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Abstract: The kinetic enzymatic resolution of cyclopropane ace-
tates was systematically investigated utilizing 16 different hydro-
lases. Best results were obtained with hydrolyses in the presence of
Candida antarctica B lipase.
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Kinetic resolutions using hydrolases have been extensive-
ly investigated and applied in organic synthesis.1 In view
of the increasing interest in cyclopropane derivatives it is
surprising that only a few successful examples are known
in cyclopropane chemistry. In general, except for meso-
configurated compounds, mediocre enantioselectivities
are obtained when the cyclopropane moiety contains the
only stereogenic unit in the molecule (e.g. compounds
1-3).2-4 We sought to optimize the kinetic resolution of 3
with various hydrolases (Table 1), solvents and reaction
temperatures. The best results were obtained with Mucor
miehei lipase (THF, phosphate buffer pH 7, 60 °C), but
enantioselectivity enhancements were unacceptable.

Figure 1

We then performed similar studies with racemic and enan-
tiomerically enriched cyclopropanol rac-4 and (1S,2S)-4
(75% ee) and acetates rac-5 and (1S,2S)-5 (75% ee), ob-
tained from cyclopropylboronic esters 6 and 7 (dr 88:12),
respectively (Scheme 1).5,6

Scheme 1

All attempts to selectively acetylate cyclopropanol rac-4
with vinyl acetate in the presence of an enzyme failed. At
67% (calculated) turnover, the enantiomeric excess of the
cyclopropanol (1R,2R)-4 was similar to that observed in
the diastereoselective approach using cyclopropylboronic
ester 7, nevertheless this route was still impractical. Better
results were obtained from hydrolysis, with CAL-B
(E = 44; THF, phosphate buffer pH 7, 60 °C) superior to
other enzymes (Scheme 2).7 Although these findings were
promising, it was obvious that by using this protocol enan-
tiomerically pure cyclopropanols could not be obtained in
just one cycle. However, since the enantiomerically en-
riched cyclopropanol (1S,2S)-4 is synthesized from cyclo-
propylboronic ester 7 as conveniently as the racemic
compound rac-4 from the corresponding ester 6, only one
enzymatic purification step gave the enantiomerically
pure product (1S,2S)-4 (ee >98%; turnover 78%).

Similar  results  could   be   obtained   with   the   cyclo-
propanes 9 and 10, respectively. Again, racemic and enan-
tiomerically enriched compounds were both readily
synthesized from cinnamyl alcohol (8) (Scheme 3). In this
case the Simmons-Smith reaction was used,8 following the
Furukawa protocol to get rac-9 (83%),9 and utilizing the
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Denmark conditions10 to furnish (1’S,2’S)-9 (90%, 87%
ee) in the presence of ligand 11.11,12 The enantiomeric ex-
cess for these compounds was determined by hplc
(Chiracel OD, hexane:isopropanol 99.6:0.4 to 95:5).

Scheme 3

Although the enzymatic conversion of alcohol rac-9 gave
slightly better selectivities (up to E = 13; PCL, toluene,
40 °C) than for cyclopropanol rac-4, these results were in-

ferior to the catalytic asymmetric cyclopropanation reac-
tion. Hydrolysis of rac-10 was achieved best in the
presence of CAL-B. In this case the selectivity could be
increased by changing the solvent from THF (E = 5.3),
pentane (E = 7.3) and toluene (E = 13) to dichlo-
romethane (E = 24). Again, the enantiomeric excess ob-
tained was not sufficient to get the enantiomerically pure
compound, but starting from the enantiomerically en-
riched (1'S,2'S)-10 (87% ee from the enantioselective cat-
alytic reaction) did efficiently yield the pure enantiomer
(ee >98%, 88% turnover, 77% yield).13

Scheme 4

Given that the maximum yield of a kinetic enzymatic res-
olution is <50% (exception: meso-compounds), versus an
enantioselective catalysis that does not yield enantiomer-
ically pure cyclopropanes, the herein reported combina-
tion of both would be the most efficient protocol. In
conclusion, we did not only get high E-values (for cyclo-
propanes) for the lipase-catalyzed transformation, but
could also propose a practical route to pure compounds.
The evaluation of the generality of this approach is cur-
rently under investigation in our laboratories.
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