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Abstract

Semiconducting polymer nanoparticles (SPNs) emitting in the second near-infrared window (NIR-II, 1000-

1700 nm) are promising materials for deep-tissue optical imaging in mammals, but the brightness is far 

from satisfaction. Herein, we developed a molecular design strategy to boost the brightness of NIR-II SPNs: 

structure planarization and twisting. By integration of the strong absorption coefficient inherited from 

planar E7!������)	. units and high solid-state quantum yield (�PL) from twisted motifs into one polymer, 

a rise in brightness was obtained. The resulting pNIR-4 with both twisted and planar structure displayed 

improved �PL and absorption than the planar polymer pNIR-1 and twisted polymer pNIR-2. Given the 

emission tail extending into the NIR-IIa region (1300-1400 nm) of pNIR-4 nanoparticles, NIR-IIa 

fluorescence imaging of blood vessels with enhanced clarity was observed. Moreover, a pH-responsive 

poly(�-amino ester) made pNIR-4 specifically accumulate at tumor sites, allowing NIR-IIa fluorescence 

image-guided cancer precision resection. This study provides a molecular design strategy for developing 

highly bright fluorophores.

Introduction

In vivo fluorescence imaging in the NIR-II region (1000-1700 nm) benefits from reduced photon 

scattering and minimized tissue autofluorescence compared with the well-researched visible and NIR-I 

(700-900 nm) window, providing a versatile platform for deep tissues/organs visualization with a greater 

Page 1 of 19

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



degree of clarity.1-12 Whereas, the lack of highly bright fluorophores has become the bottleneck for progress 

in this area. Inorganic nanomaterials such as rare-earth nanoparticles,13-14 carbon nanotubes,15-16 quantum 

dots,17-18 have been explored as excellent optical agents for NIR-II imaging. As alternatives, organic 

nanomaterials that are made from biologically inert components have the potential to avoid the toxicity 

concerns while having optical advantages equal or even better than inorganic counterparts.

Recently, semiconducting polymer nanoparticles (SPNs) composed of E7!������)	. polymers have 

demonstrated as a versatile class of NIR absorbing/emitting biomaterials for fluorescence imaging, owing 

to their merits of good biocompatibility, excellent optical properties, high photostability, easy 

functionalization and potentially high biosafety.19-28 SPNs normally consist of hydrophobic but optically 

tunable semiconducting polymers (SPs) and amphiphilic polymer matrix. Thereof, the molecular structure 

of SPs determines the optical properties of SPNs. As shown in Figure 1a, SPs are mainly designed as rigid 

planar E7!������)	. structures, which possess excellent photophysical properties such as strong emission 

and absorption as isolated species. However, the emission of SPs is easily quenched in the aggregate state 

(aggregation-caused quenching, ACQ), owing to the dominated nonradiative decay induced by strong 

intermolecular E7E interactions.29 To boost radiative decay, Tang et al. proposed a concept of aggregation-

induced emission (AIE).30-37 AIE luminogens (AIEgens) typically adopt twisted structures, which can 

significantly suppress the intermolecular interactions within nanoparticles (NPs), resulting in dramatically 

improved photoluminescence quantum yield (�PL) (Figure 1b).11, 38 Based on this strategy, Wu et al. 

reported NIR-II SPNs with a high �PL of ~1.7%, assuring good quality for through-skull visualization of 

the cerebral vasculature in mice.39 To achieve a high brightness, the absorption coefficient is also an 

important factor (equation 1).40-43 However, considering the molecular design strategy of AIE, besides 

restricting intermolecular interactions, molecular distortion inevitably destroys the conjugation, giving an 

inferior absorption coefficient (Figure 1b). Thereof, increasing the absorption capacity of twisted structures 

may be a logical way to further boost the brightness of the fluorophores.

�PL = 
PL�0(1 � 10��)           (1)
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IPL = photoluminescent emission intensity, I0 = incident light intensity, A = absorbance,

Herein, we propose a molecular design strategy to enhance the brightness of NIR-II SPNs: structure 

planarization and twisting, combining the merits of high absorbance inherent from ACQ fluorophores and 

high �PL originating from AIEgens. As shown in Figure 1c, by integration of planar structure (ACQ 

character) and twisted architecture (AIE-active) into one unit, the planar part assures the high absorption 

coefficient while the twisted part affords high �PL. Thereof, the resulting SPNs can simultaneously display 

both high absorption coefficient and high �PL. As a proof-of-concept, polymer pNIR-4 with partially planar 

and twisted structure displays a higher brightness with a high �PL of 2.24% and molar extinction coefficient 

BNC of 5.73�103 L mol-1 cm-1 than that of pNIR-1 (coplanar structure, �PL = ~0, N = 7.17�103 L mol-1 cm-1) 

and pNIR-2 (twisted structure, �PL = ~3.2%, N = 3.26�103 L mol-1 cm-1). Given that the brightness of dyes 

is determined by �PL and absorption, quantum efficiency (QE) value is defined as QE = �PL � N to evaluate 

the brightness.41 As expected, pNIR-4 NPs possess a superb QE (128) compared with pNIR-1 NPs (QE = 

~0) and pNIR-2 NPs (QE = 104). Moreover, pNIR-4 NPs display emission maximum at 1040 nm with 

emission tail extending into the NIR-IIa region (1300-1400 nm), enabling in vivo NIR-IIa fluorescence 

image of blood vessels and lymph nodes. Moreover, a pH-responsive poly(�-amino ester) is adopted to 

enhance the accumulation of pNIR-4 in the tumor, realizing NIR-IIa fluorescence-guided cancer surgery. 

This study provides a molecular guideline to develop highly bright SPNs.
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E7E interactions to give an AIE character. To investigate the donor effect, polymer pNIR-3 decorated with 

a weaker TPE unit was also designed (Figure 2c). To manifest the molecular design philosophy, pNIR-4 

with meta- and ortho-positioned hexyl unit was synthesized (Figure 2d). The key structural feature of pNIR-

4 was the integration of planar and twisted block into one molecule. On the one hand, the planar motif could 

enhance the absorptivity due to a better conjugation. On the other hand, the twisted unit could afford a high 

�PL in aggregate via restriction of intermolecular interactions. Therefore, improved brightness might be 

achieved by enhancing �PL and absorption simultaneously. The intermediates and products were 

characterized by NMR and gel permeation chromatography methods (Supporting Information).
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Figure 2. Synthetic routes to conjugated polymers. (a) pNIR-1. (b) pNIR-2. (c) pNIR-3. (d) pNIR-4.
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Figure 3. Theoretical calculation results of polymer pNIR-1, pNIR-2, pNIR-3, pNIR-4 and their respective optical spectra. (a, d, 

g, j) Optimized ground-state geometries. (b, e, h, k) Absorption and emission spectra in THF. (c, f, i, l) PL intensity variation with 

water fraction in THF/H2O mixtures.

To assess the geometry of the polymers, density functional theory (DFT) calculations in the gaseous 

state were performed. In pNIR-1, the dihedral angles of BBTD and thiophene at the optimized ground-state 

(S0) were only 0.7° and 1.5°, respectively (Figure 3a, S1), suggesting a coplanar structure that resulted from 

the steric distance between meta-positioned alkyl chain and BBTD core.46 Thanks to this planar structure, 
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pNIR-1 possessed a high N of 7.17�103 L mol-1 cm-1 at 870 nm, while the emission peak located at ~1112 

nm (Figure 3b, S2). As expected, pNIR-1 showed obvious ACQ effect with a �PL of ~ 0 in nanoparticles. 

This result indicated that the presence of twisted TPA unit could hardly restrict the predominated 

inter/intramolecular interactions (Figure 3c, S3). It is for this reason that planar conjugated polymers find 

wide applications in photothermal therapy or photoacoustic imaging.47-48 In pNIR-2, the ortho-positioned 

hexyl unit significantly distorted the backbone, as reflected from the a large dihedral degree of 46.5° and 

53.5° (Figure 3d). The backbone distortion broke the conjugation resulting in blue-shifted absorption (700 

nm) and emission (1010 nm) (Figure 3e). To our delight, the pNIR-2 showed a typical AIE character with 

the PL intensity increasing with water fraction, giving an SAIE (PL intensity ratio of 90% water fraction to 

that of pure THF) = 3.6 (Figure 3f). Notably, pNIR-2 displayed a �PL of 3.2% (Figure S4,5), which is higher 

than previous reports (Table S1),42, 49-50 owing to the efficient hindrance of inter/intramolecular interactions. 

However, the twisted architecture damaged the absorption coefficient, giving a low N of 3.26�103 L mol-1 

cm-1 at 700 nm.43 The quantum efficiency value QE was only 104. On the other hand, by changing the 

molecular rotor from the triphenylamine (TPA) unit to TPE, polymer pNIR-3 still adopted a twisted 

backbone (dihedral degree of 47.6° and 50.5°) (Figure 3g). The absorption and emission peak of polymer 

pNIR-3 blue-shifted to 663 and 907 nm, respectively, owing to the weaker electron-donating ability of TPE 

(Figure 3h). Nevertheless, pNIR-3 displayed part of ACQ character with an SAIE of 0.3, possibly owing to 

the active intramolecular motion of TPE units within NPs (Figure 3i).32 Polymer pNIR-3 had a high N of 

1.06�104 L mol-1 cm-1 at 663 nm with a fluorescent �PL of 1.9%. Despite a relatively high QE (201), the 

fluorescent emission was mainly in the NIR-I range (700-950 nm), which might encounter light scattering 

and attenuation with improved imaging depth.2 In polymer pNIR-4, the distinct dihedral angles of 2.7° and 

49.9° demonstrated that the backbone adopted a planar plus twisted structure (Figure 3j). Compared to 

complete twisting pNIR-2, polymer pNIR-4 showed a redshift in both absorption (709 nm) and emission 

(broad peak: 1012~1080 nm) (Figure 3k). pNIR-4 possessed an enhanced N of 5.73�103 L mol-1 cm-1 at 709 

nm with a high �PL of 2.24%. Notably, the QE of pNIR-4 reached up to 128, much higher than the complete 

twisting counterpart pNIR-3 (QE = 105), demonstrating the feasibility of the present molecular design 

strategy. The PL intensity of pNIR-4 decreased first and then increased with the increase of water fraction 

(Figure 3l). The decreased PL intensity with water addition was due to the formation of twisted 

intramolecular charge transfer (TICT) state, whose predominated nonradiative decay quenched the 

emission.51 Further increase of water fraction triggered the AIE mechanism via restriction of intramolecular 

motions, giving an SAIE of 2.0. The photophysical properties of above conjugated polymers are summarized 

in Table S2. Overall, enhanced brightness can be obtained by integration planar and twisted structure into 

one polymer.
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the in vitro fluorescence imaging. To endow excellent water dispersity, pNIR-4 was formulated into NPs 

through the nanoprecipitation method by the assistance of amphiphilic polymer DSPE-PEG2000 (Figure 4a). 

The dynamic light scattering and transmission electron microscopy results suggested a hydrodynamic 

diameter of ~100 nm for spherical pNIR-4 NPs (Figure S6). The pNIR-4 NPs showed a typical NIR-I 

absorption at 750 nm with a tail extending to 900 nm, which could penetrate much deeper tissues and trigger 

less photodamage (Figure 4b). On the other hand, the emission profile of pNIR-4 NPs was maximized at 

~1040 nm, with an obvious tail stretching to 1400 nm, which showed potential for NIR-IIa bioimaging. To 

demonstrate the advantages of NIR-IIa imaging, pNIR-3 NPs with NIR-I emission (925 nm) and negligible 

fluorescence signal after 1300 nm were used as a control (Figure 4c). As shown in Figure 4d, the pNIR-4 

NPs were significantly brighter than pNIR-3 NPs under different long-pass (LP) filters of -810, -1000, -

1250 and -1319 nm, again suggesting the success of present molecular design strategy. In addition, a linear 

enhancement in fluorescent intensity with concentrations was observed from the NIR-IIa signal of pNIR-4 

NPs (Figure S7), providing a platform for quantitative analysis. Moreover, pNIR-4 NPs displayed excellent 

photostability, which was of vital importance for practical applications (Figure S8).

To investigate the feasibility of pNIR-4 NPs as NIR-IIa probe in vivo, the images of the mouse brain 

and hindlimb vasculatures were monitored by intravenous injection (Figure 5a). In contrast to sharper and 

higher resolution images detected in the NIR-IIa region (1319 nm LP), the vasculatures looked blurry in 

the NIR-II region (1000 nm LP), demonstrating the merit of NIR-IIa imaging. It should be noted that pNIR-

4 NPs cannot penetrate the blood-brain-barrier according to their tissue distribution (Figure S9). NIR-IIa 

imaging with pNIR-3 NPs provided the information of main vessels that were hard to discern (Figure 5b). 

In contrast, detailed small capillaries could be seen by pNIR-4 NPs in the NIR-IIa region with high clarity, 

reflecting its high brightness (Figure 5b). The signal is visible in vitro even at the depth of 9 mm (Figure 

S10). All these results demonstrated that pNIR-4 NPs were suitable for NIR-IIa imaging and outperformed 

traditional NIR-II imaging.
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pNIR4-PAE NPs at tumor sites (Figure S11).62 To confirm the pH-responsiveness of pNIR4-PAE NPs, 

pNIR-4 encapsulated by PCL-b-PEG (pNIR4-PEG NPs) was used as control. The pNIR4-PAE NPs 

displayed a hydrodynamic diameter of ~120 nm with high colloidal stability, slightly larger than that of 

pNIR4-PEG NPs (110 nm) (Figure S12-14). As shown in Figure S15, the charge of pNIR4-PAE NPs 

switched into positive when the pH is below 6.8, which will facilitate their internalization by tumor cells. 

In contrast, the zeta potential of pNIR4-PEG NPs kept negative under a pH of 5.0-7.4. To monitor the 

internalization efficiency, cy5-labelled PCL-b-PEG was utilized as part of the structural material because 

it can be visualized by a confocal microscope. After a 2 h incubation with PEG NPs and PAE NPs at pH 

7.4 and 6.5, respectively, a brightest red signal was detected in the HepG2 cells incubated with PAE NPs 

under pH 6.5, which was also confirmed by the flow cytometry (Figure S16). This result suggested the 

positively-charged NPs at pH = 6.5 will strengthen their interaction with tumor cells and enhance tumor 

cellular internalization. Encouragingly, pNIR4-PAE NPs displayed an obvious tumor-targeting ability than 

that of pNIR4-PEG NPs in subcutaneous tumor-bearing mice (Figure S17). Therefore, the pNIR4-PAE NPs 

that can be activated to be positively charged in tumor microenvironment were internalized efficiently by 

tumor cells both in vitro and in vivo, which is beneficial for precisely tumor imaging.

Peritoneal carcinomatosis is usually related with a low overall survival rate and its preoperative 

assessment and intraoperative imaging are very challenging due to the dispersion of large amounts of tumor 

nodules with diameters <1 mm scattered in the peritoneal cavity.63-64 These tiny tumor nodules that are hard 

to be spotted are the major reasons for the cancer recurrence. Thus, we established peritoneal 

carcinomatosis-bearing mice to assess whether pNIR4-PAE NPs can assist the surgical discrimination and 

resection of ultrasmall tumor nodules. To better monitor the tumor distribution, luciferase-expressed 4T1 

tumors were selected which exhibited bioluminescence upon postinjection with D-luciferin. After 24h 

intravenously injection of pNIR4-PAE NPs, the NIR-IIa fluorescence of pNIR4-PAE NPs and the 

bioluminescence signal of luciferase are colocalized perfectly in the peritoneal cavity (Figure 6b), 

demonstrating the accurate tumor diagnosis of pNIR4-PAE NPs. In the clinic, the surgeon always relied on 

naked eyes and hands to determine which tissues need to be removed or to be preserved. Although relatively 

large diameters (>1 mm) tumors have been removed by the surgeon (Tianjin First Central Hospital) under 

unguided surgery, many small tumor nodules remained, which was difficult to be identified. Followed by 

a second-round operation guided by NIR-IIa fluorescence, reduction of tumor burden was observed. The 

bioluminescence signals of all the harvested tumor nodules verified the resected tissue was indeed a tumor, 

proving the precise cancer surgery with the help of pNIR4-PAE NPs (Figure 6c). By quantifying the 

diameters of excised tumor nodules, more submillimeter tumors have been excised assisted by 

intraoperative imaging (Figure 6d). These results suggested that the cancer surgery outcome could be 
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conjugated structure displaying strong absorptivity but suffer from fluorescence quenching in the aggregate 

state. On the other hand, AIEgens have twisted backbones showing high solid-state �PL at the cost of 

absorptivity. The key point of the present strategy lies in getting essence from the merits of these two types 

of conflicting molecules: ACQ fluorophores and AIEgens. We utilized the steric hindrance produced by 

the adjacent alkylthiophene unit to tune the configuration of the polymer repeating units. The ortho-

positioned alkyl chains give twisted structure while the meta-positioned one results in a coplanar structure, 

which is demonstrated by DFT calculations. The resultant polymer pNIR-4 with planar plus twisted 

structure shows �PL of 2.24% and N of 5.73�103 L mol-1 cm-1 at 709 nm. Polymer pNIR-1 with planar 

structure displays �PL of ~0 and N of 7.17�103 L mol-1 cm-1 at 870 nm. Polymer pNIR-2 with twisted 

structure exhibits �PL of ~3.2 and N of 3.26�103 L mol-1 cm-1 at 870 nm. Since brightness is the product of 

�PL and N� pNIR-4 possesses superb brightness (QE = 128) than that of planar pNIR-1 (QE = ~0) and twisted 

pNIR-2 (QE = 104). Given the emission tail extending into the NIR-IIa region (1300-1400 nm) of bright p-

NIR4 NPs, NIR-IIa fluorescence imaging of blood vessels with enhanced clarity is observed. Moreover, a 

pH-responsive PAE polymer makes p-NIR4 NPs specifically accumulate at tumor sites, allowing NIR-IIa 

fluorescence image-guided cancer resection. The present study demonstrates the tuning of molecular 

structure to boost the brightness of fluorophores and will inspire the development of highly bright 

fluorescent dyes.

Associated Content

Supporting Information. General information about materials and methods, synthesis and 

characterizations, NMR spectra of the compounds.
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