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Direct Dehydroxytrifluoromethylthiolation of Alcohols Using Silver(I)
Trifluoromethanethiolate and Tetra-n-butylammonium Iodide**
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Abstract: An unprecedented reaction for the direct trifluoro-
methylthiolation and fluorination of alkyl alcohols using
AgSCF; and nBu,NI has been developed. The trifluoro-
methylthiolated compounds and alkyl fluorides were selec-
tively formed by changing the ratio of AgSCFynBu,NI. This
protocol is tolerant of different functional groups and might be
applicable to late-stage trifluoromethylthiolation of alcohols.

The development of new fluorination and fluoroalkylation
methods is currently an active area of research!!! because
fluorine-containing compounds are widely used in pharma-
ceuticals, agrochemicals, and materials.”! However, most of
the synthetic methods are focused on the introduction of
fluorinated groups onto aromatic substrates. In contrast, few
breakthroughs have been made in the methodology for the
preparation of fluorine-containing aliphatic compounds.
Thus, the development of new methods for the introduction
of fluorinated groups into aliphatic molecules, especially from
the simple and easily available materials, is highly desirable.

The trifluoromethanesulfenyl group (CF;S) has attracted
special interest because of its strong electron-withdrawing
power and extremely high lipophilicity.”! Especially during
the past several years, CF;S chemistry has experienced
a renewal.! The development of new trifluoromethylthiolat-
ing agents,”! as well as new trifluoromethythiolation reac-
tions,® have attracted attention. Surprisingly, little attention
was paid to the transformation of alcohols into the corre-
sponding trifluoromethyl sulfides. In 1994, Kolomeitsev and
co-workers developed a two-step procedure for the prepara-
tion of trifluoromethyl sulfides from alcohols via a phosphite
intermediate using the toxic and gaseous reagent CF;SSCF;
(Scheme 1a)." Very recently, Rueping and co-workers
reported a direct trifluoromethylthiolation of benzylic and
allylic alcohols with CuSCF; in the presence of stoichiometric
amounts of BFyEt,0 (Scheme 1b).®l This method suf-
fers from narrow substrate scope and poor functional-
group tolerance because of the strong acidic conditions. In
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Scheme 1. Different strategies for dehydroxytrifluoromethylthiolation.

continuation of our research interest in trifluoromethylthio-
lation,®>¢&n2] we herein report a new strategy for the direct
dehydroxytrifluoromethylthiolation of alcohols (Scheme 1c).
In this protocol, the readily prepared and stable AgSCF; is
used as the trifluoromethylthiolating agent and the mild
reagent nBu,NI was chosen for promoting the transforma-
tion.

The idea of this work came from the fact that trifluoro-
methylthiol and the corresponding anion are unstable.”’ Tt
was reported that there is an equilibrium between trifluoro-
methanethiolate with carbonothioic difluoride and fluoride
anion (Scheme 2 a)."! Normally, the trifluoromethanethiolate
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Scheme 2. Our new strategy.

is associated with a metal, such as Hg","!) Ag! " or Cu',l® to
stabilize the CF;S group. Among these stable sources of
trifluoromethanethiolate, AgSCF; is readily prepared and
widely used for preparation of other trifluoromethylthiolation
agents (such as CuSCF,;!") and trifluoromethylthiolation
reactions.”)’. We wondered if it was possible to apply this
unique property of trifluoromethanethiolate to develop new
reactions, such as direct dehydroxytrifluoromethylthiolation
of alcohols. The proposed reaction mechanism is shown in
Scheme 2b. The activation of AgSCF; gives the more active
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trifluoromethanethiolate, which subsequently decomposes
into carbonothioic difluoride and fluoride anion. Then the
alcohol reacts with in situ generated carbonothioic difluoride
to generate the carbonofluoridothioate intermediate, which
subsequently undergoes nucleophilic substitution by
trifluoromethanethiolate to provide the trifluoromethylthio-
lated compound.

In 2000, Adams and Clark reported that treatment of
AgSCF; with nBu,NI led the formation of active source of
trifluoromethanethiolate.'* Based on this work, we started to
investigate the dehydroxytrifluoromethylthiolation of alco-
hols with AgSCF;, and 4-phenylbutan-2-ol (1a) was used as
the model substrate. Initially, the solvent and temperature
were screened (Table 1, entries 1-6). Toluene was found

Table 1: Optimization of reaction conditions.

OH SCFs F
AgSCF; (x equiv)
activator (y equiv)
©/\)\ solvent W + @M
1a 7.8h 2a 3a
Entry  Activator x y Solvent T[°Cl  Yield [%]"
2a 3a
1 nBu,NI 1.5 20 toluene RT n.d. n.d.
2 nBu,NI 1.5 2.0 toluene 50 trace 3
3 nBu,NI 1.5 20 toluene 80 6 29
4 nBu,NI 1.5 2.0 toluene 100 7 32
5 nBu,NI 1.5 20 CH,CICH\CI 80 trace  n.d.
6 nBu,NI 1.5 20 DMSO 80 trace  n.d.
7 nBu,NI 1.5 0 toluene 80 n.d. n.d.
8 nBu,NI 1.5 1.5 toluene 80 2 36
9 nBu,NI 1.5 3.0 toluene 80 19 20
10 nBu,NI 1.5 45 toluene 80 35 15
1 nBu,NI 1.5 6.0 toluene 80 36 16
12 nBu,NI 3.0 9.0 toluene 80 62 trace
13 nBu,NBr 3.0 9.0 toluene 30 48 26
14 nBu,NCl 3.0 9.0 toluene 80 n.d. 36
15 Kl 3.0 9.0 toluene 80 n.d. 10
16 nBu,NI 3.0 3.0 toluene 30 4 52

[a] Yields determined by '°F NMR spectroscopy using trifluoromethoxy-
benzene as an internal standard.

better than other solvents and the ideal temperature was 80 °C
(entry 3). However, the trifluoromethylthiolated product 2a
was produced in low yield and the alkyl fluoride 3a was
formed as the major byproduct. To increase the yield of 2a,
we decided to change the nBu,NI/AgSCF; ratio. No reaction
occurred in the absence of nBu,NI (entry 7). To our delight,
2a became major when the nBu,NI/AgSCF; ratio was
changed into 3:1 (entries 8-11). The yield of 2a was further
improved to 62% by increasing both of the amount of
AgSCF; and nBu,NI (entry 12). The additive nBu,NI was
crucial to the reaction yield. Lower yield was found when
nBu,NBr was added, and 2a was not detected when nBu,NCI
and KI were used as activator (entries 13-15). It was note-
worthy that 3a was formed in 52% yield when using 3.0
equivalents of AgSCF; and nBu,NI (entry 16).

With the optimized reaction conditions in hand, we next
investigated the substrate scope. Various primary alcohols,
including alkyl, allyl, propargyl, and benzyl alcohols, were

nBugNI (9.0 equiv)
_—

RCH,0OH + AgSCF; RCH,SCF3
X toluene, 80°C, 10 h
1a--ac 3.0 equiv 2
SCF, Y\/\(VSCQ
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tBuO/gO tBuO/g
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Scheme 3. Dehydroxytrifluoromethylthiolation of primary alcohols.
Reaction conditions: 1 (0.4 mmol), AgSCF; (1.2 mmol), nBu,NI

(3.6 mmol), toluene (4.0 mL), 80°C, 10 h. Yield is that of the isolated
product. [a] 120°C. [b] Additional KI (2.4 mmol) was added. [c] 50°C,
additional Kl (2.4 mmol) was added. [d] 100°C, nBu,NI (1.2 mmol).
Fmoc = 9-fluorenylmethoxycarbonyl.

converted into the corresponding trifluoromethyl sulfides in
moderate to excellent yield (Scheme 3). In general, higher
reaction temperature was needed for long-chain alkyl alco-
hols and higher yields were obtained for benzyl alcohols.
Substrates bearing electron-donating and electron-withdraw-
ing groups, such as methoxy, aryl, carbonyl, cyano, nitro,
bromo, and iodo, proceeded well. Esters, amides, and
a number of heterocycles, such as piperidine (1d), pyrrolidine
(1e), pyridine (1y), quinoline (1z), thiazole (laa) and
benzo[b]thiophene (1ab), were well tolerated. It is note-
worthy that the dehydroxytrifluoromethylthiolation of Ide-
benone, a drug for the treatment of Alzheimer’s disease, was
successful and gave 2f in 50% yield. The protected L-
homoserine 1g was compatible with the reaction conditions,
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thus affording the corresponding trifluoromethyl sulfide 2g in
moderate yield. The intermediate of Rosuvastatin, a member
of the drug class of statins, also could be converted into the
trifluoromethylthiolated product 2ac in 93 % yield.

In the case of secondary alcohols, the elimination reaction
easily occurred to produce olefins as the major byproducts.
Thus, the addition of another activator, KI, and higher
reaction temperature were needed to achieve moderate yields
(Scheme 4). Esters, amides, and heterocycles were tolerated

nBuNI (12.0 equiv)

R'R’CHOH + AgSCF, —80equv) R1R2CHSCF5
toluene, 120 °C, 10 h

1 4.0 equiv ' ' 2

SCF, SCF, SCF,4

splicpleoles

2ad, 60% 2ae, 57% 2af, 55% 2ag 55%
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CQ OO OF
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SCF3 SCF3
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SCF3

MeO. l
NMe

2ap, 80% (d.r. = 1:1)

tBuO
2a|

48%
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Scheme 4. Dehydroxytrifluoromethylthiolation of secondary alcohols.
Reaction conditions: 1 (0.4 mmol), AgSCF; (1.6 mmol), nBu,NI

(4.8 mmol), KI (3.2 mmol), toluene (4.0 mL), 120°C, 10 h. Yield is that
of isolated product.

under the reaction conditions. The sterically hindered alco-
hols 1ai and 1aj were also effective, although some starting of
the materials were not converted. Tertiary alcohols were not
suitable substrates for this transformation. To further dem-
onstrate the utility of this method, the dehydroxytrifluoro-
methylthiolation of complex compounds were attempted.
When epiandrosterone (1ao), a steroid hormone with weak
androgenic activity, was submitted to the optimal reaction
conditions the desired product 2 ae was obtained in 50 % yield
with 16:9 diastereoselectivity. The reaction of galantamine
(1ap), a drug used to treat Alzheimer’s disease and dementia,
proceeded well and afforded the trifluoromethylthiolated
product 2ap in 80 % yield with 1:1 diastereoselectivity. The
above results show that this protocol might be applicable to
late-stage  dehydroxytrifluoromethylthiolation of some
medicinally relevant compounds.
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As shown the entry 16 of Table 1, this protocol could also
be used for the direct conversion of the hydroxy group into
fluorine. When the ratio of substrate/AgSCFs;/nBu,NI was
1:3:3, both the primary alcohol 1b and secondary alcohol 1aq
were transformed into the corresponding alkyl fluorides in
moderate yields (Scheme 5). This method is a rare example of
using a trifluoromethylthiolating agent for a fluorination
reaction.

To gain insight of the reaction mechanism, a carbono-
fluoridothioate intermediate was prepared (Scheme 6). Treat-

AgSCF; (3.0 equiv)

3 "OH  nBuyNI (3.0 equiv) 3 F
B ———
DMA, 120°C, 8 h
1b 3b, 42%
OH AgSCF (3.0 equiv) F
/\(v))\(v)/\ nBuyNI (3.0 equiv) /\(\/))\(v)/\
5 4 —_————> 5 4
1aq toluene, 120 °C, 8 h 3c. 56%

Scheme 5. Dehydroxyfluorination of alkyl alcohols 1b and 1aq. DMA=
dimethylacetamide.

SCF,
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AgSCF; (2.0 equiv)
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toluene, 120 °C, 5 h

AgSCF; (1.5 equiv) )j\
BuyNI (2.0 equiv) Se) F
toluene, RT, 10 h

©/\M3AOH

1b 4, 84%

NEt; (2.0 equiv)
toluene, 140°C, 5 h
3 F

3b, 72%

Scheme 6. Investigation of the reaction mechanism.

ment of 1b with AgSCF; and KI gave the carbonofluorido-
thioate 4 in high yield. The nucleophilic substitution of 4 with
in situ generated trifluoromethanethiolate gave the trifluor-
omethylthiolated product 2b in 96 % yield. In the absence of
nucleophiles, the elimination of carbonyl sulfide from 4 gave
the alkyl fluoride 3b in 72% yield."™™ These results proved
that the carbonofluoridothioate intermediate is probably
involved in this protocol (Scheme 2b).

In conclusion, we have designed and accomplished an
unusual reaction process for tunable transformation of
alcohols into either trifluoromethylthiolated products or
alkyl fluorides. The chemoselectivity was controlled only by
changing the amount of the activator used. It is well known
that trifluoromethylthiolate is unstable and decomposes into
carbonothioic difluoride and the fluoride anion. We have
successfully used this reactivity for the direct trifluorome-
thylthiolation of alcohols. This investigation is an excellent
example of the use of a side reaction for the development of
new reactions in organic chemistry. The wide application of
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this method to various alkyl alcohols containing different
functional groups and heterocycles will encourage organic
chemists to develop new methodologies and to synthesize
more fluorinated compounds.

Experimental Section

General procedure for dehydroxytrifluoromethylthiolation: AgSCF;
(250.7 mg, 1.2 mmol, 3.0 equiv) and nBu,NI (1329.7 mg, 3.6 mmol,
9.0 equiv) were combined in a Schlenk tube. The tube was mounted
with a reflux condenser and backfilled with N, (this process was
repeated three times), then toluene (4.0 mL) and alcohol 1 (0.4 mmol,
1.0 equiv) were added via syringe. The tube was placed into a pre-
heated oil bath at 80 °C with vigorous stirring. After 10 h, the reaction
mixture was cooled to room temperature and filtered through a plug
of silica (eluted with EtOAc). The filtrate was concentrated, and the
product was purified by column chromatography on silica gel (eluent:
hexane) to give product 2.
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Direct
Dehydroxytrifluoromethylthiolation of
Alcohols Using Silver(l)
Trifluoromethanethiolate and Tetra-n-
butylammonium lodide

Angew. Chem. Int. Ed. 2014, 53, 1—5
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AgSCF3; (3.0 equiv)
R-OH nBugNI (9.0 equiv) R-SCF,
toluene 42 |
R = alkyl examples

Silver bullet: A new strategy has been
developed for the direct trifluoro-
methylthiolation of alkyl alcohols using
AgSCF; and nBu,NI. This protocol does
not require the activation of alcohols in

advance. A variety of alkyl alcohols bear-

30-93% yield

ing different functional groups were
transformed into the corresponding alkyl
trifluoromethyl sulfides in moderate to
good yields.
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