data are given in the References and Notes. Compounds (9c,e,f,g) showed only one singlet signal due to the aromatic proton and compounds (10f,h,i) showed two singlet signals due to the aromatic protons, in addition to the signals due to other aromatic protons. Especially, the δ values of the N-methyl signals were very diagnostic for structure elucidation. *N*-Methyl signals appeared at $\delta = 2.97 - 3.08$ ppm for the naphthobenzazepines (9), $\delta = 2.62-2.65$ for the benzo[c]phenanthridines (10), and $\delta = 2.75 - 2.84$ ppm for the amides (11).

Scheme 5 Biaryl coupling reaction of amide (13)

Scheme 6 Proposed mechanism for biaryl coupling reaction of N-(bromobenzyl)naphthylamine (8) by Pd

Synlett 2003, No. 8, 1141–1144 ISSN 1234-567-89 © Thieme Stuttgart · New York

$R^{2} \xrightarrow{R^{3}}_{R^{1}} \xrightarrow{Pd(OAc)_{2}}_{Me} \xrightarrow{R^{3}}_{K_{2}CO_{3}} \xrightarrow{R^{4}}_{Me} \xrightarrow{R^{4}}_{R^{2}} \xrightarrow{R^{4}}_{R^{1}} \xrightarrow{R^{4}}_{R^{2}} \xrightarrow{R^{4}}_{R^{1}} \xrightarrow{R^{2}}_{R^{1}} \xrightarrow{R^{4}}_{R^{2}} \xrightarrow{R^{4}}_{R^{1}} \xrightarrow{R^{2}}_{R^{1}} \xrightarrow{R^{4}}_{R^{2}} \xrightarrow{R^{4}}_{R^{1}} \xrightarrow{R^{2}}_{R^{1}} \xrightarrow{R^{2}}_$								
Run Substrate		Yield (%)						
			9	10	11	12		
1	8a	$\mathbf{R}^1 = \mathbf{OMe}, \mathbf{R}^2 = i - \mathbf{PrO}, \mathbf{R}^3 + \mathbf{R}^4 = \mathbf{OCH}_2\mathbf{O}$	71	_	trace	-		
2	8b	$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{H}$	81	_	-	-		
3	8c	$R^1 = R^2 = H, R^3 + R^4 = OCH_2O$	86	-	-	_		
4	8d	$R^1 = R^2 = OMe, R^3 = R^4 = H$	44	_	_	-		
5	8e	$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{OMe}, \mathbf{R}^3 + \mathbf{R}^4 = \mathbf{OCH}_2\mathbf{O}$	60	-	-	-		
6	8f	$R^1 = R^2 = H, R^3 = R^4 = OMe$	22	33	12	-		
7	8g	$\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{OMe}$	18	34	10	10		
8	8h	$R^1 = R^2 = H, R^3 = OMe, R^4 = i$ -PrO	_	44	11	20		
9	8i	$R^1 = R^2 = R^3 = OMe, R^4 = i-PrO$	-	53	11	26		

 Table 2
 Results of Coupling Reaction of Substituted N-(6-bromobenzyl)-N-methyl-1-naphthylamines (8) in DMF under Reflux^a

^a All reactions were carried out using 0.2 equiv of Pd(OAc)₂, 0.4 equiv of (o-Tol)₃P, and 2 equiv of K₂CO₃ under Ar atmosphere for 2 h.

Note that in a biaryl coupling reaction of *N*-bromobenzylnaphthylamine using Pd reagent, the intramolecular coordination of the benzylamino group to Pd causes regioselective C-H activation to produce a new skeletal compound, naphthobenzazepine, and the bulkiness of the substituent at C_7 on the naphthalene ring affects the regioselectivity of the biaryl coupling reaction.

Acknowledgment

The authors are indebted to the SC-NMR Laboratory of Okayama University for the NMR experiments.

References

- (a) Tsuji, J. Palladium Reagents and Catalysts; John Wiley and Sons, Inc.: New York, **1995**, 125–252. (b) Li, J. J.; Gribble, G. W. Palladium in Heteocyclic Chemistry; Pergamon: Oxford, **2000**. (c) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. **2002**, *102*, 1359.
- (2) (a) Harayama, T.; Akiyama, T.; Akamatsu, H.; Kawano, K.; Abe, H.; Takeuchi, Y. *Synthesis* 2001, 444. (b) Harayama, T.; Akamatsu, H.; Okamura, K.; Miyagoe, T.; Akiyama, T.; Abe, H.; Takeuchi, Y. *J. Chem. Soc., Perkin Trans. 1* 2001, 523.
- (3) (a) Harayama, T.; Shibaike, K. *Heterocycles* **1998**, *49*, 191.
 (b) Harayama, T.; Akiyama, T.; Nakano, Y.; Nishioka, H.; Abe, H.; Takeuchi, Y. *Chem. Pharm. Bull.* **2002**, *50*, 519.
- (4) Harayama, T.; Akiyama, T.; Nakano, Y.; Shibaike, K.; Akamatsu, H.; Hori, A.; Abe, H.; Takeuchi, Y. *Synthesis* 2002, 237.
- (5) Harayama, T.; Sato, T.; Nakano, Y.; Abe, H.; Takeuchi, Y. *Heterocycles* **2003**, *59*, 293.

- (6) Harayama, T.; Hori, A.; Nakano, Y.; Akiyama, T.; Abe, H.; Takeuchi, Y. *Heterocycles* 2002, 58, 159.
- (7) (a) Cope, A. C.; Friedrich, E. C. J. Am. Chem. Soc. 1968, 90, 909. (b) Bruce, M. I. Angew. Chem., Int. Ed. Engl. 1977, 16, 73.
- (8) Dyker, G. Angew. Chem. Int. Ed. 1999, 38, 1698.
- (9) (a) Clark, P. W.; Dyke, S. F. J. Organomet. Chem. 1985, 243, 389. (b) Martín-Mature, B.; Matero, C.; Cárdenas, D. J.; Echavarren, A. M. Chem.–Eur. J. 2001, 7, 2341.
 (c) Dyker, G. Chem. Ber. 1997, 243, 1567. (d) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992.
- (10) 6-Bromo-3-isopropoxy-2-methoxybenzyl bromide (6a) was prepared from 3-isopropoxy-2-methoxybenzaldehyde¹¹ in 54% yield via reduction with NaBH₄ and bromination with Br₂.
- (11) Banwell, M. G.; Flynn, B. L.; Stewart, S. G. J. Org. Chem. 1998, 63, 9139.
- (12) Selected ¹H NMR data (200 MHz, CDCl₃): Compound **9a**: $\delta = 3.01$ (3 H, s, N-Me), 6.57 (1 H, br. d, J = 7.0 Hz), 6.86 (1 H, d, J = 8.5 Hz), 7.02 (1 H, s), 7.08 (1 H, br. d, J = 7.0 Hz), 7.14 (1 H, t, J = 7.0 Hz), 7.41 (1 H, d, J = 8.5 Hz). Compound **11a**: $\delta = 2.75$ (3 H, s, N-Me), 7.11 (1 H, s), 7.75 (1 H, s).
- (13) Compound 13 was prepared from 6-bromo-3-hydroxy-2methoxybenzaldehyde¹⁴ in 48% yield via etherification with isopropyl bromide, reductive alkylation with 6,7methylenedioxy-1-naphthylamine and NaBH₄, and Nacetylation.
- (14) Nakanishi, T.; Suzuki, M. J. Prod. Chem. 1998, 61, 1263.
- (15) Selected ¹H NMR data (200 MHz, CDCl₃): Compound **14**: $\delta = 3.80 (1 \text{ H}, \text{d}, J = 15.4 \text{ Hz}, \text{ArCH}_{A}\text{H}_{B}\text{N}), 6.25 (1 \text{ H}, \text{d}, J = 15.4 \text{ Hz}, \text{ArCH}_{A}\text{H}_{B}\text{N}), 6.93 (1 \text{ H}, \text{d}, J = 8.6 \text{ Hz}), 7.13 (1 \text{ H}, \text{s}), 7.28 (1 \text{ H}, \text{s}), 7.52 (1 \text{ H}, \text{d}, J = 8.6 \text{ Hz}), 7.62 (1 \text{ H}, \text{d}, J = 8.6 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 8.6 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 8.6 \text{ Hz}). Compound$ **15**: $<math>\delta = 3.93 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}, \text{ArCH}_{A}\text{H}_{B}\text{N}), 5.97 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}, J = 15.8 \text{ Hz}), 7.69 (1 \text{ H}, \text{d}), 7.69 (1 \text{$

J = 15.8 Hz, ArCH_A H_B N), 6.84 (1 H, d, J = 8.8 Hz), 7.10 (1 H, dd, J = 7.6, 1.4 Hz), 7.17 (1 H, s), 7.29 (1 H, t, J = 7.8 Hz), 7.59 (1 H, d, J = 8.8 Hz), 7.61 (1 H, dd, J = 7.8, 1.4 Hz).

- (16) 6,7-Dimethoxy-*N*-methyl-1-naphthylamine (**7f**) and 7isopropoxy-6-methoxy-*N*-methyl-1-naphthylamine (**7h**) were prepared from 6,7-dimethoxy-1-naphthylamine¹³ and 7-isopropoxy-6-methoxy-1-naphthylamine¹⁷ in 86% and 76% yields, respectively, via trifluoroacetylation, methylation with MeI and hydrolysis with alkaline aqueous EtOH.
- (17) Stermitz, F. R.; Gillespie, J. P.; Amoros, L. G.; Romero, R.; Stermitz, T. A. J. Med. Chem. **1975**, *18*, 708.
- (18) Selected ¹H NMR data (200 MHz, CDCl₃): Compound **9b**: $\delta = 3.05$ (3 H, s, N-Me). Compound **9c**: $\delta = 2.97$ (3 H, s, N-Me), 7.06 (1 H, s). Compound **9d**: $\delta = 3.08$ (3 H, s, N-Me), 6.92 (1 H, d, J = 8.6 Hz), 7.14 (1 H, d, J = 8.6 Hz). Compound **9e**: $\delta = 3.00$ (3 H, s, N-Me), 6.88 (1 H, d, J = 8.6 Hz), 7.03 (1 H, s), 7.45 (1 H, d, J = 8.6 Hz). Compound **9f**: $\delta = 2.98$ (3 H, s, N-Me), 3.48 (3 H, s, OMe), 7.07 (1 H, s). Compound **9g**: $\delta = 3.03$ (3 H, s, N-Me), 3.48 (3 H, s, OMe), 6.85 (1 H, d, J = 8.8 Hz), 7.03 (1 H, s), 7.27 (1 H, d, J = 8.8 Hz).
- (19) Selected ¹H NMR data (200 MHz, CDCl₃): Compound **10f**: $\delta = 2.65$ (3 H, s, N-Me), 7.14 (1 H, s), 7.54 (1 H, d, J = 8.6Hz), 7.66 (1 H, s), 7.79 (1 H, d, J = 8.6 Hz). Compound **10g**: Mp 180–183 °C (lit.²⁰ 186–188 °C). Compound **10h**: $\delta = 2.63$ (3 H, s, N-Me), 7.14 (1 H, s), 7.53 (1 H, d, J = 8.6Hz), 7.69 (1 H, s), 7.78 (1 H, d, J = 8.6 Hz). Compound **10i**: $\delta = 2.62$ (3 H, s, N-Me), 6.94 (1 H, d, J = 8.4 Hz), 7.13 (1 H, s), 7.50 (1 H, d, J = 8.4 Hz), 7.51 (1 H, d, J = 8.6 Hz), 7.69 (1 H, s), 7.71 (1 H, d, J = 8.6 Hz).
- (20) Wu, S.-J.; Chen, I.-S.; Chern, C.-Y.; Teng, C.-M.; Wu, T.-S. J. Chin. Chem. Soc. 1996, 43, 195.
- (21) Selected ¹H NMR data (200 MHz, CDCl₃): Compound **11f**: $\delta = 2.82$ (3 H, s, N-Me), 7.04 (1 H, dd, J = 7.4, 1.2 Hz), 7.13 (1 H, s), 7.63 (1 H, s). Compound **11g**: $\delta = 2.84$ (3 H, s, N-Me), 6.86 (1 H, dd, J = 8.0, 1.4 Hz), 7.12 (1 H, s), 7.59 (1 H, s). Compound **11h**: $\delta = 2.81$ (3 H, s, N-Me), 7.02 (1 H, dd, J = 7.6, 1.2 Hz), 7.13 (1 H, s), 7.62 (1 H, s). Compound **11i**: $\delta = 2.84$ (3 H, s, N-Me), 6.87 (1 H, dd, J = 8.0, 1.2 Hz), 7.11 (1 H, s), 7.56 (1 H, s). Compound **12g**: $\delta = 6.56$ (1 H, br d, J = 7.2 Hz), 7.02 (1 H, s), 7.10 (1 H, s). Compound **12h**: $\delta = 6.55$ (1 H, dd, J = 7.0, 1.4 Hz), 7.12 (1 H, s), 7.18 (1 H, s). Compound **12i**: $\delta = 6.60$ (1 H, dd, J = 7.4, 1.2 Hz), 7.01 (1 H, s), 7.11 (1 H, s).
- (22) (a) Vila, J. M.; Suarez, A.; Pereira, M. T.; Gayoso, E.; Gayoso, M. *Polyhedron* **1987**, *6*, 1003. (b) Teijido, B.; Fernández, A.; López-Torres, M.; Castro-Juiz, S.; Suárez, A.; Ortigueira, J. M.; Vila, J. M.; Fernández, J. J. *J. Organomet. Chem.* **2000**, *598*, 71.