Tetrahedron Letters 53 (2012) 5936-5938

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Temporary thio-derivatization in the synthesis of (+)-4-acetylbromoxone

Aisling O'Byrne^a, Steven O'Reilly^a, Catherine Tighe^a, Paul Evans^{a,*}, Laura Ciuffini^b, M. Gabriella Santoro^b

^a Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Dublin 4, Ireland ^b Department of Biology, University of Rome Tor Vergata, Via della Ricera Scientifica, 00133 Rome, Italy

ARTICLE INFO

ABSTRACT

Article history: Received 14 June 2012 Revised 13 August 2012 Accepted 24 August 2012 Available online 1 September 2012

Keywords: Epoxyquinol NFĸB Lipase Kinetic resolution

Epoxyquinols represent a class of natural products that have received interest based on both their chemical structures and biological activities (Fig. 1).¹ (+)-Bromoxone (**1**), a representative member of this family, was first discovered in 1987 from a marine acorn worm found off the coast of Hawaii.² It was isolated along with its more abundant 4-acetyl congener 2 and several structurally related brominated cyclohexenyl compounds. 4-Acetylbromoxone (2) was shown to be active against P388 leukaemia cells at a dose of 10 ng/mL^2 Since its first synthesis in 1994, bromoxone (1) has proven a popular synthetic target.³ In part, this is because the 2-bromo substituent represents an ideal handle for further functionalization enabling additional members of this epoxyquinol family to be prepared, perhaps most notably panepophenanthrin and hexacyclinol.⁴ In contrast, however, only the direct preparation of unnatural, (-)-2,⁵ has been detailed, although in the original isolation work it was stated that the standard acetylation of natural **1** gave 2^{2} . We have been involved in a project aimed at the synthesis of optically active cyclohexenone derivatives in relation to their inhibition of the transcription factor, nuclear factor kappa B (NFKB). To this end we have developed a means of resolving 4-hydroxycyclohexenone (**6**) via its S-benzyl adduct.⁶ This method enables the synthesis of both 4R- and 4S-4-tert-butyldimethyl-silvloxycyclohexenone (5) (95% to 99% enantiomeric excess) which have proven utility for the synthesis of various target compounds.⁷ In this communication we report a synthesis of (+)-1 and the first total synthesis of (+)-2 using our method for the preparation of (-)-4S-tert-butyldimethylsilyloxycyclohexenone (5).

A stereocontrolled synthesis of the marine natural products (+)-bromoxone (1) and (+)-4-acetylbromoxone (2) is reported. The sequence features the enzymatic kinetic resolution of 4-hydroxycyclohexenone (6) via its S-benzyl adduct. Thereafter, a base-mediated elimination–silylation generated an optically active (–)-4S-4-tert-butyldimethylsilyoxycyclohexenone (5), which then underwent diastereoselective epoxidation. Saegusa–Ito oxidation enabled formation of the corresponding α , β -unsaturated ketone 13. Bromination–elimination and subsequent removal of the silicon protecting group afforded (+)-bromoxone (1) which was converted into (+)-(4S,5R,6R)-4-acetoxy-2-bromo-5,6-epoxycyclohex-2-enone (2) [(+)-4-acetylbromoxone]. Using a luciferase gene reporter assay ED₅₀ for NF κ B inhibition of 9 μ M was determined.

© 2012 Elsevier Ltd. All rights reserved.

The route began with the four-step conversion of anisole into racemic 4-hydroxycyclohexenone (**6**).⁸ Compound **6** is not a practical substrate for enzyme-mediated resolution, presumably since the sp² and sp³ hybridized carbon atoms flanking the stereogenic centre are sterically too similar.⁹ In contrast, after a *cis*-diastereoselective conjugate addition using benzyl mercaptan (which seems to occur due to a thiolate–alcohol directed delivery) an efficient enzymatic kinetic resolution (EKR) of the racemic adduct **8** takes place using a commercially available resin supported form of *Can-dida antarctica* lipase B (CAL-B).⁶ Hence acetylated (–)-**10** can be readily separated from unreacted (+)-**8**, which was isolated in 95% ee [Chiralpak[®] IC; isocratic heptane/EtOH; 4:1 (1.0 mL/min); R_t (–)-**8** = 21.1 min; R_t (+)-**8** = 22.9 min]. In relation to this

Figure 1. 2-Functionalized epoxyquinol natural products and their proposed synthesis from 4-hydroxycyclohexenone (**6**).

^{*} Corresponding author. Tel.: +353 1 7162291; fax: +353 1 7162501. *E-mail address*: paul.evans@ucd.ie (P. Evans).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.08.101

sequence the persistent malodour associated with the use of benzyl mercaptan has been addressed by Node et al.¹⁰ They have shown that the introduction of substituents, particularly a 4-*tert*butyl group, onto the aromatic ring serves to reduce its odour. However, following the synthesis of the *tert*-butyl substituted adduct *cis*-**9**, inefficient resolution was observed using CAL-B, an unexpected finding explained presumably by an unfavourable interaction between the *tert*-butyl group and the lipase (Scheme 1).

Treatment of (+)-8 with TBSCl under basic conditions served to introduce both the silvloxy unit and to remove the steric buttress, thus, generating (-)-5 in reasonable yield (Scheme 2). Analysis of this material by chiral GC [Supelco AlphaDex 120; gradient 60–180 °C; R_t (–)-**5** = 21.5 min; R_t (+)-**5** = 21.7 min] indicated that no erosion of optical purity had taken place during this step. With a supply of optically active 5 in hand its epoxidation was next considered. Use of aqueous hydrogen peroxide with either sodium hydroxide or benzyltrimethylammonium hydroxide (Triton B)^{3d,11} gave good conversion. However, mixtures of the major trans-epoxide 12 and its minor cis-epoxide diastereoisomer (ca. 5:1) were encountered. In contrast tert-butyl hydroperoxide (TBHP) gave trans-epoxide (+)-12 as the sole isolable product in good yield (87%). The next task was introduction of the enone. The use of IBX at elevated temperature led to decomposition whereas a combination of IBX and NMO at room temperature led to poor conversion (12:13; 80:20).¹² Epoxide 12, however, was found to cleanly undergo trimethylsilylenol ether formation at $-78 \, ^{\circ}C^{3d}$ and this material was directly treated with stoichiometric amounts of Pd(OAc)₂.¹³ Although this Saegusa-Ito reaction gave clean samples of (+)-13, the yield for this process was modest which may be attributed to the formation of acetic acid during the reaction. Nevertheless, (+)-13 could then be converted into vinyl bromide (+)-14 on bromination followed by direct basemediated elimination.¹⁴

Removal of the *tert*-butyldimethylsilyloxy protecting group from this type of compound has been routinely performed using HF.¹⁵ In our hands, aqueous HF in acetonitrile^{15,16} led to a sluggish reaction during which decomposition proved to be an issue. Using Evans' protocol, a HF.pyridine solution in THF buffered with pyridine¹⁷ led to a more controlled and efficient deprotection and (+)-**1** could be isolated. Finally, (+)-**1** underwent rapid acetylation with acetic anhydride and pyridine in the presence of DMAP to give

i, Li, NH₃, *t*-BuOH, THF, -78 °C; ii, HClO₄, CHCl₃-H₂O (1:2), rt; iii, (a) *m*-CPBA, CH₂Cl₂, rt; (b) Al₂O₃ (basic), CH₂Cl₂, rt; iv, ArCH₂SH, Et₃N (0.1 equiv.), CH₂Cl₂, rt (de >95%); v, CAL-B, vinyl acetate, *i*-Pr₂O, rt

Scheme 1. Synthesis and resolution of racemic alcohol 8.

i, TBSCI, DBU, CH₂Cl₂, rt, 65%; ii, TBHP, Triton B, THF, rt, 87%; iii, (a) LDA, THF, -78 °C; then TMSCI, -78 °C to rt; (b) Pd(OAc)₂, MeCN, rt, 40%; iv, (a) Br₂, CH₂Cl₂, 0 °C; (b) Et₃N, CH₂Cl₂, 0 °C, 73%; v, HF·Py, THF, Py, rt; vi, Ac₂O, cat. DMAP, Py, rt, 56%

Scheme 2. Synthesis of (–)-5 and its use in the synthesis of (+)-1 and 2.

(+)-2. Purification was performed by standard flash chromatography on silica which gave a sample of (+)-2 in 56% yield from (+)-14 whose data¹⁸ were consistent with those reported.^{2,5} In relation to the purification of (+)-2 it should be noted that this compound does undergo gradual decomposition on silica over time.

The ability of **2** to inhibit the transcription factor NF κ B was determined with a gene reporter cell-based assay.¹⁹ It was found that at 9 μ M, phorbol challenged NF κ B activation was halved (ED₅₀ = 9 μ M). However, an alamar blue[®] cell viability assay demonstrated that at 100 μ M significant toxicity became evident (LD₅₀ = 100 μ M).

In summary, (+)-**2** was prepared in 9% overall yield from enantioenriched (+)-**8** in a sequence requiring five chromatographic purification operations. Based on the optical purity of (-)-**5** this material is 95% ee.

Acknowledgments

We would like to thank UCD for financial support including an Ad Astra scholarship (A.O'B.). Membership (P.E.) of COST action CM0804 is acknowledged.

References and notes

- 1. Marco-Contelles, J.; Molina, M. T.; Anjum, S. Chem. Rev. 2004, 104, 2857.
- Higa, T.; Okuda, R. K.; Severns, R. M.; Scheuer, P. J.; He, C.; Changfu, X.; Clardy, J. Tetrahedron 1987, 43, 1063.
- For syntheses of racemic and optically active 1, see: (a) Gautier, E. C. L.; Lewis, N. J.; McKillop, A.; Taylor, R. J. K. *Tetrahedron Lett.* **1994**, *35*, 8759; (b) Johnson, C. R.; Miller, M. W. J. Org. Chem. **1995**, *60*, 6674; (c) Block, O.; Klein, G.; Altenback, H. – J.; Brauer, D. J. J. Org. Chem. **2000**, *65*, 716; (d) Tachihara, T.; Kitahara, T. *Tetrahedron* **2003**, *59*, 1773; (e) Barros, M. T.; Matias, P. M.; Maycock, C. D.; Ventura, M. R. Org. Lett. **2003**, *5*, 4321; (f) Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Org. Lett. **2009**, *11*, 4290; (g) Labora, M.; Pandolfi, E. M.; Schapiro, V. *Tetrahedron: Asymmetry* **2010**, *21*, 153; (h) Jin, M. Y.; Hwang, G. – S.; Chae, H. I.; Jung, S. H.; Ryu, D. H. Bull. Korean Chem. Soc. **2010**, *31*, 727.
- (a) Comméiras, L.; Moses, J. E.; Adlington, R. M.; Baldwin, J. E.; Cowley, A. R.; Baker, C. M.; Albrecht, B.; Grant, G. H. *Tetrahedron* **2006**, *62*, 9892; (b) Porco, J. A., Jr.; Su, S.; Lei, X.; Bardhan, S.; Rychnovsky, S. D. Angew. Chem., Int. Ed. **2006**, 45, 5790.
- 5. Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Aust. J. Chem. 2009, 62, 1639.
- O'Byrne, A.; Murray, C.; Keegan, D.; Palacio, C.; Evans, P.; Morgan, B. S. Org. Biomol. Chem. 2010, 8, 539.
- (a) Danishefsky, S. J.; Simonea, B. J. Am. Chem. Soc. **1989**, 111, 2599; (b) Barros, M. T.; Maycock, C. D.; Ventura, M. R. J. Chem. Soc., Perkin Trans. 1 **2001**, 166; (c) Yamazaki, N.; Kusanagi, T.; Kibayashi, C. Tetrahedron Lett. **2004**, 456, 5609; (d) Williams, D. R.; Kammler, D. C.; Donnell, A. F.; Goundry, W. R. F. Angew. Chem., Int. Ed. **2005**, 44, 6715; (e) Chiba, S.; Kitamura, M.; Narasaka, K.J. Am. Chem. Soc.

2006, *128*, 6931; (f) Wilson, E. M.; Trauner, D. Org. Lett. **2007**, *9*, 1327; (g) Nicolaou, K. C.; Li, H.; Nold, A. L.; Pappo, D.; Lenzen, A. J. Am. Chem. Soc. **2007**, *129*, 10356; (h) Edwards, M. G.; Kenworthy, M. N.; Kitson, R. R. A.; Scott, M. S.; Taylor, R. J. K. Angew. Chem., Int. Ed. **1935**, *2008*, 47; (i) Chen, C. –H.; Chen, Y. – K.; Sha, C. – K. Org. Lett. **2010**, *12*, 1377; (j) Arthurs, C. L.; Morris, G. A.; Piacenti, M.; Pritchard, R. G.; Stratford, I. J.; Tatic, T.; Whitehead, R. C.; Williams, K. F.; Wind, N. S. Tetrahedron **2010**, *66*, 9049.

- Compound 6 was prepared according to: Pour, M.; Negishi, E. Tetrahedron Lett. 1996, 37, 4679.
- For a related EKR, facilitated by a temporary sulfide buttress, see: Toribio, G.; Marjanet, G.; Alibés, R.; de March, P.; Font, J.; Bayón, P.; Figueredo, M. *Eur. J. Org. Chem.* **2011**, 1534.
- (a) Node, M.; Kumar, K.; Nishide, K.; Ohsugi, S.; Miyamoto, T. *Tetrahedron Lett.* 2001, 42, 9207; For a recent application of this thiol, see: (b) Cronin, L.; Manoni, F.; O'Connor, C. J.; Connon, S. J. *Angew. Chem., Int. Ed.* 2010, 49, 3045.
- (a) Evarts, J. B., Jr.; Fuchs, P. L. *Tetrahedron Lett.* **2001**, *42*, 3673; (b) Rodeschini, V.; Van de Weghe, P.; Salomon, E.; Tarnus, C.; Eustache, J. J. Org. Chem. **2005**, *70*, 2409.
- (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y. -L. J. Am. Chem. Soc. 2002, 124, 2245; (b) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993.

- 13. Uchida, K.; Yokoshima, S.; Kan, T.; Fukuyama, T. Org. Lett. 2006, 8, 5311.
- 14. Zhang, J. -T.; Qi, X. -L.; Chen, J.; Li, B. -S.; Zhou, Y. -B.; Cao, X. P. J. Org. Chem. 2011, 76, 3946.
- (a) Wipf, P.; Kim, Y. J. Org. Chem. **1994**, 59, 3518; (b) Kamikubo, T.; Ogasawara, K. Tetrahedron Lett. **1995**, 36, 1685; (c) Shimizu, H.; Okamura, H.; Yamashita, N.; Iwagawa, T.; Nakatani, M. Tetrahedron Lett. **2001**, 42, 8649.
- Newton, R. F.; Reynolds, D. P.; Finch, M. A. W.; Kelly, D. R.; Roberts, S. M. Tetrahedron Lett. 1979, 20, 3981.
- 17. Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001.
- 18. Data for (+) 2: $[\alpha]_D^{2+}$ 212 (c = 0.2, CHCl₃) {Lit. (+)-2: $[\alpha]_D^{19}$ +265 (c = 0.12, CHCl₃) Ref. 2; (-)-2 $[\alpha]_D$ -278.2 (c = 2.55, CHCl₃) Ref. 5]; δ_H (600 MHz, CDCl₃) 2.15 (3H, s, CH₃), 3.69 (1H, dd, J = 1.0, 3.5 Hz, CH), 3.76-3.78 (1H, m, CH), 5.75 (1H, d, J = 5.5 Hz, CH), 7.06 (1H, dd, J = 2.5, 5.5 Hz, CH); δ_C (150 MHz, CDCl₃) 20.6, 53.0, 55.0, 65.4, 125.6, 139.6, 169.5, 185.9; m/z (ES⁻) found 246.9427 (M-H⁺), C₈H₆O₄Br⁸¹ requires 246.9429 (-0.8 ppm).
- Bickley, J. F.; Ciucci, A.; Evans, P.; Roberts, S. M.; Ross, N.; Santoro, M. G. Bioorg. Med. Chem. 2004, 12, 3221.