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ABSTRACT: An environmentally friendly electrochemical ap-
proach for iodoamination of various indole derivatives with a
series of unactivated amines, amino acid derivatives, and
benzotriazoles (more than 80 examples) has been developed.
This strategy was further applied in late-stage functionalization of
natural products and pharmaceuticals and gram-scale synthesis and
radiosynthesis of 131I-labeled compounds. Fundamental insights
into the mechanism of the reaction based on control experiments,
density functional theory calculation, and cyclic voltammetry are
provided.

The indole scaffold is privileged structural motif that exists
extensively in a wide range of natural products and

pharmaceuticals, as well as agricultural chemicals.1 The direct
dual functionalization of indoles is of great interest to chemists
because two functional groups can be introduced simulta-
neously. Specifically, the haloamination of indoles is syntheti-
cally attractive because the resulting haloaminated indoles are
versatile synthetic blocks in both organic synthesis and
biological applications due to their ability to readily facilitate
further modification by the transformation of C3 halogen
atoms. For instance, the Nicholas group described a copper-
catalyzed bromoamination of indoles with oxime esters using a
stoichiometric amount of CuBr.2 Liu and Liang demonstrated
a method for the chloroamidation of indoles with N-
chlorosulfonamides by using a Pd/Cu-co-catalyst.3 Moriyama
and Togo reported the bromoamination of N-pivaloylindole
with bis(tosyl)imide (Ts2NH) by using hypervalent iodine-
(III).4 Recently, Yu, Tan, and co-workers developed the
chloroamidation of indoles with sulfonamides and NaClO
under metal-free conditions.5 The concomitant introduction of
a halogen and of a nitrogen functional group on indole
derivatives has also been developed or observed with other
strategies.6 Despite the considerable progress that has been
made in this field, the existing protocols usually require
stoichiometric quantities of oxidant, hypervalent iodines(III),
or transition metals (Cu and Pd), all with limited functional
group tolerance (Scheme 1a). Specifically, the direct
iodoamination of indole derivatives with unactivated amines
remains challenging. Since the discovery of the Hofmann−
Löffler−Freytag reaction,7 it is well known that N-halo amines
can readily undergo homolytic cleavage to form the
corresponding N-centered radical species. In recent years,

significant advances have been made in the field of generating
N-centered radicals for building ubiquitous structural units by
using photo- and electrochemistry.8,10e,11d Although consid-
erable effort has been directed toward the development of
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Scheme 1. C−H Haloamination of Indoles
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these nitrogen radicals, most of them are viable on active
amines, such as diarylamines,9 amides,10 P-methylbenzene
sulfonamide derivatives,11 etc., and using N-halo analogues of
unactivated alkyl amines as N-centered radical precursors is
still a paramount synthetic challenge.12

Compared to conventional chemical approaches, electro-
chemistry provides a green alternative for redox trans-
formations and an environmentally friendly way to construct
important organic molecules.13 In recent years, electrochemical
generation of N-centered radicals has drawn much interest, and
several efficient protocols have been developed.9,10,12e The
halogen-mediated amination of double bonds via an electron-
driven process has also developed well.13i,j,14 Furthermore, the
electrochemical halogenation of indoles is a known process.15

As part of our continuing pursuit of the discovery of new
electrochemical methods,16 herein, we report an environ-
mentally friendly electrochemical dual functionalization of
indole derivatives with the formation of C−N and C−I bonds
in one step. The N-centered radical intermediates were
demonstrated as key intermediates in this process. Using this
strategy, more than 80 dual-functionalized indole derivatives
are constructed with high yields under mild conditions [metal-
and oxidant-free (Scheme 1b)].
In the beginning of our investigation, 1-methylindole (1a)

and morpholine (2a) were used for optimization studies. The
desired yield of dual-functionalization product 4 (98%) was
obtained by employing NH4I as the electrolyte and a CH3CN/
DMSO (4:1) solvent, under a constant current of 12 mA under
atmospheric conditions (Table 1, entry 1). Lower yields were

observed without the mixed solvent (Table 1, entries 2 and 3).
When a reticulated vitreous carbon (RVC) anode or a nickel
foam cathode was replaced, the efficiency of transformation
was lower (Table 1, entry 4 or 5, respectively). Decreasing or
increasing the current had a minimal effect on the facilitation
of transformation (Table 1, entry 6 or 7, respectively).
Electricity is indispensable for the reaction (Table 1, entry 8).
A wide variety of indole derivatives with different

substituents were examined under optimized conditions
(Scheme 2). The indoles with different substituents, including

alkyl (5−8), alkoxy (9 and 10), halogen (11−15), cyan (16),
aldehyde (17), and ester (18 and 19) groups, had been
successfully applied to the reaction, giving the iodoamination
products in good to excellent yields. The reaction was also
successful with heteroaryl indoles, including 7-aza-N-methyl-
indole 20 and 4-aza-N-methylindole 21, though with a
decreased yield. The N-substituted indole derivatives with
different groups, such as benzyl (22), 2-ethoxyethan-1-ol (23),
cyclopropylmethyl (24), allyl (25), and hydroxy (26) groups,
were well tolerated, producing the corresponding products in
high yields. Furthermore, the success of gram-scale synthesis
via either a batch protocol (3.35 g, 98% yield) or flow
chemistry (1.24 g, 72% yield) provided promising results for
further applications in industry.
Next, a large variety of amines were explored under similar

conditions by using a constant current of 16 mA. As described
in Scheme 3, the reaction displayed a broad scope with amines,
and high to excellent yields were achieved (≤98% yield). 2,6-
Dimethylmorpholine (27) and thiomorpholine (28) could
react smoothly with 1-methylindole 1a. We also evaluated a
wide range of piperidine (29−41) and piperazine (42−51)
derivatives, which are the most prevalent N-heterocycles in
pharmaceuticals and often used as links in drug modifications.
The mild reaction conditions were compatible with various
functional groups, including halide, hydroxy, aldehyde, cyan,
amide, ether, and ester groups, which are sometimes
troublesome in the classical coupling method.

Table 1. Optimization of Reaction Conditionsa

entry variation from the “standard conditions” yieldb (%)

1 none 98
2 without DMSO 76c

3 without CH3CN 82
4 RVC (+)|Pt (−) instead of RVC (+)|Ni (−) 78c

5 Pt (+)|Ni (−) instead of RVC (+)|Ni (−) 87
6 8 mA instead of 12 mA 71c

7 16 mA instead of 12 mA 81
8 without current no reaction

aReaction conditions: RVC anode (100 PPI, 1.2 cm × 1.0 cm × 1.0
cm), foamed Ni cathode (1.0 cm × 1.0 cm), constant current of 12
mA (j = 2.07 mA/cm2), 1a (0.2 mmol), 2a (0.6 mmol), NH4I (0.4
mmol), solvent (5.0 mL), undivided cell, air, room temperature, 18 h.
RVC is reticulated vitreous carbon. bIsolated yield. cIodination
product 3 was obtained as a byproduct.

Scheme 2. Scope of Indolesa

aStandard conditions. bIsolated yields. cWith 10.0 equiv of morphi-
line. dGram-scale synthesis.
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Other N-heterocycles with seven- and five-membered rings
were also well tolerated (52 and 56). To our delight, this
transformation was not limited to cyclic systems; acyclic dialkyl
amines were also suitable, as demonstrated by the successful
formation of 53−55. Various benzotriazoles also proved to be
tolerable, giving iodoamination products in good to excellent
yields, whereas the benzotriazoles with electron-donating
groups usually gave lower yields (57−64). Introducing
different amino acids is a popular strategy in medicinal
chemistry and is aimed at balancing the biocompatibility of
lead compounds. We were pleased to see that the amino acid
derivatives were also suitable for this strategy (65−70).
The broad substrate scope of the method, as well as the

promising functional group compatibility, encouraged us to
futher envaluate its application in late-stage functionalization of
natural products and bioactive molecules (71−77). (−)-Cy-
tisine underwent electrochemcial iodoamination to afford 71 in
65% yield. Amoxapine and paroxetine were efficiently
functionalized in excellent yields to afford 72 (87% yield)
and 73 (83% yield), respectively. The Donepezil intermediate,
Fluoxetine, and the Paliperidone intermediate underwent
functionalization in moderate to high yields (74−76,
respectively). Electrochemcial iodoamination has been
achieved on Desloratadine, affording 77 in 86% yield.
To further evaluate the potential of this method, the

derivatization of iodoamination products was extended. As
shown in Scheme 4, Sonogashira coupling of 4 with

phenylacetylene gave product 78 in an acceptable yield.
Coupling of 4 with bromobenzene via Grignard reagent
produced 80 in good yield. Furthermore, sulfurcyanation of 4
can be performed easily to give 81 in 71% yield. As 131I is one
of the most important radioisotopes in the radiopharmaceut-

Scheme 3. Scope of Aminesa

aStandard conditions with a constant current of 16 mA (j = 2.76 mA/cm2). bIsolated yields. cReaction performed with 2.0 equiv of Na2CO3.

Scheme 4. Derivatization of the Iodoamination Product and
Radiosynthesis
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ical industry,17 we further explored application of this strategy
to the radiosynthesis of 131I-labeled compounds. To our
delight, 131I-labeled products 82 and desloratadine analogue 83
could be easily prepared by using this electrochemical
iodoamination protocol with 18.4% and 36.7% radiochemical
yields, respectively (the radiochemical yield was determined by
radio-TLC).
To gain insight into the mechanistic details, control

experiments and cyclic voltammetry (CV) analysis were
conducted (for more details, see Figures S4, S5, and S8).
When TEMPO or BHT as a radical inhibitor was subjected to
the reaction, no reaction took place with concomitant
detection of TEMPO adduct 84, indicating that the N-
centered radical intermediate was formed during this process
(Scheme 5a). Only a trace of product 4 was formed under a N2

atmosphere without O2 (Scheme 5b). Desired product 4 can
be established in high yield under O2 conditions (O2 balloon at
1 atm) or with addictive TBHP under a N2 atmosphere (for
more details, see the Supporting Information).18,19 To further
elucidate the mechanism that is responsible for this electro-
chemical iodoamination, 2b was directly subjected to reaction
and gives 4 with 87% yield in 24 h (Scheme 5c). The results of
the CV experiment showed that the oxidative peak potential
for the mixture of NH4I and morphiline (Ep/2 = 0.81 and 1.17
V vs Ag/AgCl), which was similar to that of 2b (Ep/2 = 0.85
and 1.16 V vs Ag/AgCl), was significantly lower than those of
1a and 2a [Ep/2 = 1.41 and 1.24 V vs Ag/AgCl, respectively
(Figure S8)]. These experimental observations provide
evidence for the formation of highly reactive intermediate 2b
in this electrochemical protocol. Moreover, the DFT
calculations demonstrate that the N-centered radical could
be easily formed by the homolysis of 2b (ΔG = 23.7 kcal/mol,
at the B3LYP/Def2-SVP level of theory).
On the basis of the mechanistic results presented above, the

proposed mechanism is depicted in Figure 1. This electro-
chemical iodoamination reaction is initiated by oxidation of the
iodide ion at the anode, which leads to the formation of iodine
(Figure 1). Then, key intermediate 2b can be generated in situ
as morphiline reacts with iodine. N-Centered radical species I
is generated by homolysis of a weak N−I bond of 2b, followed
by radical addition to the indole at position 2 to afford radical
intermediate II.9a,c,11c,20 Radical intermediate II is trapped by
superoxide radical HO2

• to furnish intermediate III,21 which
can be easily converted to amination product V under standard
conditions. As an alternative pathway, radical intermediate II
can also be oxidized at the anode to form carbocation IV.21

Meanwhile, O2 was oxidized at the anode to form O2
•−, which

abstracts a hydrogen atom from intermediate IV to produce

amination product V. Finally, iodination amination product V
furnishes the desired dual-functionalization product.
In summary, an efficient electrochemical approach was

developed for dual functionalization of indoles with a series of
unactivated amines. The approach generates a variety of useful
iodoamination products with good tolerance of functional
groups under mild electrochemical conditions. Mechanism
studies demonstrated that the N-centered radical intermediate
was formed facilely in this process. The success of gram-level
synthesis and radiosynthesis of 131I-labeled compounds, as well
as the potential of late-stage functionalization, provides
promising results for further applications in industrial settings
and medicinal chemistry. Further synthetic application
research, as well as the application of 131I-labeled compounds,
is ongoing in our laboratory.
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