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Estrogen receptor ligands. Part 7: Dihydrobenzoxathiin
SERAMs with bicyclic amine side chains
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Abstract—A series of benzoxathiin SERAMs with bicyclic amine side chains was prepared. Minor modifications in the side chain
resulted in significant effects on biological activity, especially in uterine tissue.
� 2004 Elsevier Ltd. All rights reserved.
The clinical significance of the selective estrogen recep-
tor modulators (SERMs) is well documented.1 The re-
cent discovery of a second estrogen receptor subtype2

prompted interest in the development of receptor sub-
type-selective SERMS.3 Previous reports from this lab-
oratory have reported the discovery of benzoxathiins
(e.g., 1) as a novel class of Selective Estrogen Receptor
Alpha Modulators (SERAMs).4
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Although benzoxathiin 1 has excellent potency and
selectivity for ERa, it was judged to be unacceptably
prone to oxidative metabolism with subsequent forma-
tion of covalent protein adducts. We hypothesized that
an iminium ion resulting from oxidation of the piper-
idine residue present in the side chain of 1 might be a
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significant contributor to the formation of covalent
adducts. We therefore examined alternative side chains
for 1 with the goal of finding a piperidine replacement
that would maintain potency and selectivity for ERa
while reducing the formation of covalent protein
adducts.

To date, there are few reports on the systematic explo-
ration of SERM side chain SAR.5 We decided to target
side chains that should be less susceptible to oxidation
for mechanistic reasons. Bicyclic amine side chains such
as those present in compounds 2–15 should be less
readily oxidized than the piperidine residue of 1 due to
steric constraints. Furthermore, the amines in 2–9 and
15, wherein the nitrogen atom is attached to a bridge-
head carbon or is part of an azetidine ring, should be
much less susceptible to iminium ion formation upon
oxidation. We therefore targeted analogs 2–15 for syn-
thesis. The requisite aminoalcohol side chain synthons
2a–15a were prepared by a variety of methods as sum-
marized below (Table 1 and Schemes 1–5).6

The first method, illustrated by the preparation of
bicyclic amine 2a, involved a-chloroethyl chloroformate
mediated dealkylation7 of a tertiary amine, such as 16,
followed by acylation of the resulting secondary amine,
for example, 29, with acetoxyacetyl chloride and LiAlH4

reduction to afford the desired hydroxyethyl amine.
Amines 2a–4a were prepared by this route although only
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Scheme 2. Reagents and conditions: (i) 2-bromoethanol, K2CO3,

MeCN, reflux.

Table 1. Side chain preparation summary and biodata

# R ER Binding (IC50, nM)10 Cyanide
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Scheme 1. Reagents and conditions: (i) a-chloroethyl chloroformate,
Et3N, CH2Cl2; (ii) MeOH; (iii) acetoxyacetyl chloride, Et3N, CH2Cl2;

(iv) LiAlH4, Et2O.
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Scheme 3. Reagents and conditions: (i) acetoxyacetyl chloride, Et3N;

(ii) Pd(OAc)2, CH2N2; (iii) chiral HPLC (see Ref. 8); (iv) LiAlH4,

Et2O.
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Scheme 6. Reagents and conditions: (i) 1a–15a, DIAD, PPh3, THF;

(ii) Pd, HCO2NH4, 7:2:1 EtOH/EtOAc/H2O; (iii) n-Bu4NF, AcOH,

THF.
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the last two steps were used for 4a since the des-methyl
starting material 18 was prepared by a different route.6

An alternative synthesis involved alkylation of the
appropriate secondary amine, for example, 20, with 2-
bromoethanol (Scheme 2). Amines 5a–7a were prepared
via this method.

The 2,3-fused cyclopropylpyrrolidine 30 was prepared
by acylation of 2,3-dihydropyrrole 226 with acetoxy-
acetyl chloride (Scheme 3) followed by cyclopropana-
tion. Chiral HPLC separation of the enantiomers of 308

followed by LiAlH4 reduction gave the desired enan-
tiomeric side chains 8a and 9a.9

Synthesis of several of the fused bicyclic amines began
with conversion of a commercially available anhydride,
for example, 23, to an imide, for example, 31, by
sequential reaction with ethanolamine and acetic anhy-
dride (Scheme 4). Subsequent reduction with LiAlH4

afforded the desired side chain, for example, 10a.
Alternatively, hydroxyethylimide formation could be
achieved by reaction of the anhydride and ethanolamine
with azeotropic removal of water. The resulting hy-
droxyethylimide was then reduced with LiAlH4 to afford
the side chain. Amines 10a–14a were prepared using this
method.

The spiroazetidine 15a was prepared from the known
amino-alcohol 286 (Scheme 5). Reaction of 28 with
p-toluenesulfonyl chloride to form the chloro-tosylate 32
followed by cyclization afforded spiroazetidine 33.
Deprotection with Red-Al, acylation with acetoxy-
acetyl chloride, and reduction completed the synthesis of
15a.
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Scheme 4. Reagents and conditions: (i) ethanolamine; (ii) acetic

anhydride; (iii) LiAlH4, Et2O.
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Scheme 5. Reagents and conditions: (i) pTsCl; (ii) NaH, DMF; (iii)

Red-Al; (iv) acetoxyacetyl chloride, Et3N; (v) LiAlH4, Et2O.
Synthesis of the final products proceeded via attachment
of the hydroxyethylamine side chains to the ben-
zoxathiin core (þ)-34 using the previously reported
procedure4a;c followed by deprotection (Scheme 6).

All of the novel benzoxathiin analogs (2–15) retained the
excellent ERa potency exhibited by the monocyclic
analog 1 (Table 1) in an in vitro ER binding assay.10

Although the magnitude of receptor subtype selectivity
(ERb/ERa ratio) varied considerably (from 33� to
194�), all of the novel analogs remained alpha selective.
In addition to excellent binding, most of the new ana-
logs (2–12) retained antagonist activity in the MCF-7
proliferation assay11 that matched or exceeded the
activity of 1. Only analog 14 showed a substantial de-
crease in MCF-7 antagonist activity. As expected, ana-
logs with bicyclic amine side chains wherein the nitrogen
atom is attached to a bridgehead carbon (2–9) were less
prone to oxidative metabolism, as measured by their
failure to form a detectable cyanide adduct.12 However,
analogs 2–7 were also surprisingly potent agonists in
uterine tissue,13 in contrast to the uterine antagonism
exhibited by 1. Apparently, the larger bicyclic side chain
does not allow the receptor–ligand complex to assume
an antagonist conformation. Interestingly, with the
exception of 9, all of the fused bicyclic analogs 8–13 that
were evaluated in the uterine assay were found to be
antagonists. Unfortunately, with the exception of
bridgehead nitrogen analogs 8 and 9, the fused bicyclic
analogs all formed cyanide adducts. The differential
uterine activity of diastereomers 8 and 9 was especially
noteworthy and allowed tentative assignment of their
absolute stereochemistry.9

Overall, the fused cyclopropyl analog 10 was the
most interesting of the novel analogs but was not
pursued further due to its cyanide adduct forma-
tion. However, its excellent potency, subtype selectivity,
and uterine profile encouraged us to continue the search
for a piperidine replacement and also suggested a
direction for these efforts. Further results in this area
will be reported in future publications from this labo-
ratory.
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