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The sponge Dysidea herbacea was collected from the Mandapam Coast, Tamilnadu, India. Isolated gram
quantities of hydroxylated polybrominated diphenyl ether (HO-PBDE) and semi-synthesized a series of
new PBDEs derivatives and tested them for antibacterial and cytotoxic activities.
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Polybrominated diphenyl ethers (PBDEs) are widely used in com-
mercial and industrial products for fire prevention.1,2 Hydroxylated
polybrominated diphenyl ethers (HO-PBDEs) and methoxylated
polybrominated diphenyl ethers (MeO-PBDEs) have been found in
water sewage samples,3 and even in human blood and breast
milk.4,5 These compounds are lipophilic and can be bio-accumulated
via the food chain.6 The potential toxic effects of PBDEs include thy-
roid hormone disruption,7–10 neurodevelopment discrepancy and
cancer.11 However, PBDEs also pose antibacterial, antifungal, and
cytotoxic activities.12–14 PBDEs are produced by marine organisms
such as sponges,15,16 tunicates17,18 and algae.19 As part of our inves-
tigations of bioactive compounds from marine organisms,20 we de-
scribe here the isolation of an HO-PBDE from the sponge Dysidea
herbacea (family Dysidea, order Dictyoceratida)21–25 and the semi-
synthesis from it of a series of new PBDEs derivatives with moderate
to good potent cytotoxic activity against leukemia cells and antibac-
terial activity against gram positive and gram negative bacteria.
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rlu).
The sponge D. herbacea (IIC-631) was collected at a depth of
30 feet by SCUBA diving near the Mandapam Coast, (N 9o 180, E
79o 080), Tamilnadu, India. It was immediately soaked in methanol.
The sponge was gray when alive and yellowish gray in methanol. It
was purified by gel filtration chromatography on Sephadex LH-20
followed by silica gel chromatography eluting with hexane–ethyl
acetate mixtures to afford HO-PBDE as a white solid, mp
88–90 �C. HO-PBDE is non-hygroscopic and stable at room temper-
ature. From the forgoing spectral data the structure of HO-PBDE
was established as 2-(20,40-dibromophenoxy)-4,6-dibromophenol,
which was a known polybrominated diphenyl ethers (HO-PBDEs)
and previously isolated from the sponge D. herbacea and also syn-
thesized from commercially available starting materials.26,27 We
have found the marine sponge D. herbacea to contain good quanti-
ties of the HO-PBDE.28,29

Refluxing HO-PBDE with various alkyl bromides in the presence
of K2CO3 in acetone for 6 h followed by workup and silica gel col-
umn chromatography gave the corresponding ethers30 as shown in
Scheme 1 and Table 1. All reactions were clean and obtained near
quantitative yields. The products include naturally occurring sub-
stances MeO-PBDE (A), AcO-PBDE (B). The alkylation was very
selective when 5 equiv of bis-functional alkylating agents were
used for the alkylation (Table 1, entries 10–14). Similarly, refluxing
M with secondary amines in the presence of K2CO3 in acetonitrile
for 6 h gave the corresponding PDBE derrivatives31 as shown in
Table 2 and Schemes 2. When the above reaction was carried out
in acetone the reaction was incomplete and the obtained yields
were low. All the products were characterized by NMR and mass
spectral data.
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Scheme 1. Semi-synthesis of PBDEs A–P.

Table 1
Semi-synthesis of PBDEs A–P
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Table 1 (continued)

S. No R–X Productb Yielda (%)
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Table 1 (continued)

S. No R–X Productb Yielda (%)
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a Isolated yields after column chromatography.
b Products were characterized by NMR and mass spectral data.

Table 2
Semi-synthesis of PBDEs Q–X

S. No R X n Productb Yielda (%)
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Scheme 2. Semi-synthesis of PBDEs Q–X.
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Table 2 (continued)

S. No R X n Productb Yielda (%)
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a Isolated yields after column chromatography.
b Products were characterized by NMR and mass spectral data.

Table 3
Cytotoxicitiesa of PBDEs with HL-60 and U937 cells

Compound code Cytotoxicity (IC50 values in lg/mLb)

HL-60 U937

HO-PBDE 19.3 ± 2.9 22.5 ± 1.5
A 28.2 ± 4.1 34.5 ± 3.3
B 29.9 ± 3.2 32.3 ± 1.2
C 27.9 ± 3.0 29.0 ± 2.0
D 29.7 ± 1.9 29.5 ± 0.7
E 28.2 ± 4.1 34.5 ± 3.3
F 29.9 ± 3.2 32.3 ± 1.2
G 27.9 ± 3.0 29.0 ± 2.0
H 35.7 ± 1.9 39.5 ± 0.7
I 29.2 ± 4.1 32.5 ± 3.3
J 26.2 ± 4.1 32.5 ± 3.3
K 29.9 ± 3.2 30.3 ± 1.2
L 25.9 ± 3.0 29.0 ± 2.0
M 25.7 ± 1.9 29.5 ± 0.7
N 37.8 ± 3.7 33.8 ± 1.2
Q 48.3 ± 3.4 49.1 ± 3.3
R 32.1 ± 3.8 35.5 ± 4.5
S 41.6 ± 3.3 42.5 ± 0.9
T 32.2 ± 3.6 37.5 ± 0.7
U 47.2 ± 2.9 32.7 ± 1.4
V 44.8 ± 3.3 39.5 ± 0.6
W 50.5 ± 3.6 39.8 ± 0.6
X 52.5 ± 3.1 68.5 ± 1.2
Etoposide (positive control) 1.1 ± 0.1 10.6 ± 0.7

a Exponentially growing cells were treated with different concentrations of test
compounds for 24 h and cell growth inhibition was analyzed through the MTT
assay.

b IC50 is defined as the concentration which results in a 50% decrease in cell
number as compared with that of the control cultures in the absence of an inhibitor.
The values represent the mean ± SE of five individual observations.
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The parent molecule HO-PBDE showed potent brine shrimp
lethality activity with an LC50 value of 12.8 ± 2.8 ppm and com-
pounds A and B have similar activity with LC50 values of
19.28 ± 2.9 and 23.28 ± 2.6 ppm, respectively. The antibacterial
activities of PBDEs were determined against two gram negative
bacteria, Escherichia coli and Pseudomonas syringae, and two gram
positive bacteria, Staphylococcus aureus and Bacillus subtilis, using
the paper disk assay method. Two of the derivatives A, and B,
showed good activity against both gram positive and gram nega-
tive bacteria.

The sensitivities of the human leukemic cell lines HL-60 (mye-
loid leukemia) and U937 (leukemic monocyte lymphoma) to the
synthetic derivatives were evaluated. Cytotoxicities were deter-
mined by measuring the number of live cells after 24 h of treat-
ment (MTT assay); the IC50 values are presented in Table 3. It is
evident from the results that the parent molecule HO-PBDE was
the most potent anti-proliferative agent against HL-60 and U937
cells, but all 24 of its derivatives has significant activity.32,33

All the PBDEs derivatives were less potent than the parent mol-
ecule HO-PBDE and standard drug etopside against the U-937 cell
lines, but exhibited significant biological activity with some varia-
tion. Whereas compound M, displayed potent cytotoxicity to HL-60
and U937 cell lines with IC50 values of 25.7 ± 1.9 and 29.5 ± 0.7 lg/
mL, respectively. Similarly, in this series bromo alky derivatives J, K
and L also displayed similarly good activity against both the cell
lines. Whereas, there no significant change in the activity when
alkylation with simple alky halides Table 1, entries 1–9. However,
the bromide of M was further alkylated with secondary amines
showed a rather weak cytotoxic activity Table 2, entries 1–8 and
compound X showed least cytotoxic activity. Foregoing biological
results of these PBDEs derivatives containing the bromide on aro-
matic ring or on side chain is the may be responsible for increase
of the cytotoxic activity.

In conclusion, isolation of HO-PBDE in good quantity from
sponge D. herbacea, semi-syntheses and bio-evaluation of a series
of new polybrominated diphenyl ethers is described.
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(2H, t), 3.57 (2H, t), 2.31–2.18 (2H, m). FABMS (m/z) 623 [M+].
1-(2-(4-Bromobutoxy)-3, 5-dibromophenoxy)-2,4-dibromobenzene (L): 1H NMR
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NMR (300 MHz, CDCl3) d 7.77 (1H, d, J = 2.2 Hz), 7.52 (1H, d, J = 2.2 Hz),
7.37–7.34 (1H, dd, J = 2.2 and 8.3 Hz), 6.99 (1H, d, J = 2.2 Hz), 6.67 (1H, d,
J = 8.3 Hz), 4.02 (2H, t), 3.33 (2H, t), 1.91–1.81 (2H, m), 1.77–1.68 (2H, m),
1.57–1.50 (2H, m); 13C NMR (75 MHz, CDCl3) d 152.12, 149.50, 146.85, 135.91,
131.64, 131.11, 122.33, 119.48, 119.39, 116.63, 116.60, 114.04, 73.60, 33.39,
32.29, 29.06, 24.43. FABMS (m/z) 651 [M+].
1-(2-(6-Bromohexyloxy)-3,5-dibromophenoxy)-2,4-dibromobenzene (N): 1H NMR
(300 MHz, CDCl3) d 7.77 (1H, d, J = 2.3 Hz), 7.51 (1H, d, J = 2.3 Hz), 7.38–7.33
(1H, dd, J = 2.3 and 8.5 Hz), 7.00 (1H, d, J = 2.3 Hz), 6.66 (1H, d, J = 8.5 Hz), 4.00
(2H, t), 3.43 (2H, t), 1.89–1.64 (4H, m), 1.45–1.39 (4H, m). FABMS (m/z) 665
[M+].
2-(2-(2,4-Dibromophenoxy)-4,6-dibromophenoxy)-1-phenylethanone (O): 1H
NMR (300 MHz, CDCl3) d 7.88 (2H, d, J = 8.3 Hz), 7.70 (1H, d, J = 2.2 Hz),
7.57–7.52 (2H, m), 7.43–7.35 (3H, m), 6.88 (1H, d, J = 2.2 Hz), 6.77 (1H, d,
J = 8.3 Hz), 5.32 (2H, s). FABMS (m/z) 620 [M+].
2-(2-(2,4-Dibromophenoxy)-4,6-dibromophenoxy)-1-(4-chlophenyl)-ethanone
(P): 1H NMR (300 MHz, CDCl3) d 7.86 (2H, d, J = 8.3 Hz), 7.72 (1H, d, J = 2.2 Hz),
7.52 (1H, m), 7.41–7.37 (3H, m), 6.88 (1H, d, J = 2.2 Hz), 6.76 (1H, d, J = 8.3 Hz),
5.24 (2H, s). FABMS (m/z) 654 [M+].

31. Typical experimental procedure for the preparation of N-alkyl piperazine derivatives
of M: To a mixture of M (1 mmol) and anhydrous potassium carbonate (2 mmol)
in 20 mL acetonitrile, N-alkylated piperazine was added. The mixture was
refluxed under nitrogen for 6 h. After completion of the reaction, the reaction
mixture was brought to room temperature, poured into ice water and washed
with methylene chloride (2 � 10 mL). The combined organic layers were dried
over anhydrous sodium sulfate and concentrated under vacuum. The residue
was purified by column chromatography on silica gel (60–120 mesh) to give the
corresponding N-alkylpiperazine derivatives Q–X.
1-(5-(2-(2,4-Dibromophenoxy)-4,6-dibromophenoxy)pentyl)-4-methylpiperazine
(Q): 1H NMR (300 MHz, CDCl3) d 7.77 (1H, d, J = 2.2 Hz), 7.51 (1H, d, J = 2.2 Hz),
7.40–7.36 (1H, dd, J = 2.2 and 8.3 Hz), 6.97 (1H, d, J = 2.2 Hz), 6.70 (1H, d,
J = 8.3 Hz), 4.01 (2H, t), 2.90 (8H, t), 2.60 (2H, t), 2.57 (3H s), 1.76–1.67 (2H, m),
1.66–155 (2H, m), 1.45–1.35 (2H, m) 13C NMR (75 MHz, CDCl3) d 152.31, 149.58,
147.02, 136.02, 131.78, 131.31, 122.48, 119.55, 116.70, 116.49, 114.15, 73.72,
57.61, 53.56, 51.40, 44.81, 29.63, 25.49, 23.52. FABMS (m/z) 670 [M+].
tert-Butyl 4-(5-(2-(2,4-dibromophenoxy)-4,6-dibromophenoxy)pentyl)piperazine-
1-carboxylate (R): 1H NMR (300 MHz, CDCl3) d 7.76 (1H, d, J = 2.2 Hz), 7.51 (1H,
d, J = 2.2 Hz), 7.37–7.33 (1H, dd, J = 2.2 and 9.0 Hz), 6.99 (1H, d, J = 2.2 Hz), 6.66
(1H, d, J = 9.0 Hz), 4.00 (2H, t), 3.38 (4H, t), 2.32 (4H, t), 2.26 (2H t), 1.75–1.66
(2H, m), 1.52–1.33 (4H, m), 1.45 (9H, m); 13C NMR (75 MHz, CDCl3) d 155.44,
152.28, 149.63, 146.99, 136.01, 131.80, 131.28, 122.43, 119.67, 119.47, 116.70,
116.43, 114.18, 79.93, 73.89, 58.28, 52.68, 29.68, 28.35, 25.63, 23.64. FABMS (m/
z) 756 [M+].
1-(5-(2-(2,4-Dibromophenoxy)-4,6-dibromophenoxy)pentyl)-4-phenylpiperazine
(S): 1H NMR (300 MHz, CDCl3) d 7.77 (1H, d, J = 2.2 Hz), 7.51 (1H, d, J = 2.2 Hz),
7.38–7.37 (1H, dd, J = 2.2 and 8.6 Hz), 7.26–7.20 (2H, m), 6.97 (1H, d, J = 2.2 Hz),
6.90–6.81 (3H, m), 6.68 (1H, d, J = 8.6 Hz), 4.03 (2H, t), 3.22 (4H, t), 2.64 (4H, t),
2.41 (2H t), 1.78–1.69 (2H, m), 1.62–152 (2H, m), 1.45–1.35 (2H, m); 13C NMR
(75 MHz, CDCl3) d 152.45, 151.13, 149.68, 147.23, 136.10, 131.82, 131.43,
129.11, 122.63, 119.90, 119.55, 116.75, 116.49, 116.20, 114.23, 74.01, 58.44,
53.09, 48.88, 29.76, 26.19, 23.85. FABMS (m/z) 732 [M+].
1-(5-(2-(2,4-Dibromophenoxy)-4,6-dibromophenoxy)pentyl)-4-(2-
methoxyphenyl)-piperazine (T): 1H NMR (300 MHz, CDCl3) d 7.70 (1H, d,
J = 2.2 Hz), 7.44 (1H, d, J = 2.2 Hz), 7.32–7.28 (1H, dd, J = 2.2 and 8.6 Hz), 6.95–
6.77 (5H, m), 6.62 (1H, d, J J = 8.6 Hz), 3.97 (2H, t), 3.79 (3H, s), 3.02 (4H, t), 2.58
(4H, t), 2.32 (2H, t), 1.72–1.63 (2H, m), 1.53–143 (2H, m), 1.38–1.30 (2H, m). 13C
NMR (75 MHz, CDCl3) d 152.31, 149.69, 147.11, 141.31, 136.04, 131.80, 131.27,
122.84, 122.42, 119.69, 119.54, 118.18, 116.73, 116.34, 114.23, 111.12, 74.13,
58.58, 53.32, 53.39, 50.53, 29.92, 29.66, 26.49, 23.86. FABMS (m/z) 762 [M+].
1-(5-(2-(2,4-Dibromophenoxy)-4,6-dibromophenoxy)pentyl)-4-
cinnamylpiperazine (U): 1H NMR (300 MHz, CDCl3) d 7.69 (1H, d, J = 2.2 Hz), 7.43
(1H, d, J = 2.2 Hz), 7.31–7.16 (6H, m), 6.87 (1H, d, J = 2.2 Hz), 6.62 (1H, d,
J = 8.6 Hz), 6.48 (1H, d, J = 15.8 Hz), 6.19–6.09 (1H, m), 3.95 (2H, t), 3.30 (1H, t),
3.20 (2H, t), 2.76 (6H, t), 2.53 (2H, t), 2.29 (1H, t), 1.98–188 (1H, m), 1.70–1.51
(4H, m), 1.38–1.28 (1H, m). 13C NMR (75 MHz, CDCl3) d 152.19, 149.63, 146.86,
136.28, 135.99, 134.57, 131.81, 131.20, 128.54, 127.81, 126.37, 124.28, 122.29,
119.75, 119.45, 116.73, 116.44, 114.21, 113.99, 73.72, 60.33, 55.86, 52.29, 51.42,
49.35, 29.54, 25.19, 23.49. FABMS (m/z) 772 [M+].
tert-Butyl 4-(5-(2-(2, 4-Dibromophenoxy)-4,6-dibromophenoxy)pentyl)-1,4-
diazepane-1-carboxylate (V): 1H NMR (300 MHz, CDCl3) d 7.77 (1H, d,
J = 2.2 Hz), 7.51 (1H, d, J = 2.2 Hz), 7.39–7.35 (1H, dd, J = 2.2 and 8.3 Hz), 6.97
(1H, d, J = 2.2 Hz), 6.70 (1H, d, J = 8.3 Hz), 4.03 (2H, t), 3.48 (2H, t), 3.43 (2H, t),
2.61 (2H, t), 2.58 (2H, t), 2.42 (2H t), 1.85–1.77 (2H, m), 1.74–166 (2H, m), 1.46
(9H, s), 143–1.41 (4H, m). 13C NMR (75 MHz, CDCl3) d 155.45, 152.25, 149.63,



4906 T. Srikanth Reddy et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4900–4906
146.98, 135.98, 131.78, 131.23, 122.37, 119.68, 119.47, 116.70, 116.38, 114.18,
79.50, 76.59, 73.91, 57.66, 55.92, 54.51, 45.52, 44.67, 30.28, 28.42, 26.33, 26.16,
22.90. FABMS (m/z) 770 [M+].
4-(5-(2-(2,4-Dibromophenoxy)-4,6-dibromophenoxy)pentyl)morpholine (W): 1H
NMR (300 MHz, CDCl3) d 7.76 (1H, d, J = 2.2 Hz), 7.51 (1H, d, J = 2.2 Hz), 7.37–
7.33 (1H, dd, J = 2.2 and 8.3 Hz), 6.99 (1H, d, J = 2.2 Hz), 6.66 (1H, d, J = 8.3 Hz),
4.00 (2H, t), 3.64 (4H, t), 2.36 (4H, t), 2.25 (2H, t), 1.75–1.66 (2H, m), 1.51–1.34
(4H, m); 13C NMR (75 MHz, CDCl3) d 152.53, 149.64, 147.34, 136.09, 131.78,
131.49, 122.76, 119.65, 119.42, 116.68, 116.45, 114.15, 74.04, 66.76, 58.91,
53.73, 29.93, 26.15, 23.79. FABMS (m/z) 657 [M+]
3-(4-(5-(2-(2,4-Dibromophenoxy)-4,6-dibromophenoxy)pentyl)piperazin-1-yl)-
1,4-dihydro-6-nitro-1-tosylcinnoline (X): 1H NMR (300 MHz, CDCl3) d 8.54 (1H, d,
J = 1.4 Hz), 8.36–8.21 (2H, dd, J = 9.6 Hz), 7.78 (3H, d, J = 8.1 Hz), 7.51 (1H, d,
J = 2.2 Hz), 7.38–7.33 (1H, dd, J = 2.2 and 8.8 Hz), 7.22 (2H, d, J = 8.1 Hz), 7.00
(1H, d, J = 2.2), 6.67 (1H, d, J = 8.8 Hz), 4.01 (2H, t), 3.50 (4H, t), 2.55 (4H, t), 2.37
(3H, s), 2.33 (2H, t), 1.79–1.66 (2H, m), 1.58–1.33 (4H, s). FABMS (m/z) 985 [M+].

32. The cell lines HL-60 (human myeloid leukemia) and U937 (human leukemic
monocyte lymphoma) were obtained from the National Centre for Cellular
Sciences (NCCS), Pune, India. Cells were cultured in RPMI 1640 media
supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS),
100 units/mL penicillin and 100 lg/mL streptomycin. Both cell lines were
maintained in culture at 37 �C in an atmosphere of 5% CO2.

33. Cell proliferation or viability was measured using the MTT [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetra sodium bromide] assay (Mosmann,
1983). Cells were seeded in each well containing 100 lL medium at a final
density of 2 � 104 cells/well, in 96 well plates under identical conditions. After
overnight incubation, the cells were treated with different concentrations of
test compounds (10–200 lg/mL) or DMSO (carrier solvent) in a final volume of
200 lL with five replicates each. After 24 h, 10 lL of MTT (5 mg/mL) was added
to each well and the plate was incubated at 37 �C in the dark for 4 h. The
formazan crystals were solubilized in DMSO (100 lL/well) and the reduction of
MTT was quantified by absorbance at 570 nm in a spectrophotometer (Spectra
MAX Plus; Molecular Devices; supported by SOFTmax PRO 5.0). Effects of the
test compounds on cell viability were calculated using cells treated with DMSO
as control. The data were subjected to linear regression analysis and the
regression lines were plotted for the best straight-line fit. The IC50 (inhibition
of cell viability) concentrations were calculated using the respective regression
equation.
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