Journal of Medicinal Chemistry

© Copyright 1976 by the American Chemical Society

Volume 19, Number 9

September 1976

Irreversible Enzyme Inhibitors.¹ Inhibitors of Guinea Pig Complement Derived by Quaternization of Substituted Pyridines with Benzyl Halides

Michael H. Doll* and B. R. Baker²

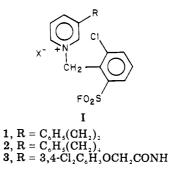
Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106. Received December 15, 1975

A series of 83 compounds derived from hydrocarbon-substituted pyridines by quaternization with PhCH₂Br usually containing a 2-SO₂F or 6-Cl-2-SO₂F group was synthesized and evaluated as inhibitors of guinea pig complement and in most cases its $C\bar{1}$ component. The most active compounds were 3-(4-phenylphenylbutyl)-N-(6-chloro-2-fluorosulfonylbenzyl)pyridinium bromide (43) and 3-(4-phenylphenylbutyl)-N-(2-fluorosulfonylbenzyl)pyridinium bromide (44), each showing 50% inhibition at 7.8 μ M. The most effective irreversible inhibitor of the C $\bar{1}$ component was N-(6-chloro-2-fluorosulfonylbenzyl)-5,6-benzoquinolinium bromide (87), which showed 50% inhibition at 4 μ M.

The serum complement system is a mixture of 11 distinct proteins^{3,4} which has protease activity that is both "tryptic" and "chymotryptic". Acting in concert with antibodies, the complement system represents one of the two aspects of the mammalian immune system. Inhibitors of the complement system have potential medicinal use in preventing tissue and organ rejection as well as in the treatment of arthritis.^{5,6} Also, complement inhibitors have been useful in supplying information about the molecular biology of the complement system itself.⁷ Complement inhibition is readily measured by the antibody mediated complement lysis of sheep red blood cells (RBC).^{5,8}

Studies in this laboratory have utilized the qualitative approach of designing biologically active compounds which was developed by the late Bernard R. Baker. This four step modus operandi^{9,10} employs hydrophobic interactions, hydrogen bonding, anionic-cationic interactions, and charge-transfer complexes to selectively enhance inhibitor-enzyme binding, thereby selectively inhibiting target enzymes. Slight evolutionary differences outside the active site are then exploited to provide dimensions of specificity when target pathways are also used by host cells, such as in cancer, or when several enzymes have similar active sites, such as with proteolytic enzymes.

In the first step the binding points of a reversible inhibitor are determined; some binding points can be eliminated if stronger binding can be found in another area on the inhibitor.


The second step consists of a search for bulk tolerance areas in the enzyme-inhibitor complex. These are areas where a portion of the inhibitor, usually a modified substrate molecule, does not contact the enzyme.

The third step involves the placement of an alkylating group in a noncontact area. If the dimensions between the inhibitor-attached alkylating group and an enzyme nucleophilic group are correct, then irreversible inhibition

* To whom correspondence should be addressed at Pharm-Eco Laboratories, Inc., Simi Valley, Calif. 93065. by a facile neighboring-group reaction may occur.

The final step of the sequence is the modification of the irreversible inhibitor so that differences in enzymes from different species or tissues can be found and exploited.

Since the serum complement is a complex, multienzyme system, the above modus operandi has not been rigidly applied. The initial studies involved the preparation of potent trypsin¹¹⁻¹³ and chymotrypsin¹⁴⁻¹⁹ inhibitors which were then tested on the complement system.^{5,20,21} This preliminary information was then used as a starting point in designing potent complement inhibitors.^{8,22-25} The most effective chymotryptic type inhibitors thus developed have been quaternized pyridines (I).^{1b}

Compound 1 showed 40% inhibition of whole complement at 125 μ M while 2 and 3, each with a slightly larger R group, showed 50% inhibition at 62 and 31 μ M, respectively.^{1b} These results suggested that a slightly larger and/or different type of R group might achieve greater hydrophobic binding to a complement enzyme, thereby maximizing inhibition of the whole complement system. Consequently, compounds related to I were prepared and evaluated as inhibitors of whole guinea pig complement and, in most cases, its CI component²⁶ as well. The results are the subject of this paper.

Assay Results. When the phenyl ring of 1 was substituted with a 4-phenyl group, the resulting compound

μ
Ø
\mathbf{Y}
CH2
+z
Q
بر 13,
nt b.
pone
Com
G
f the
o uo
ibiti
hnl. a
sible
rreve
nd Ir
nt a
leme
dmo
õig C
nea I
Gui
n ^a of
bitio
Inhil
e I.
Table
-

×

No. R, R, R, Mole complex 1 3 -C,H,CH,CH, R, X miniba 2 , inkiba 2, inkib					•	1			
R_i R_i R_i X and indian g_i indian $3c_i H_i CH_i$ $3c_i H_i CH_i$ K_i K_i K_i K_i $3c_i H_i CH_i$ $3c_i H_i CH_i$ K_i K_i K_i K_i K_i $3c_i H_i CH_i$ $K_i C_i H_i CH_i CH_i$ $6c_i L_2 SO_i F$ B_i 0.125 80 $3(4c_i, H_i CH_i CH_i)$ $6c_i L_2 SO_i F$ B_i 0.062 80 $4(4c_i, H_i CH_i CH_i)$ $6c_i L_2 SO_i F$ B_i 0.062 80 $4(4c_i, H_i CH_i CH_i)$ $6c_i L_2 SO_i F$ B_i 0.002 80 $4(4c_i, H_i) CH_i CH_i)$ $6c_i L_2 SO_i F$ B_i 0.002 80 $4(4c_i, H_i) CH_i (CH_i)$ $6c_i L_2 SO_i F$ B_i 0.002 80 $3(c_i, H_i) CH_i (CH_i)$ $6c_i L_2 SO_i F$ B_i 0.002 80 $3(c_i, H_i) CH_i (CH_i)$ $6c_i L_2 SO_i F$ B_i 0.002 80 $3(c_i, H_i) CH_i (CH_i)$ $6c_i L_2 SO_i F$ B_i 0.002 80						Whole complement			
3 , $C, H, CH, CH,$ 6 - Cl_{2} , $S0, F$ Br 0.25 75 3 , $C, H, CH, CH,$ 6 - Cl_{2} , $S0, F$ Br 0.125 00 3 , 3 , 4 , $G, H, CH, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.125 00 3 , 4 , $G, H, CH, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.022 75 3 , 4 , $G, H, CH, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.002 75 4 , 4 , $G, H, CH, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.002 75 4 , 4 , $G, H, CH, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.002 75 3 , 4 , $G, H, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.002 75 3 , 4 , $G, H, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.002 75 3 , 6 , $H, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.022 75 3 , 6 , $H, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.022 75 3 , 6 , $H, (CH, I)$ 6 - Cl_{2} , $S0, F$ Br 0.022 75 <th>No.</th> <th>\mathbf{R}_1</th> <th>${f R}_{_2}$</th> <th>X</th> <th>mM inhibn</th> <th>% inhibn^b % lysis^c</th> <th>inac</th> <th>Yield,^{e,f} %</th> <th>$M_{p, \circ C}$</th>	No.	\mathbf{R}_1	${f R}_{_2}$	X	mM inhibn	% inhibn ^b % lysis ^c	inac	Yield, ^{e,f} %	$M_{p, \circ C}$
7 $3C, H_1(CH_1),$ $6-Cl_2 SO_1F$ Br 0.125 0.002 0.012	18	3-C ₆ H ₅ CH ₂ CH ₂	$6-CI-2-SO_2F$	Br	0.25	75 0	70		
$3(3,4C),C,H,OCH,CONH$ $6-C1-2.80,F$ Br 0.062 66 $3(4,C,H,C,H,CH,CH,J)$ $6-C1-2.80,F$ Br 0.062 66 $3(4,C,H,C,H,CH,J)$ $6-C1-2.80,F$ Br 0.062 66 $4(4,C,H,C,H,CH,J)$ $6-C1-2.80,F$ Br 0.003 66 $4(3,C,H,CH,CH,J)$ $6-C1-2.80,F$ Br 0.003 60 $3(2,C_{o},H,CH,CH,J)$ $6-C1-2.80,F$ Br 0.003 60 $3(2,C_{o},H,CH,CH,J)$ $6-C1-2.80,F$ Br 0.025 60 $3(2,C_{o},H,CH,CH,J)$ $6-C1-2.80,F$ Br 0.025 60 $3(C,H,J,CH,CH,J)$ $6-C1-2.80,F$ Br 0.025 60 $3(C,H,CH,J)$ $6-C1-2.80,F$ Br 0.025 60	2^{g}	$3-C_6H_5(CH_2)_4$	$6-CI-2-SO_2F$	Br	0.125 0.125	40 80	40 75		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3¢	3-(3,4-Cl ₂ C ₆ H ₃ OCH ₂ CONH)	$6-C1-2-SO_2F$	Br	$0.062 \\ 0.125 \\ 0.062 \\ 0.05$	50 85 65 7	40 70 35		
4(4C, H, G, H, CH, CH, I) $6(21, 280, F$ Br 0.001	4	$3-(4-C_6H_5C_6H_4CH_2CH_2)$	$6-CI-2-SO_2F$	Br	0.031	25 60 60	70 15	40^{h}	187-189
$4(3 C_i H_i CH_i CH_i)$ $6(C1 \ge SO_i F$ Br 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.0012 0.002	Ð	$4-(4-C_6H_5C_6H_4CH_2CH_2)$	$6-CI-2-SO_2F$	Br	0.015	15 90	80	33^{i}	183-184
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	4-(3-C ₆ H ₅ C ₆ H ₄ CH ₂ CH ₂)	$6-CI-2-SO_2F$	Br	0.031	50 50	90 90	40^{i}	190-191
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3-[4-(C,H,CH2CH2)C,H,CH2CH2]	$6-CI-2-SO_2F$	Br	0.125	100 85 25	40 60 25	25^{h}	175-176
$3\cdot[(C,H_1),CH]$ $6\cdotCl-2\cdotSO_1F$ Br 0.022 3.6 $3\cdot[C_nH,CH_1CH_1CH_1CH_1]$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 9.6 $3\cdot[C_nH,CH_1CH_1CH_1]$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 9.6 $3\cdot[C_nH,CH_1CH_1CH_1]$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 9.6 $3\cdot[C_nH,J_1CHCH_1CH_1]$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 7.6 $4\cdot[(C,H_1),CHCH_1CH_1]$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 7.6 $3\cdotC_nH_4(CH)$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 7.6 $3\cdotC_nH_4(CH=CH),$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 9.6 $3\cdotC_nH_4(CH=CH),$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 9.6 $3\cdotC_nH_4(CH=CH),$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 9.6 $3\cdotI_3\cdotNO_1C_nH_4(CH=CH),$ $6\cdotCl-2\cdotSO_1F$ Br 0.125 9.6 $3\cdotI_3\cdotNO_1C_nH_4(CH=CH),$ $6\cdotCl-2\cdotSO_1F$ Br 0.022 9.6 $3\cdotI_3\cdotI_4\cdotCl_1C_nH_1(CH=CH),$ $6\cdotCl-2\cdotSO_1F$ Br 0.022 9.6 $3\cdotI_3\cdotI_4\cdotCl_1C_nH_4(CH=CH),$ $6\cdotC$	8	$3-(2-C_{10}H_3CH_2CH_2)$	$6-CI-2-SO_2F$	Br	0.031	30 70	60 09	30^{h}	148 - 150
$\begin{split} 3 \cdot [C_{4}H_{3}(H_{4}(CH_{3}(C,H_{3})CHCH_{3}(H_{3})] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.102 & 55 \\ 3 \cdot [(C_{6}H_{3})_{3}(CHCH_{3}(CH_{3})] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 56 \\ 4 \cdot [(C_{6}H_{3})_{3}(CHCH_{3}(H_{3})] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 70 \\ 3 \cdot C_{6}H_{3}(CH=CH)_{3} & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot C_{6}H_{3}(CH=CH)_{3} & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot C_{6}H_{3}(CH=CH)_{3} & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot C_{6}H_{3}(CH=CH)_{3} & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot C_{6}H_{3}(CH=CH)_{3} & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot G_{6}H_{3}(CH=CH)_{3} & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot [4 \cdot NO_{3}C_{6}H_{4}(CH=CH)_{3}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot [4 \cdot NO_{3}C_{6}H_{4}(CH=CH)_{3}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot [4 \cdot NO_{3}C_{6}H_{4}(CH=CH)_{3}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.125 & 20 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH=CH)_{3}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{4}(CH=CH)_{3}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 \cdot 4 \cdot C]_{3}C_{6}H_{3}(CH_{3})_{4}] & 6 \cdot C1 \cdot 2 \cdot SO_{3}F & Br & 0.062 & 70 \\ 3 \cdot [3 $	6	3-[(C,H,),CH]	$6-CI-2-SO_2F$	Br	0.125	35 75 27	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30^{h}	172-174
$\begin{aligned} 3\cdot [(C_{e}H_{s})_{r}CHCH_{r}CH_{s}CH_{s}^{-1}] & 6\cdot Cl_{2}\cdot SO_{s}F & Br & 0.002 & 60 \\ 4\cdot [(C_{e}H_{s})_{r}CHCH_{r}CH_{s}^{-1}] & 6\cdot Cl_{2}\cdot SO_{s}F & Br & 0.025 & 77 \\ 3\cdot C_{e}H_{s}(CH_{s})_{s} & 6\cdot Cl_{2}\cdot SO_{s}F & Br & 0.025 & 25 \\ 3\cdot C_{e}H_{s}(CH_{s})_{s} & 6\cdot Cl_{2}\cdot SO_{s}F & Br & 0.125 & 90 \\ 3\cdot C_{e}H_{s}(CH=CH)_{s} & 6\cdot Cl_{2}\cdot SO_{s}F & Br & 0.125 & 90 \\ 3\cdot C_{e}H_{s}(CH=CH)_{s} & 6\cdot Cl_{2}\cdot SO_{s}F & Br & 0.125 & 90 \\ 3\cdot C_{e}H_{s}(CH=CH)_{s} & 6\cdot Cl_{2}\cdot SO_{s}F & Br & 0.125 & 90 \\ 3\cdot C_{e}H_{s}(CH=CH)_{s} & 6\cdot Cl_{2}\cdot SO_{s}F & Br & 0.125 & 95 \\ 3\cdot $	10	3-[C ₆ H ₅ CH ₂ (C ₆ H ₅)CHCH ₂ CH ₂]	$6-CI-2-SO_2F$	Br	0.125	35 95 95	80 j	33^{h}	162 - 164
$4 \cdot [(C_eH_J), CHCH_JCH_J]$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.031 35 $3 \cdot C_eH_J(CH_J),$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.125 70 $3 \cdot C_eH_J(CH_J),$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.125 90 $3 \cdot C_eH_J(CH_J),$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.125 90 $3 \cdot C_eH_J(CH=CH),$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.125 95 $3 \cdot C_eH_J(CH=CH),$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.125 95 $3 \cdot C_eH_J(CH=CH),$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.0125 95 $3 \cdot [3 \cdot NO_J C_eH_4(CH=CH),]$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.0125 95 $3 \cdot [4 \cdot NO_J C_eH_4(CH=CH),]$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.0125 95 $3 \cdot [4 + NO_J C_eH_4(CH=CH),]$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.0125 95 $3 \cdot [3 \cdot 4 \cdot Cl_J C_eH_4(CH=CH),]$ $6 \cdot Cl_2 \cdot SO_J F$ Br 0.0125 95 $3 \cdot [3 \cdot 4 - Cl_J C_eH_4(CH=CH),]$ $6 \cdot Cl_2 \cdot SO_J F$ Br $0 \cdot Obs^2$ 70 $3 \cdot [3 \cdot 4 - Cl_J C_eH_4(CH=CH),]$ $6 \cdot Cl_2 \cdot SO_J F$ Br $0 \cdot Obs^2$ 70	11	3-[(C ₆ H ₅) ₂ CHCH ₂ CH ₂ CH ₂ CH ₂]	$6-CI-2-SO_2F$	Br	0.125 0.062	60 85 75	45 75 45	33 ⁷	130-132
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$4-[(C_6H_5)_2CHCH_2CH_2]$	$6-CI-2-SO_2F$	Br	0.031 0.125	35 70 87	15	37^{h}	147-150
$\begin{array}{llllllllllllllllllllllllllllllllllll$	13	$3-C_6H_s(CH_2)_6$	$6-Cl-2-SO_2F$	Br	0.125 0.062	25 90 65	50 35 20	60^k	103-104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	3-C ₆ H ₅ (CH=CH) ₃	$6-CI-2-SO_2F$	Br	0.031 0.125 0.062	35 65 65	70 25	75 ⁱ	193-195
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	3-C ₆ H ₅ (CH=CH) ₂	$6-CI-2-SO_2F$	Br	0.125	95 95 1	75 45	24^{l}	203-205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	3-[3-NO ₂ C ₆ H ₄ (CH=CH) ₂]	6-Cl-2-SO ₂ F	Br	0.125	10 85 70 87		75'	224-226
$3 \cdot [3, 4 \cdot Cl_{2}C_{6}H_{3}(CH=CH)_{2}] \qquad 6 \cdot Cl^{-}2 \cdot SO_{2}F \qquad Br \qquad 0.062 \\ 0.031 \\ 3 \cdot [3, 4 - Cl_{2}C_{6}H_{3}(CH_{2})_{4}] \qquad 6 \cdot Cl^{-}2 \cdot SO_{2}F \qquad Br \qquad 0.062 \\ 0.031 \\ 0.0$	17	$3-[4-NO_2C_6H_4(CH=CH)_2]$	$6-Cl-2-SO_2F$	Br	0.125	25 90 45		19'	220-222
$3-[3,4-Cl_2C_6H_3(CH_2)_4]$ 6-Cl-2-SO ₂ F Br 0.062 0.031	18	3-{3,4-Cl ₂ C ₆ H ₃ (CH=CH),]	$6-CI-2-SO_2F$	Br	0.062	10 30	60 80 80	23^i	138 - 140
	19 ^g	3-[3,4-Cl ₂ C ₆ H ₃ (CH ₂),]	$6-CI-2-SO_2F$	Br	0.031	75 20	65 40		

20	3-[2-CH ₃ C ₆ H ₄ (CH ₃),]	$6-CI-2-SO_2F$	Br		85 45	75 50	39 ^h	114-115
21	3-[3-CH ₃ C ₆ H ₄ (CH ₂) ₄]	$6-C1-2-SO_2F$	ß	0.031 0.125 0.669	10 90 15	25 75 25	32^i	145-147
22	3-[4-CH ₃ C ₆ H ₄ (CH ₂) ₄]	$6-CI-2-SO_2F$	Br		40 80 55	50 50	52^{h}	154-156
23	3-[3,4-(CH ₃) ₂ C ₆ H ₃ (CH ₂) ₄]	6-Cl-2-SO ₂ F	Br		15 85 60	75 30	74 ^h	149-150
24	3-[2-CłC ₆ H ₄ (CH ₂) ₄]	$6-CI-2-SO_2F$	Br		15 65 67	65 10	53^i	132-134
25	3-[3-ClC ₆ H ₄ (CH ₂) ₄]	$6-Cl-2-SO_2F$	Br		20 95 35	40 90 65	45^{h}	113-115
26	3-[4-ClC,H ₄ (CH ₂),]	$6-CI-2-SO_2F$	Br		15 90 45	35 95 65	48£	165-167
27	3-[4-FC ₆ H ₄ (CH ₂) ₄]	6-Cl-2-SO ₂ F	Br		$\begin{array}{c} 15\\95\\7\end{array}$	15 85 50	38^{h}	124-125
28	3-[2,4-Cl ₂ C ₆ H ₃ (CH ₂),]	$6-CI-2-SO_2F$	Br		100 100	15 80 80	37c	131-132
29	3-[2,6-Cl ₂ C ₆ H ₃ (CH ₂),]	$6-CI-2-SO_2F$	Br		45 85 81	02	42 ⁱ	148-150
30	3-[4-(CH ₃ CONH)C ₆ H ₄ (CH ₂) ₄]	$6-CI-2-SO_2F$	Br		85 85 1 F	40 45	55 ⁱ	176-177
31	3-[4-(C,HsCONH)C,H4(CH2),]	$6-CI-2-SO_2F$	Br		40 95 80 1	60 25	74 ⁱ	178-179
32	3-[4-(4-NO ₂ C ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	6-Cl-2-SO ₂ F	Br	0.031 0.25 0.125 0.062	40 40 65 10	65 30 15	35 ⁱ	187-188
33	3-[4-(C ₆ H ₅ OCH ₂ CONH)C ₆ H ₄ (CH ₂) ₄]	$6-CI-2-SO_2F$	Ŗ		35 90 55 1	50 10	85 ^h	109-111
34	3-[4-(C ₆ H ₅ CH ₁ CH ₂ CONH)C ₆ H ₄ (CH ₁) ₄]	6-Cl-2-SO ₂ F	Br		20 60 55 10	06 09	59 ⁱ	173-174
35	3-[4-(CH ₃) ₂ CHC ₆ H ₄ (CH ₂) ₄]	6-Cl-2-SO ₂ F	Br	0.031 0.125 0.031 0.031	20 95 75 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10 60 35	50 ^h	149-150
36	$3-[1-C_{10}H_{7}(CH_{2})_{4}]$	$6-CI-2-SO_2F$	Br		10 70	50	31^{h}	125-127
37	$3-[2-C_{10}H_7(CH_2)_4]$	6-CI-2-SO ₂ F	Br		20 80 80 80	80 40 10	22 ^m	151-153
38	3-[4-C ₆ H ₅ CH ₂ C ₆ H ₄ (CH ₂) ₄]	6-CI-2-SO ₂ F	Ŗ	0.016 0.125 0.062 0.031 0.016	20 100 20 20 20	65 25	38 <i>h</i>	118-119

					Whole complement	nplement	$\overline{\mathrm{C1.\%}}$		
No.	R	\mathbb{R}_2	Х	mM inhibn	% inhibn ^b	% lysis ^c	inactn ^d	Yield, ^{e.f} %	Mp, °C
39	3-[3-C ₆ H ₅ CH ₅ C ₆ H ₄ (CH ₂) ₄]	$6-Cl-2-SO_2F$	Br	0.125 0.062	85 85	က	65 30	13^{h}	157-159
40	$3-[4-C_6H_5CH_2CH_2C_6H_4(CH_2)_4]$	$6-CI-2-SO_2F$	Br	0.031 0.125 0.062	35	1 100 100	60 20	52^{i}	150-151
				0.031	60 15	2	2		
41	3-[3-C ₆ H ₅ CH ₂ CH ₂ C ₆ H ₄ (CH ₂),]	$6-CI-2-SO_2F$	Br	0.125 0.062 0.031	60 50	100 15 0	60 25	57^{h}	98-100
42	3-[3-C ₆ H ₅ C ₆ H ₄ (CH ₂),]	$2-SO_2F$	Br	$\begin{array}{c} 0.016 \\ 0.125 \\$	30 S0	30 30	30	406	80-82
43	$3-[4-C_{k}H_{s}C_{k}H_{s}(CH_{2})]_{s}$	$6-CI-2-SO_2F$	Br	$0.062 \\ 0.125$	10	100	20	61 ⁱ	163-165
				0.062 0.031 0.016 0.012 0.0078	100 85 60 50	0	65 20		
44	$3-[4-C_6H_5C_6H_4(CH_2)_4]$	$2.50_{2}F$	Br	0.0039 0.062 0.031 0.016	10 85 65 65		40 20	75 ⁱ	158-160
45	3-[4-C ₆ H ₅ C ₆ H ₄ (CH=CH) ₂]	$6-Cl-2.SO_2F$	Br	0.0078 0.125 0.062 0.031	20 22 22		40 10	27 ⁱ	198-200
46	3-(4-C ₆ H ₅ C ₆ H ₄ OCH ₂ CONH)	$6-C1-2-SO_2F$	Br	0.016 0.125 0.062	10 35 35		60	51^i	184-185
47	3-(4-C ₆ H ₅ C ₆ H ₄ CONHCH ₂)	6-Cl-2-SO ₂ F	Br	0.031 0.062 0.031	15 85 50	en S	40 70 10	35 ^h	86-89
48	3-(4-C ₆ H ₅ C ₆ H ₄ CH ₂ CH ₂ CONH)	$6-C1-2-SO_2F$	Br	0.062	82 F	0	09	50^i	175-177
49	3-(4-C ₆ H ₅ C ₆ H ₄ CH ₇ CH ₇ CONHCH ₂)	$6-Cl-2-SO_2F$	Br	0.125	65 C	•	10	49^{h}	116-11
50	3-(3-C ₆ H ₅ C ₆ H ₄ OCH ₇ CONH)	$2-SO_2F$	Br	0.062	40	1	40 65 67	50^{i}	171-173
51	3-[4-C ₆ H ₅ C ₆ H ₄ (CH ₂) ₄]	Н	Br	0.031 0.25 0.125	20	$\begin{array}{c} 100\\ 15\end{array}$	0 0	30 ⁱ	134-135
52	3-[4-C ₆ H ₅ C ₆ H ₄ (CH ₂) ₁]	2-SO ₃ -		$\begin{array}{c} 0.062 \\ 0.25 \\ 0.125^{n} \end{array}$	0 0	10	10	800	187-189
53	4-[4-(4-S0 ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	Н	Br	0.062 0.5 0.25	0 35 40	65 5		62^{p}	170-172
54	3-[4-(C,H,CONH)C,H,(CH,),]	Н	B.	0.125	10 35	c1 c		a + 6	110 150

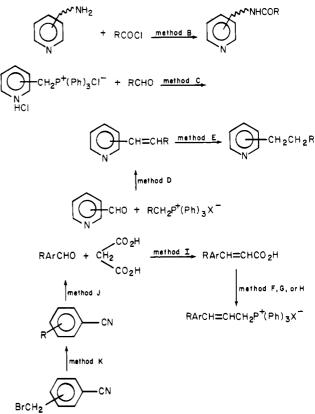
3-[3-(4-SO2FC6H4CONH)C6H4(CH2)4]	$H_2)_4$]	CH no henzyl	F			•		
		C113, 110 UCH491	7	1.0	20	ო	80 ⁿ	137-138
3-[4-(3-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ OCH ₂ CONH]	H ₂ CONH]	Н	Br	0.125^{n}	200	1	25 ^p	185-186
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	I ₂),]	Н	Br	0.250^{n}	20 ¢	2	60 ^p	205-207
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₂]	H ₂) ₂]	Н	Br	1.0	40 1 1 1 1	IJ	65 ^p	217-219
4-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₂]	I ₁) ₁]	Н	Br	0.0	40 i	c d	54p	215-217
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ OCH ₂ CONHCH ₂]	H ₂ CONHCH ₂]	Н	Br	0.5 0.5 0.5	15 30 25 25 25	N W N	56 ^p	184-186
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ CH ₂ CH ₂ CONH	² CH ² CONHCH ²	Н	Br	1.0	32 G	2	20^{h}	128-130
3-[4-(4-SO ₂ FC ₆ H ₄ CH ₂ CONH)C ₆ H ₄ (CH ₂),1]	4(CH ₂),	Н	Br	0.25^{n}	302	1	28^k	118-120
3-[4-(4-SO2FC6H3CH2CH2CH2CONH)C6H4(CH2)	C ₆ H ₄ (CH ₂) ₄]	Н	Br	0.125 0.25^{n} 0.125 0.65	20 20 16	09 0	45 <i>P</i>	193-195
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₁), 3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₁), 3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂),	$\begin{bmatrix} 1_2 \\ 1_2 \end{bmatrix}_4 \end{bmatrix}$ $\begin{bmatrix} 1_2 \\ 1_2 \end{bmatrix}_4 \end{bmatrix}$	4-NO ₂ 3-NO ₂ 3-CF ₃	C & A	0.062^{n} 0.081^{n} 0.125 0.125	0 0 0 <u>1</u> 0	60 1	67 ^p 56 ^p 10 ^p	215-217 230-233 172-174
$3-[4-(4-SO_2FC_6H_4CONH)C_6H_4(CH_2)_4$	$[1_2)_4]$	4-C1	C	0.062	oo;	c,	40L	217-220
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄] 3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}_4 \end{bmatrix}$	3-CI 2-CI	ចច	0.031 0.062^{n} 0.125^{n}	0,000	000	35 ^p 73 ^p	195-198 164-166
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	I ₂) ₄]	3,4-Cl ₂	ũ	0.062 ⁿ 0.062 ⁿ	00		51 ^p	213-215
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	I ₂),]	4-CH ₃ O	Br	0.125^{n}	0 I I		57 ^{p,q}	144-146
$3-[4-(4-SO_2FC_6H_4CONH)C_6H_4(CH_2)_4]$	I ₂) ₄]	3-CH ₃ O	Br	0.125^{n}	10		73 ^{p,q}	175-176
$3-[4-(4-SO_2FC_6H_4CONH)C_6H_4(CH_2)_4]$	I ₂) ₄]	2-CH ₃ O	Br	0.125^{n}	וסוט	9 9 9	640.9	159-160
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	I ₂) ₄]	4-C ₆ H ₅ CH ₂ O	ប	0.002 0.062 0.031	ი c	90 Q	63 ^p	153-155
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	[₂) ₄]	C,H,CO,	Br	0.062"	10	0	34^{p}	174-176
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	I ₂) ₄]	no benzyl $3,4-(CH=CH)_2$	Br	0.125^{n}	L	30	58 ^p	153-155
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄] 3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₁) ₄]	12)4] 12)4]	2,3-(CH=CH) ₁ 4-C ₆ H ₅	B C	$\begin{array}{c} 0.062\\ 0.062^n\\ 0.125^n\\ 0.062\end{array}$	20 20 °	20 I	75 ^p 56 ^p ,r	165-168 131-134
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	[₂) ₄]	3-C ₆ H ₅	Br	0.031 0.062 ⁿ 0.031	10	50 5	21 ^{<i>P.r.</i>}	175-177
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	[₂) ₄]	2-C ₆ H ₅	Br	$0.016 \\ 0.062^{n}$	10	30	33 ^p .r	171-173
3-[4-(4-SO ₂ FC ₆ H ₄ CONH)C ₆ H ₄ (CH ₂) ₄]	[₁],]	$2-SO_2F$	Br	0.125	20 °	5	63 ^p	107-108

No. R ₁ N M mM m	Minore compression C1 9	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	% lysis ^c inact	n ^d Yield, ^{e,f} %	Mp, °C
	10		
2,3-Benzo $2.SO_2F$ Br $\begin{array}{c} 0.008 \\ 0.25 \\ 0.125 \\ 0.062 \\ 0.062 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.016 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.004 \\ 0.004 \end{array}$	10 95 90 90		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 30	22 ⁱ	184-185
$\begin{array}{cccc} 2,3\text{-1}',2'\text{-Naphtho} & 6\text{-Cl-2-SO}_{2}F & \text{Br} & 0.016 \\ 0.016 & 0.062 & 0.062 & 0.031 & 0.031 \\ 0.016 & 0.016 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ 0.008 & 0.004 & 0.002 $	35 100 70	45 ⁱ	204-205
0.004	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36 ⁱ	180-182
88 $2,3$ -Benzo-4-C ₆ H ₅ CH ₂ CH ₂ 2 -SO ₂ F Br 0.5 60 0.25 25 0.25 25 0.125 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33 <i>i</i>	218-220

Irreversible Enzyme Inhibitors

(4) was five times more potent than the parent compound and twice as effective as 2. When 1 was 4-phenethyl substituted, the resultant 7 was threefold more potent than 1. This suggested a large area of binding and bulk tolerance which might be explored for further inhibition enhancement. First, large hydrophobic substituents along the aliphatic chain of 2 were studied with compounds 8-12, but these changes were only moderately effective, as were both the extension of the chain to six carbon atoms (13) and the replacement by unsaturated chains (14-18).

The terminal phenyl group of 2 was then investigated for the optimum placement of small substituents and later for larger groups. The 4-Cl (26) and 2,4-Cl₂ (28) compounds were twice as effective as 2 while the 2,6-Cl₂ and 3,4-Cl₂ compounds 29 and 19 were slightly more effective than the parent compound 2. The 3-benzyl and 3phenethyl groups of 39 and 41 slightly increased inhibition, while a 3-phenyl group (42) caused a threefold loss of inhibition. The 4-benzyl and 4-phenethyl groups of 38 and 40 were responsible for twofold increases in inhibition while the 4-phenyl-substituted compound 43 was eight times as effective as 2, showing 50% inhibition at 7.8 μ M.


At this point-changes in the aliphatic bridge of 43 were made in an attempt to more favorably position the biphenyl moiety. Four- and tenfold losses of inhibition resulted when the $(CH_2)_4$ bridge of 43 was replaced by $(CH=CH)_2$ in 45 and OCH_2CONH in 46, respectively. Other bridge changes were also made but the resulting compounds (47-50) were far less potent than 43. The removal of the 6-Cl of 43, previously resulting in enhancement,^{1b} had no effect (44 vs. 43).

The SO₂F moiety has previously been found to be required for inhibition in compounds like $I.^{21}$ When the SO₂F group of 44 was removed, the resulting 51 was about 20-fold less effective. To exclude the possibility that the SO₂F was being hydrolyzed and the resulting SO₃⁻ moiety was responsible for all or part of the enhancement, 52 was prepared by hydrolysis of 44 and then tested; 52 showed no inhibition at its maximum solubility.

The area of bulk tolerance adjacent to the terminal phenyl group of 2 was then explored with compounds 53-64 for a possible alternate location to effectively place a SO₂F group. None of the new compounds were as effective as 2, indicating the absence of an appropriate nucleophilic group on the enzyme and confirming the hydrophobicity of the area where the $4-C_6H_5C_6H_4(CH_2)_4$ moiety of 43 rests. Additionally, compounds 65-82 were prepared to explore the binding of the benzyl ring of I. These were too insoluble and/or impotent to supply meaningful information.

Compounds 1-52 were also tested as irreversible inhibitors of the $C\bar{1}$ component²⁶ of complement. The assay, which uses a rate-limiting quantity of $C\overline{1}$, has been described.⁸ Within a factor of 2, compounds 1-42 had similar potencies on the two assays. Compounds with bulky substituents on the terminal phenyl ring of 2 (38, 40, 41, and 43-45) generally showed a larger disparity between the two assays. Due to the large excess of the C1 component in whole complement (90% of $C\bar{1}$ can be inhibited with little loss in whole complement activity²⁷), it is unlikely that a compound whose sole action was on $C\overline{1}$ would be as potent in the whole complement assay as in the $C\bar{1}$ assay. Conversely, a potent inhibitor of a C2-C9 component, but with no real C1 potency, would show C1 assay inhibition at only one-tenth of its whole complement level. This is a consequence of the one to ten C1 and inhibitor dilution before reconstitution of the complement system with the C2-C9 components.⁸ It should be noted, then,

Scheme I

that to obtain the real $C\bar{I}$ inhibition one must subtract the whole complement activity at one-tenth the inhibitor concentration of the $C\bar{I}$ assay. In most cases this factor is negligible. Compounds 43 and 44, however, appear to have little or no real $C\bar{I}$ activity and therefore show very strong selectivity between the two assays. The other compounds, 1-42 and 45-50, appear to act on $C\bar{I}$ as well as another component having a similar active site.

Since the $C\bar{1}$ component had been strongly inhibited by a quaternized quinoline (84),^{1b} several similar compounds (85-88) were prepared. A fourfold increase in inhibition in the $C\bar{1}$ assay was observed in 87 by a simple benzo substitution. Thus 87 showed 50% inhibition of $C\bar{1}$ at 4 μ M. Compounds 85 and 86, analogous to 84 and 87 but without the 6-Cl groups, are each fourfold less active, indicating a strong preference for this moiety on potent $C\bar{1}$ inhibitors. This 6-Cl enhancement was not observed with the potent whole complement inhibitors, 43 vs. 44.

Since the preparation of the compounds reported here, there have been two studies by Hansch et al. utilizing quantitative structure-activity relationships (QSAR) to correlate complement inhibitors derived from quaternized pyridines. The first paper⁶ correlated previously reported compounds,^{1b,21,22} while the later²⁸ demonstrates the utility of the approach by showing that the previously derived equation predicts, with uncanny accuracy, the potencies of the compounds presented here. The equations derived from these studies also suggest areas to be explored for designing more potent complement inhibitors. Work is currently underway to prepare new inhibitors which should be more potent and should further demonstrate the utility and validity of QSAR in designing active molecules.

Chemistry. The quaternary salts in Table I were prepared by reaction^{1b,22} of the appropriate benzyl bromides²² or alkyl halides with the appropriate pyridines. The substituted pyridines necessary for 9 and 85–87 were commercially available. Those needed for the remainder

No.	R	Method ^a	Yield, %	Mp, °C	Formula ^b
83	$3-[4-(4-SO_2FC_6H_4CONH)C_6H_4(CH_2)_4]$	B (from 132)	61 ^c	184-185	$C_{22}H_{21}FN_{2}O_{3}S$
89	$3-(4-C_6H_5C_6H_4CH_2CH_2)$	C + E	$20^{d,e}$	84-88	$C_{19}H_{17}N$
90	$4 \cdot (4 \cdot C_6 H_5 C_6 H_4 C H_2 C H_2)$	$\mathbf{C} + \mathbf{E} \\ \mathbf{D}^{h} + \mathbf{E}$	$88^{d,f} \\ 32^{d,i}$	$126-128 \\ 180-182^{j}$	$\begin{array}{c} \mathbf{C}_{19}\mathbf{H}_{17}\mathbf{N}^{g}\\ \mathbf{C}_{19}\mathbf{H}_{17}\mathbf{N}\cdot\mathbf{HCl} \end{array}$
91 92	$4-(3-C_{6}H_{5}C_{6}H_{4}CH_{2}CH_{2})$ $3-[4-(C_{6}H_{5}CH_{2}CH_{2})C_{6}H_{4}CH_{2}CH_{2}]$	$\mathbf{D}^{\mathbf{h}} + \mathbf{E}$ $\mathbf{C}^{\mathbf{k}} + \mathbf{E}$	$33^{d,l}$	92-94	$C_{19}H_{17}NHOIC_{21}H_{21}N$
93	$3 - (2 - C_{10}H_2 CH_2 CH_2) - (2 - C_{10}H_2 CH_2 CH_2)$	$\mathbf{C} + \mathbf{E}$	26^d	$160-162^{m}$	$C_{17}H_{15}N \cdot HCl$
94	$3 \cdot [C_6 H_5 CH_2 (C_6 H_5) CHCH_2 CH_2]$	D + E	$28^{d,i}$	171-173 ^j	$C_{21}H_{21}N \cdot HCl$
95	$3 - [(C_6H_5)_2CH(CH_2)_3]$	C + E	$20^{d,i}$	$170 - 172^{j}$	$C_{21}H_{21}N \cdot HCl$
96	$4 - [(C_{6}H_{5})_{2}CH(CH_{2})_{2}]$	C + E	35^d	68-70	$C_{20}H_{19}N$
97	$3 - C_6 H_5 (CH_2)_6$	E	$rac{25}{43^f}$	$101 - 103^{\prime}$	$C_{17}H_{21}N\cdot HCl$
98 99	$3-C_{e}H_{s}(CH=CH)_{3}$ $3-C_{e}H_{s}(CH=CH)_{3}$	\mathbf{D} \mathbf{D}^{n}	43^{\prime} 40^{o}	149-150 $101-102^p$	$C_{17}H_{15}N$
100	$3 - C_{6} H_{4} (CH = CH)_{2}$ $3 - [3 - NO_{2}C_{6} H_{4} (CH = CH)_{2}]$	$\mathbf{\tilde{C}}^{q}$	59f	128-130	$C_{15}H_{12}N_2O_2$
101	$3 - [4 - NO_2C_6H_4(CH = CH)_2]$	С	70^{f}	173-175	$C_{15}H_{12}N_2O_2$
102	$3 - [3, 4 - Cl_2C_6H_3(CH = CH)_2]$	\mathbf{C}^{r}	$6^{i,l}$	109-111	$C_{15}H_{11}NCl_{2}$
103	$3 \cdot [2 - CH_3C_6H_4(CH_2)_4]$	$\mathbf{D} + \mathbf{E}$	$36^{d,s}$	117-119	$C_{16}^{10}H_{19}^{10}N \cdot HCl$
104	$3 - [3 - CH_{3}C_{6}H_{4}(CH_{2})_{4}]$	D + E	$26^{d,i}$ $35^{d,i}$	$121 - 123^{j}$	$C_{16}H_{19}N \cdot HCl$
105	$3 - [4 - CH_3C_6H_4(CH_2)_4]$	$\mathbf{D} + \mathbf{E} \\ \mathbf{D} + \mathbf{E}$	$35^{d,i}$ $31^{d,s}$	144-146' 148-150'	$\begin{array}{c} \mathbf{C}_{16}\mathbf{H}_{19}\mathbf{N}\cdot\mathbf{HCl} \\ \mathbf{C}_{17}\mathbf{H}_{21}\mathbf{N}\cdot\mathbf{HCl} \end{array}$
$\begin{array}{c} 106 \\ 107 \end{array}$	$3-[3,4-(CH_3)_2C_6H_3(CH_2)_4]$ $3-[2-ClC_6H_4(CH_2)_4]$	D + E D + E	$30^{d,s}$	$148 - 150^{j}$ $115 - 117^{j}$	$C_{15}H_{16}CIN \cdot HCI$
107	$3 - [2 - ClC_{6}H_{4}(CH_{2})_{4}]$ $3 - [3 - ClC_{6}H_{4}(CH_{2})_{4}]$	D + E D + E	$30^{d.s}$	118 - 120'	C ₁₅ H ₁₆ ClN·HCl
109	$3 - [4 - ClC_{6}H_{4}(CH_{2})_{4}]$	D + E	A7d, i	170-172 ^j	$C_{15}H_{16}CIN \cdot HCl$
110	$3 - [4 - FC_6 H_4 (CH_2)_4]$	D + E	$36^{d,i,t}$	49-51	$C_{15}H_{16}NF$
111	$3 - [2, 4 - Cl_2C_6H_3(CH_2)_4]$	$\mathbf{D} + \mathbf{E}$	$40^{d,i,t}$	31-32	$C_{15}H_{15}Cl_2N$
112	$3-[2,6-Cl_2C_6H_3(CH_2)_4]$	$\mathbf{D} + \mathbf{E}$	$50^{d,i}$ 60^{f}	$134 - 136^{1}$	$C_{15}H_{15}Cl_2N \cdot HCl$
113	$3 \cdot [4 \cdot (CH_1CONH)C_6H_4(CH_2)_4]$	B (from 132) B (from 132)	61°	$107 - 108 \\ 167 - 168$	$C_{17}H_{20}N_{2}O C_{22}H_{21}N_{3}O_{3}$
$\begin{array}{c} 115\\ 116 \end{array}$	$3-[4-(4-NO_2C_6H_4CONH)C_6H_4(CH_2)_4]$ $3-[4-(C_6H_5OCH_2CONH)C_6H_4(CH_2)_4]$	B (from 132) B (from 132)	62^{f}	94-96	$C_{23}H_{24}N_{3}O_{3}$ $C_{23}H_{24}N_{2}O_{2}$
117	$3 - [4 - (C_{4}H_{4}CH_{2}CH_{2}CH_{1})C_{4}H_{4}(CH_{2})_{4}]$	B (from 132)	80 ^f	130-131	$C_{24}H_{26}N_2O$
118	$3 \cdot [4 \cdot (CH_3)_2 CHC_6 H_4 (CH_2)_4]$	D + E	$40^{d,s}$	$141 - 142^{j}$	
119	$3 - [1 - C_{10}H_2(CH_2)_{+}]$	D + E	37 ^d ,i	144-146 ^j	$\mathbf{C}_{19}\mathbf{H}_{19}\mathbf{N}\mathbf{H}\mathbf{C}\mathbf{l}$
120	$3 - [2 - C_{10}H_7(CH_2)_4]$	C + E	86 ^{d,i,u}	67-69	$\mathbf{C}_{19}\mathbf{H}_{19}\mathbf{N}$
121	$3 - [4 - C_6 H_5 C H_2 C_6 H_4 (C H_2)_4]$	$\mathbf{D} + \mathbf{E}$	$15^{d,s}$ $44^{d,i}$	117 - 118'	$C_{22}H_{23}N \cdot HCl$
122	$3 - [3 - C_6 H_5 C H_2 C_6 H_4 (C H_2)_4]$	D + E D + E	44 ^a , 48 ^d ,e	$139-141^{j}$ 65-66	$\begin{array}{c} \mathbf{C}_{22}\mathbf{H}_{23}\mathbf{N}\cdot\mathbf{HCl}\\ \mathbf{C}_{23}\mathbf{H}_{25}\mathbf{N}^{g} \end{array}$
$\begin{array}{c}123\\124\end{array}$	$3-[4-(C_6H_5CH_2CH_2)C_6H_4(CH_2)_4]$ $3-[3-(C_6H_5CH_2CH_2)C_6H_4(CH_2)_4]$	$\mathbf{D} + \mathbf{E}$ $\mathbf{D} + \mathbf{E}$	$36^{d,s}$	$109-110^{j}$	$C_{23}H_{25}N \cdot HCl$
$124 \\ 125$	$3 \cdot [3 \cdot C_6 H_5 C_6 H_4 (CH_2)_4]$	$\mathbf{D} + \mathbf{E}$ $\mathbf{D} + \mathbf{E}$	$50^{d,s}$	$121 - 122^{j}$	$C_{21}H_{21}N\cdot HCl$
126	$3 - [4 - C_6 H_5 C_6 H_4 (CH_2)_4]$	D + E	$42^{d,e}$	66-67	$C_{21}^{11}H_{21}^{11}N$
127	$3 - [4 - C_{0}H_{3}C_{0}H_{4}(CH = CH)_{2}]$	D	60^{c}	175 - 176	$C_{21}H_{17}N$
128	$3 \cdot (4 \cdot C_6 H_5 C_6 H_4 OC H_2 CONH)$	В	75^{c}	143-145	$C_{19}H_{16}N_{2}O_{2}$
129	$3 - (4 - C_6 H_5 C_6 H_4 CONHC H_2)$	B	49 ^c	178-180	$C_{19}H_{16}N_{2}O$
130	$3 \cdot (4 \cdot C_6 H_5 \cdot C_6 H_4 \cdot C H_2 \cdot C H_2 \cdot C O N H)$	$\mathbf{B} + \mathbf{E}$ $\mathbf{B} + \mathbf{E}$	85 ^f 75 ^f	$151 - 152 \\ 149 - 150$	$\begin{array}{c} C_{20}H_{13}N_{2}O\\ C_{21}H_{20}N_{2}O\end{array}$
$\begin{array}{c}131\\132\end{array}$	$3 \cdot (4 \cdot C_{6}^{\vee} H_{5}^{\vee} C_{6}^{\vee} H_{4}^{\vee} C H_{2}^{\vee} C H_{1}^{\vee} C O N H C H_{2})$ $3 \cdot (3 \cdot C_{6}^{\vee} H_{5}^{\vee} C_{6}^{\vee} H_{4}^{\vee} O C H_{2}^{\vee} C O N H)$	B + E B	67^{c}	153-155	$C_{19}H_{16}N_{2}O_{2}$
132	$3 - [4 - NH_2C_3H_4(CH_2)]_4$	E (from 101)	60^{v}	$229-233^{j}$	$C_{15}H_{18}N \cdot 2HCl$
134	$3 - (4 - C_6 H_5 C_6 H_4 C H = CHCONHCH_2)$	B	83^{f}	180-181	$C_{21}^{13}H_{18}^{13}N_{2}O$
135	3-(4-C, H, C, H, CH=CHCONH)	В	95 ^f	200-202	$C_{20}H_{16}N_2O$
136	$3-[4-(3-SO_2FC_6H_4CONH)C_6H_4OCH_2CONH]$	B (from 141)	33^{f}	151-153	$C_{20}H_{10}FN_{3}O_{5}S$
137	$4 - [4 - (4 - SO_2FC_6H_4CONH)C_6H_4(CH_2)_4]$	B (from 142)	38^{f}	165-167	$C_{22}H_{21}FN_2O_3S$
138	$3 - [4 - (4 - SO_2FC_6H_4CONH)C_6H_4(CH_2)_2]$	B (from 145)	$\frac{35^{7}}{33^{f}}$	198-200 194-196	$\begin{array}{c} C_{20}H_{17}FN_{2}O_{3}S\\ C_{20}H_{17}FN_{2}O_{3}S\end{array}$
$\begin{array}{c}139\\140\end{array}$	$4 \cdot \left[4 \cdot \left(4 \cdot SO_{2}FC_{6}H_{4}CONH \right)C_{6}H_{4}(CH_{2})_{2} \right] \\ 3 \cdot \left[4 \cdot \left(4 \cdot SO_{2}FC_{6}H_{4}CONH \right)C_{6}H_{4}OCH_{2}CONHCH_{2} \right] $	B B (from 147)	$33' \\ 34^w$	194 - 196 215 - 217	$C_{20}H_{17}FN_{2}O_{3}S$ $C_{21}H_{18}FN_{3}O_{5}S$
140	$3 - [4 - (4 - SO_2FC_6H_4CONH)C_6H_4CH_2CH_2CONHCH_2]$ $3 - [4 - (4 - SO_2FC_6H_4CONH)C_6H_4CH_2CH_2CONHCH_2]$	B (from 147)	41^{c}	200-202	$C_{22}H_{20}FN_{3}O_{4}S$
142	$3-[4-NH_2C_6H_4OCH_2CONH)$	E (from 142)	$\hat{85}^{f}$	134-135	$C_{13}H_{13}N_{3}O_{2}$
1 43	$3 \cdot (4 - NO_2 C_6 H_4 OCH_2 CONH)$	B	66^w	197-198	$\mathbf{C}_{13}\mathbf{H}_{11}\mathbf{N}_{3}\mathbf{O}_{4}$
144	$4 - [4 - NH_2C_6H_4(CH_2)_4]$	E (from 144)	86^e	75-77	$C_{15}H_{18}N_2^g$
145	$4 \cdot [4 \cdot \text{NO}_2\text{C}_6\text{H}_4(\text{CH}=\text{CH})_2]$	$\frac{C}{E} \left(f_{\text{HO}} = 146 \right)$	47^{f}	193 - 195	$C_{15}H_{12}N_{2}O_{2}$
$146 \\ 147$	$3-(4-NH_2C_6H_4CH_2CH_2)$ $3-(4-NO_2C_6H_4CH=CH)$	E (from 146) C	$\frac{88^f}{40^c}$	$118-120 \\ 143-145$	$\begin{array}{c} C_{13}H_{14}N_{2}^{g}\\ C_{13}H_{10}N_{2}O_{2} \end{array}$
$\begin{array}{c}147\\148\end{array}$	$3-(4-NH_2C_3H_4OCH_2ONHCH_3)$	E (from 146)	65^{x}	$231-233^{j}$	$C_{13}H_{10}N_{2}O_{2}$ $C_{14}H_{15}N_{3}O_{2}\cdot 2HCl$
149	$3-(4-NO_2C_6H_4OCH_2CONHCH_2)$	B (nom 140)	48^{w}	135-137	$C_{14}H_{13}N_{3}O_{4}$
150	$3-(4-NH_2C_6H_4CH_2CH_2CONHCH_2)$	E (from 150)	82^{y}	104-106	C ₁₅ H ₁₇ N ₃ O
151	$3 - (4 - NO_2C_6H_4CH = CHCONHCH_2)$	В	68^w	231-233	$C_{15}H_{13}N_{3}O_{3}$
a Mat	hods: B amide synthesis amine plus acid chloride (se	o Experimental	Soction) C	ib Wittig road	tion 3. or A-nicolyl-

^a Methods: B, amide synthesis, amine plus acid chloride (see Experimental Section); C, ^{1b} Wittig reaction, 3- or 4-picolyltriphenylphosphonium chloride hydrochloride and appropriate RCHO; D, ^{1b} Wittig reaction, RCH₂P⁺(Ph)₃X⁻ and 3- or 4-pyridinecarboxaldehyde; E, ^{1b} catalytic reduction. ^b Analyses for C, H, N unless otherwise indicated. ^c Recrystallized from EtOH. ^d Overall yield for Wittig reaction and catalytic reduction. ^e Recrystallized from petroleum ether (bp 60-110°). ^f Recrystallized from EtOH-H₂O. ^g Analyses for C and H only. ^h 3-Phenylbenzyltriphenylphosphonium bromide was prepared by the procedure of Baker and Bramhall, J. Med. Chem., 15, 937 (1972). ⁱ HCl salt was recrystallized by dissolving in boiling Me₂CO containing about 5% MeOH followed by the addition of petroleum ether (bp 60-110°) to cloudiness. ⁱ HCl salt. ^k 4-Stilbenecarboxaldehyde prepared by the procedure of Baker and Gibson, J. Med. Chem., 14, 315 (1971). ^l Recrystallized from MeOH-H₂O. ^m Free amine, mp 59-60°. ⁿ Cinnamyltriphenylphosphonium bromide prepared by the method of McDonald and Campbell, J. Org. Chem., 24, 1969 (1959). ^o Recrystallized from *i*-PrOH-H₂O. ^p R. Bodalski, A. Malkiewicz, and J. Michalski, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 13, 139 (1965), reported mp 101-102°. ^q m-Nitrocinnamaldehyde obtained from Me₂CO-petroleum ether (bp 60-110°). ^t Purified by recrystallization of HCl salt and then treating an ether solution with gaseous NH₃ to obtain the free amine. ^u HCl salt, mp 175-177°. ^v Recrystallized from Me₂CO. ^w Recrystallized from MeOEtOH-EtOH. ^x Di-HCl salt recrystallized from MeOH-petroleum ether (bp 60-110°). ^y Recrystallized from CHCl₃-petroleum ether (bp 60-110°).

Table III. Physical Properties of $\langle \bigcirc \rangle$ -CH=CHCH₂P⁺(Ph)₃X⁻

No.	R	X	Method ^a	Yield, %	Mp, °C	Formula ^b
152	2-CH ₃	Cl	F	25 ^{c,d}	154-157	C ₂₈ H ₂₆ ClP
153	3-CH	Cl	F	31 ^{c,e}	180-182	C,,H,,ClP.0.25H,O
154	4-CH,	Cl	F	38 ^d ,f	184-186	$C_{2}H_{2}ClP \cdot 0.5H_{2}O$
155	3,4-(CH ₃) ₂	Cl	F F	16 ^{e,g}	200-202	C ₂₉ H ₂₈ ClP·H ₂ O
156	2-Cl	Cl	F	$30^{d,f}$	203-205	$C_{27}H_{23}Cl_{2}P$
157	3-C1	Cl	न न म	$17^{c,d}$	135-137	C,,H,,Cl,P.0.5H,O
158	4-Cl	Cl	F	$28^{e,f}$	198-200	$C_{27}H_{23}Cl_{2}P \cdot 0.5H_{2}O$
159	4-F	Br	G	$46^{d,f}$	187-189	C ₂₇ H ₂₃ BrFP
160	2,4-Cl,	Cl	G F F	$24^{d,f}$ $25^{d,f}$	146-148	$C_{27}H_{22}Cl_{3}P \cdot H_{2}O$
161	2,6-Cl,	Cl	F	$25^{d,f}$	252-254	$C_{27}H_{22}Cl_{3}P$
162	4-(CH ₃) ₂ CH	Br	G	$52^{d,f}$	200-202	$C_{30}H_{30}BrP$
162	$4 \cdot (CH_{3})_{2}CH$	Br	H F	$47^{d,f}$	200-202	$C_{30}H_{30}BrP$
163	2.3-Benzo	Cl	F	$27^{c,d}$	180-182	$C_{31}H_{26}ClP$
164	$4 - C_6 H_5 C H_2$	Br	G	$40^{d,f}$	167-169	$C_{34}H_{30}BrP$
165	3-C,H,CH,	Br	н	55 ^{d,f}	228-229	C ₃₄ H ₃₀ BrP
166	4-C, H, CH=CH	Br	G	36 ^d ,f	203-204	C ₃₅ H ₃₀ BrP
167	3-C ₆ H ₅ CH=CH	Br	G	$40^{d,f}$	175-176	C ₃₅ H ₃₀ BrP
168	3-C,H,	Br	н	35 ^d ,f	217 - 218	$C_{33}H_{28}BrP$
169	4-C, H,	Br	G	$60^{d,f}$	238 - 240	$C_{33}H_{28}BrP$

^{*a*} Methods (see Experimental Section): $F_{1}^{1b} \operatorname{RCO}_{2H} \xrightarrow{SOCl_{2}} \operatorname{RCOCl} \xrightarrow{\operatorname{NaBH}_{4}} \operatorname{RCH}_{2OH} \xrightarrow{\operatorname{NaCl}_{2}} \operatorname{RCH}_{2Cl} \xrightarrow{\operatorname{RCH}_{2}P^{+}(Ph)_{3}^{P}} \operatorname{RCH}_{2}P^{+}(Ph)_{3}^{P} \operatorname{RCH}_{2}P^{+}(Ph)_{3}$

 $\begin{array}{l} \operatorname{RCH}_2\operatorname{OH} \xrightarrow{(\operatorname{Ph})_3\operatorname{PHBr}} \operatorname{RCH}_2\operatorname{P}^*(\operatorname{Ph})_3\operatorname{Br}^-. \quad ^b \text{ Analyses for C and H. } ^c \text{ Yield from appropriate benzaldehyde (see Table IV and method J).} \quad ^d \operatorname{Recrystallized from Me}_2\operatorname{CO} \text{ containing about 5\% MeOH-petroleum ether (bp 60-110°).} \quad ^e \operatorname{Recrystallized from Me}_2\operatorname{CO-petroleum ether (bp 60-110°).} \quad ^f \text{ Yield from appropriate cinnamic acid.} \quad ^g \text{ Yield from 3,4-dimethylbenzonitrile.} \end{array}$

Table IV.	Physical	Properties c	f Miscellaneous	Compounds
-----------	----------	--------------	-----------------	-----------

No.	Structure	Method ^a	Yield, %	Mp, °C	Formula ^b
170	2-CH ₃ C ₆ H ₄ CH=CHCO ₃ H	I	95 ^c	171-174 ^d	
171	3-CH ₃ C ₆ H ₄ CH=CHCO ₂ H	1	98°	115–117 ^e	
172	$3,4-(CH_3)_2C_6H_3CH=CHCO_2H$	J + I	$82^{c,f}$	$172 - 174^{g}$	
173	1-C ₁₀ H ₇ CH=CHCO ₂ H	I	97°	$207 - 210^{h}$	
174	3-ClC,H ₄ CH=CHCO ₂ H	1	95^{c}	159–161 ⁱ	
175	3-C, H, C, H, CH=CHCO, H	1	$14^{j,k}$	177-179	$C_{15}H_{12}O_{2}$
176	3-(C,H,CH,CH,CH=CHCO,H	K + J + I	$70^{l, m}$	120-122	$C_{16}H_{14}O_{2}$
177	3-(C [°] ₆ H [°] ₅ CH=CH)C [°] ₆ H ⁴ CH=CHCO ⁵ ₂ H	L + I	94^l	183-185	$C_{17}^{10}H_{14}^{14}O_{2}^{1}$
178	4-C, H, C, H, CH=CHCO, H	I	96 ^c	$220-222^{n}$	17 14 2
179	4-(C ₆ H ₅ CH ₂)C ₆ H ₄ CH=CHCO ₂ H	K + J + I	$65^{l,m}$	165-167°	
180	4-(C,H,CH=CH)C,H,CH=CHCO,H	L + I	95 ^j	254-257 ^p	
181	4-C, H, C, H, OCH, CO, H	М	40 ^c	186-190 ^q	
182	4-(Č,H,CH=CH)Ć,H,CHO	L	87	$111 - 113^{r}$	
183	3-(C,H,CH=CH)C,H,CHO	Ĺ	55	95~97 ^s	

^a Methods (see Experimental Section): I, RArCHO + HO₂CCH₂CO₂H \rightarrow RArCH=CHCO₂H; J, RArCN + Red-Al \rightarrow RArCH₂K, RArCH₂Br + C₆H₆ + AlCl₃ \rightarrow RArCH₂C₆H₅; L, prepared from benzyltriphenylphosphonium chloride and the appropriate benzenedicarboxaldehyde by the general procedure of Baker and Gibson J. Med. Chem., 14, 315 (1971); M, RArOH + t-BuO₂CCH₂Cl $\rightarrow \rightarrow$ RArOCH₂CO₂H. ^b Analyses for C and H. ^c Crystallized from reaction, used without further purification. ^d J. Frederick, J. Dippy, and J. E. Page, J. Chem. Soc., 357 (1938), reported mp 169°. ^e J. Frederick, J. Dippy, and J. E. Page, J. Chem. Soc., 357 (1938), reported mp 169°. ^e J. Frederick, J. Dippy, and J. E. Page, J. Chem. Soc., 357 (1938), reported mp 172°. ^h B. West, J. Am. Chem. Soc., 42, 1656 (1920), reported mp 209-212°. ⁱ K. Pandya and R. Pandya, Proc. Indian Acad. Sci., Sect. A, 14, 112 (1941), reported mp 163°. ^j Recrystallized from MeOEtOH-H₂O. ^k Overall yield from 3-phenylbromobenzene. ^l Recrystallized from EtOH-H₂O. ^m Overall yield from appropriate α -bromotolunitrile. ⁿ G. Cavallini, E. Massarani, D. Nardi, and R. D'Ambrosia, J. Am. Chem. Soc., 79, 3514 (1957), reported mp 167°. ^p G. Cavallini, E. Massarini, D. Nardi, and R. D'Ambrosia, J. Am. Chem. Soc., 79, 3514 (1957), reported mp 167°. ^p G. Cavallini, E. Massarini, D. Nardi, and R. D'Ambrosia, J. Am. Chem. Soc., 79, 3514 (1957), reported mp 265-258°. ^q M. Synerholm and P. Zimmerman, Contrib. Boyce Thompson Inst., 14, 91 (1945), reported mp 189-190°. ^r B. R. Baker and R. E. Gibson, J. Med. Chem., 14, 315 (1971), reported mp 115-116°. ^s R. Heck, J. Am. Chem. Soc., 90, 5518 (1968), reported mp 94.5-95°.

of the compounds were prepared by one of the following general routes (see Scheme I).

Compounds 89, 90, 92, 93, 95, 96, and 120 (see Table II) were prepared by a Wittig reaction with 3- or 4-picolyltriphenylphosphonium chloride^{1b} and the appropriate benzaldehyde or cinnamaldehyde, followed by catalytic reduction.^{1b} Compounds 91, 94, 103–112, 118, 119, and 121–126 were similarly prepared from 3- or 4-pyridinecarboxaldehyde and the appropriate benzyl- or cinnamyltriphenylphosphonium halides listed in Table III, followed by catalytic reduction. Compounds 97-102 and 127 were similarly prepared. When 133 was treated with the appropriate acid chloride, compounds 83 and 113-117 were formed. The amides 128-132, 134-143, and 148-151 were similarly prepared from 3-aminopyridine, 3-aminomethylpyridine, or from 133, 142, 144, 146, 148, or 150.

Experimental Section

Melting points were taken in capillary tubes on a Mel-Temp block and are uncorrected. Each analytical sample had an ir spectrum compatible with its structure and moved as a single spot on TLC on Brinkman silica gel GF. All analytical samples gave combustion values for C, H, or C, H, N within 0.4% of theoretical values.

3-(4-Benzamidophenylbutyl)pyridine (114) (Method B). A solution of 0.8 g (3.5 mmol) of 133, 0.5 g (3.5 mmol) of benzoyl chloride, and 0.5 g (5 mmol) of Et₃N in 40 ml of DMF was heated at 100° for 10 min and allowed to cool to room temperature before 50 ml of H₂O was added. The crystalline product was collected, washed with H_2O , air-dried, and recrystallized from EtOH- H_2O : yield, 0.8 g (69%); mp 114–115°. Anal. $(C_{22}H_{22}N_2O)$ C, H, N.

4-Fluorocinnamyltriphenylphosphonium Bromide (159) (Method G). A solution of 4.0 g (26 mmol) of 4-fluorocinnamyl alcohol [prepared from 4-fluorocinnamic acid by the general method of Baker and Doll^{1b} and recrystallized from petroleum ether (bp 60-110°)] was dissolved in 75 ml of dry Et₂O which had been saturated with dry HBr. The solution was stirred at room temperature for 3 h; the organic layer was decanted, dried (Na_2SO_4) , and evaporated to a purple solid which was heated overnight in a benzene solution containing 7.0 g of $(Ph)_3P$. The crystalline product was collected by filtration and recrystallized by dissolving in hot Me₂CO containing about 5% MeOH and adding petroleum ether (bp 60-110°) to cloudiness: yield, 5.7 g (46%); mp 187-189°. Anal. (C₂₇H₂₃BrFP) C, H.

5-Phenyl-2,4-pentadienyltriphenylphosphonium Bromide (Method H). A solution of 6.7 g (42 mmol) of 5-phenyl-2,4pentadienol (prepared in 90% yield from 5-phenyl-2,4-pentadienoic acid by the general method of Baker and Doll^{1b} and used without further purification) and 13.0 g (38 mmol) of triphenylphosphonium bromide²⁹ in 60 ml of MeOH was stirred at room temperature for 72 h, poured into H_2O , and twice extracted with CH_2Cl_2 . The organic layers were combined, dried (MgSO₄), and evaporated to a light yellow oil which crystallized upon trituration in Me₂CO: yield, 11.9 g (65%); white solid; mp 229-230° (lit.30 236-240°).

3-Styrylcinnamic Acid (177) (Method I, See Table IV). A solution of 3.8 g (18 mmol) of 3-stilbenecarboxaldehyde (183), 3.6 g (35 mmol) of malonic acid, and 0.5 ml of piperidine in 25 ml of pyridine was heated on a steam bath for 4 h and then poured into a solution of 75 g of ice and 40 ml of concentrated HCl. The product was separated by filtration and washed with dilute HCl and H₂O: yield 4.3 g (94%); mp 183-185°. Anal. ($C_{17}H_{14}O_2$) C. H.

4-Benzylbenzaldehyde (Method J). A benzene solution of 4-benzylbenzonitrile was treated with Red-Al according to the general procedure of Baker and Gibson.³¹ The crude product was used without further purification.

4-Benzylbenzonitrile (Method K). Upon mixing, a stirred solution of 23.1 g (0.12 mol) of α -bromo-*p*-tolunitrile and 13.3 g (0.10 mol) of AlCl₃ in 120 ml of PhH became warm and evolved HCl gas. After 15 min 5.3 g (0.04 mol) of additional AlCl₃ was added. After stirring at ambient temperature overnight, the solution was poured into ice water; the organic layer was twice extracted with H_2O , dried (MgSO₄), and evaporated to a brown solid (21.3 g, 90%) which was treated by method J without further purification.

3-Phenylphenoxyacetic Acid (Method M). A solution of 4.75 g (28 mmol) of 3-phenylphenol, 4.2 g (28 mmol) of tertbutylchloroacetate, and 3.9 g (28 mmol) of K_2CO_3 in 30 ml of DMF was stirred overnight at 70°, poured into H₂O, and twice extracted with PhMe. The organic layers were combined, washed with H_2O , and dried (MgSO₄). After 50 mg of TsOH was added the solution was heated at 100° overnight, evaporated to 25 ml, and treated with petroleum ether (bp $60-110^{\circ}$) to promote crystallization; yield, 2.7 g (42%); mp $100-102^{\circ}$ (lit.³² mp $108-109.5^{\circ}$).

 β -Phenylcinnamyltriphenylphosphonium chloride (184) was prepared from 5.0 g of β -phenylcinnamic acid by the general method of Baker and Doll^{1b} and was recrystallized from acetone: yield, 7.1 g (60%); white solid; mp 253-255°. Anal. (C₃₃H₂₈ClP) C, H.

3-Phenylbenzaldehyde. A solution of 3-phenylphenylmagnesium bromide was prepared from 3-phenylbromobenzene

and Mg in the usual manner and then treated with ethyl orthoformate. The crude acetal was heated for 1.5 h in a refluxing solution of 90 ml of EtOH and 10 ml of 3 N H₂SO₄. This solution was poured into water and extracted with Et₂O. The organic layers were combined, dried (Na₂SO₄), and evaporated to an amber oil which was treated by method I to prepare 175 in 14% yield overall.

Acknowledgment. We are grateful to Dr. Michael Cory of Stanford Research Institute for his suggestions and assistance in the preparation of this manuscript.

References and Notes

- (1) (a) This work was generously supported by Grant CA-08695 from the National Cancer Institute, U.S. Public Health Service. (b) For the previous paper in this series, see B. R. Baker and M. H. Doll, J. Med. Chem., 14, 793 (1971).
- (2) Deceased Oct 1971.
- (3) H. J. Muller-Eberhardt, Adv. Immunol., 8, 1 (1968).
- (4) P. H. Schur and K. F. Austen, Annu. Rev. Med., 19, 1 (1968).
- (5) B. R. Baker and E. H. Erickson, J. Med. Chem., 12, 408 (1969).
- (6) M. Yoshimoto, C. Hansch, and P. Y. C. Jow, Chem. Pharm. Bull., 23, 437 (1975).
- (7) D. H. Bing, M. Cory, and M. Doll, J. Immunol., 113, 584 (1974).
- (8) B. R. Baker and M. Cory, J. Med. Chem., 14, 119 (1971).
- (9) B. R. Baker, "Design of Active Site Directed Irreversible Enzyme Inhibitors", Wiley, New York, N.Y., 1967, p 156. (10) B. R. Baker, Acc. Chem. Res., 2, 129 (1969).
- (11) B. R. Baker and E. H. Erickson, J. Med. Chem., 10, 1123 (1967)
- (12) B. R. Baker and E. H. Erickson, J. Med. Chem., 11, 245 (1968)
- (13) B. R. Baker and E. H. Erickson, J. Med. Chem., 12, 112 (1969)
- (14) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 10, 1129 (1967)
- (15) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 11, 233 (1968)
- (16) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 11, 241 (1968)
- (17) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 11, 1054 (1968)
- (18) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 118 (1969)
- (19) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 221 (1969)
- (20) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 415 (1969)
- (21) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 677 (1969)
- (22) B. R. Baker and J. A. Hurlbut, J. Med. Chem., 12, 902 (1969)
- (23)B. R. Baker and M. Cory, J. Med. Chem., 12, 1049 (1969).
- (24) B. R. Baker and M. Cory, J. Med. Chem., 12, 1053 (1969).
- (25) B. R. Baker and M. Cory, J. Med. Chem., 14, 805 (1971).
- (26) CI refers to the activated C1 component of complement, formerly designated by C1a.^{1b,8,22,25} CI is the standard notation outlined by the World Health Organization Memorandum, Immunochemistry, 7, 137 (1970).
- (27) H. J. Rapp and T. Borsos, "Molecular Basis of Complement Action", Meredith Corp., New York, N.Y., 1970, p 70.
- (28) M. Yoshimoto, C. Hansch, and M. H. Doll, J. Med. Chem., following paper in this issue.
- (29) J. D. Surmatis and A. Ofner, J. Org. Chem., 28, 2735 (1963).
- (30) S. Misumi and M. Nakagawa, Bull. Chem. Soc. Jpn., 36, 399(1963).
- (31) B. R. Baker and R. E. Gibson, J. Med. Chem., 14, 315 (1971).
- C. Hansch, R. Muir, T. Fujita, P. Maloney, F. Geiger, and (32)M. Streich, J. Am. Chem. Soc., 85, 2817 (1963).