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Abstract 

Readily available N-acyl-2-pyrrolines are converted into functionalized et-alkoxy-13-iodopyrrolidines by N- 
iodosuccinimide promoted alcohol addition to the enamine group. These compounds are readily cyclized using 
a sodium cyanoborohydride---catalytic tributylstannane system affording functionalized pyrrolidines in good yields. 
The cyclized products undergo N-acyliminium ion reactions, such as BF3 .OEt2 mediated addition of allyltrime- 
thylsilane. © 1999 Elsevier Science Ltd. All rights reserved. 
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The widespread occurrence and biological activity of pyrrolidines in natural products and pharmaceu- 
ticals have made them important targets for synthetic chemists. I The development of new strategies that 
allow for pyrrolidine functionalization is therefore of great interest. Recent work from our laboratory 
has explored the use of N-acylated cyclic enamines 1 as versatile precursors for the formation of 
functionalized nitrogen heterocycles. 2'3 The precursors 1 are readily accessible from the corresponding 
cyclic amines, lactams or their acyclic equivalents. Differential and regiocontrolled functionalization of 
the alkene in 1 is then possible through electrophilic attack at the 13-position and nucleophilic attack at 
the a-position. We are particularly interested in annulation and N-acyliminium ion reactions using 1. In 
this report we describe preliminary results using a two-step approach for the formation of the bicycles 3, 
via functionalization of 1 with 2 followed by free-radical cyclization, and the subsequent utility of 3 as 
N-acyliminium ion precursors (Scheme 1). 

Intramolecular radical cyclizations constitute a well-established strategy for the construction of five- 
and six-membered rings for carbocycles and heterocycles, 4 and usually proceed with moderate to high 
stereoselectivity. 5 Thus, while direct annulation reaction of 1 and 2 to 3 is clearly a challenging prospect, 
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Scheme 1. 

an indirect route using a free-radical cyclization should allow for the formation of the new ring in 3. 6,7 

N-acyl-2-pyrroline 18 was chosen as a representative precursor, and converted by iodoetherification to the 
free-radical precursor 5 (Table 1). 9 This was achieved by treatment of 1 and 2 with N-iodosuccinimide 
at low temperature, affording the trans-~x-alkoxy-13-iodopyrrolidines 5 in good yields, l0 

Free-radical cyclizations of 5 were accomplished using a sodium cyanoborohydride-catalytic tributyl- 
stannane system II to give the bicyclic products 3 (Table 1). J2 The reactions occurred in moderate to high 
yields, except for the 6-exo ring closures in which reduced products were also formed (Table 1, Entries 3 
and 8). The cyclizations were highly regiospecific with only the cis-fused 5-exo or 6-exo products being 
obtained, starting from the hexenyl and heptenyl radicals, respectively. For 5-exo-trig cyclizations onto 
alkene traps, cyclization proceeds preferentially through the lowest energy 'endo' (1,5-cis) transition 
state, leading to the cis-substituted bicyclo[3.3.0] systems (Table 1, Entries 5-7). 13'14 As the size of 
the substituent increases, the steric interaction in the endo position become larger and the selectivity 
diminishes. For 6-exo-trig ring closure, lower selectivity in favour of the trans product was observed 
(Table 1, Entry 8), resulting from cyclization through the 'exo' (1,6-trans) transition state, in accordance 
with similar examples. 5 

The C-O bond of the bicyclic pyrrolidine unit 3 can be used for further transformations. For 
instance, reduction of compound 3 using lithium aluminium hydride 15 gave the substituted pyrrolidine 
6 (Scheme 2). More significantly, 3 can be utilized as an N-acyliminium ion precursor in C-C bond- 
forming reactions,16 as exemplified by the reaction with allyltrimethylsilane/BF3 .OEt2 to give 7, which 
occurred with moderate diastereoselectivity in favour of the cis-isomer (Scheme 2). 16,17 

In summary, we have demonstrated that bicyclic pyrrolidines 3, can be obtained by radical cyclization 
of trans-cx-alkoxy-~-iodopyrrolidines 5 using a catalytic tributylstannane protocol. The radical precur- 
sors 5 are readily prepared by N-iodosuccinimide promoted iodoetherification of N-acyl-2-pyrrolines 1. 
The adducts 3 are useful precursors for further transformations to form substituted pyrrolidines. Ongoing 
studies to extend this methodology to the synthesis of more highly substituted N-heterocycles will be 
reported in due course. 
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Table 1 
Representa t ive  examples  for the convers ion of  N-acyl-2-pyrrol ines  1 into bicyclic pyrrol idines 3 

I ~e.. 

NIS, 2 "O NaCNBH3, n-Bu3SnH (cat.) '" 

R 1 -78 °C Rl/-..~O AIBN (cat.), t-BuOH, reflux R 

1 5 3 

Entry 5 Yield a 3 Yield a 
(step i) (%) (step ii) (%) 

Cbz Cbz 

Cbz Cbz 

,,,,,0,~ 75 Cbz 

Cbz 

~ ' " ' O  83 
Ac Ac 

71 

74 b 

46 c 

75 

Entry 5 Yield a 3 Yield a 
(step i) (%) (step ii) (%) 

(major isomer) 

5 "o" 65 

Cbz Cbz 

.I EtO = 

H -= 

'"0 

Cbz Cbz 

., P~ Ph... 
H i 

7 ~ , , , O  I 74 ~ H O  

Cbz Cbz 

Cbz Cbz 

92d 

82 d 

60 d 

30d,e 

d.r. f 

95:5 

80:20 

74:26 

60:40 

(a) Yield of pure product isolated by flash chromatography. Co) Isolated as a h l mixture of E,/Z- 

isomers. (e) The corresponding reduced product was also isolated in 37% yield. (d) Isolated as a 

mixture of  two diastercolsomers. (e) The corresponding reduced products were also isolated in 26% 

yield. (f) d.r. determined by IH NMR. 

~ O H  . 

I 
CH 3 6 

62 % , BF3"OEI2' CH2CI2 I 
Cbz 89 % Cbz 3 7 

Scheme 2. 

d.r. = 76 : 24 
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