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Scheme 1. Synthetic routes to phosphinates utilizing alcohols.
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Scheme 2. Esterification of 1-hydroxy-3-methyl-3-phospholene 1-oxide (
presence of T3P�.
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1-Hydroxy-phospholene 1-oxides (1 and 3) and 1-hydroxy-phospholane oxides (5 and 7) undergo fast
and efficient esterification with a series of alcohols, at room temperature, in the presence of 1.1 equiv
of propylphosphonic anhydride (T3P�).

� 2013 Elsevier Ltd. All rights reserved.
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Phosphinates are usually synthesized by the reaction of phos-
phinic chlorides with alcohols (Scheme 1A).1 This method works
well, but it utilizes rather expensive chlorides and cannot be re-
garded as being environmentally friendly due to the formation of
hydrochloric acid. It is well-known that phosphinic acids do not
undergo direct esterification with alcohols on conventional heating
(Scheme 1B). However, under microwave irradiation, direct ester-
ification of phosphinic acids does take place (Scheme 1C).2

Although these esterifications are ‘green’ from the point of view
of the starting materials, the reaction temperature of ca. 200 �C is
a disadvantage.

There are alternative possibilities for the esterification of phos-
phinic acids. Such reactions require specialized reagents, such as
orthoesters,3a chloroformates,3b,c and orthosilicates.3d Direct ester-
ification of phosphinic acids has not been reported, but phenyl-
phosphinodithioates were prepared by heating PhP(S)(SH)H with
primary alcohols.3e

The propylphosphonic anhydride (T3P�) reagent is a powerful
coupling (dehydrating/condensing) agent applied in a wide range
of reactions,4 including peptide syntheses,5 polyamidations,6 ami-
dations,7 and esterifications,8 as examples of only acylation reac-
tions among the great variety of the reactions studied.
P

O
P
O

P
O

PrO

O

Pr

O

Pr T3P®
1) in the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tetlet.2013.08.082&domain=pdf
http://dx.doi.org/10.1016/j.tetlet.2013.08.082
mailto:gkeglevich@mail.bme.hu
http://dx.doi.org/10.1016/j.tetlet.2013.08.082
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


Table 1
Esterification of 2-hydroxy-3-methyl-3-phospholene 1-oxide (1)

Entry ROH Time (h) Yield (%) 31P NMR (121.5 MHz, CDCl3) dLit
P ½MþH�þfound ½Mþ H�þrequires

1 MeOH 0.5 80 (2a) 76.8 77.011a 147.0575 147.0575
2 EtOH 0.5 77 (2b) 74.7 74.711b 161.0730 161.0731
3 PrOH 0.5 80 (2c) 72.5 74.511b 175.0888 175.0888
4 iPrOH 3 76 (2d) 73.0 73.211b 175.0888 175.0888
5 BuOH 0.5 82 (2e) 74.7 74.62a 189.1045 189.1044
6 iBuOH 0.5 86 (2f)11c 74.6 – 189.1045 189.1044
7 sBuOH 3 88 (2g) 73.23 (50%)

73.24 (50%)
8 PentOH 0.5 94 (2h) 74.8 75.42d 203.1200 203.1201
9 iPentOH 0.5 91 (2i) 74.7 74.72d 203.1201 203.1201
10 3-Pentyl alcohol 3 79 (2j) 73.6 — 203.1201 203.1201
11 cHexylOH 2 89 (2k) 73.1 — 215.1201 215.1201
12 BnOH 0.5 95 (2l) 75.9 76.011b 223.0889 223.0888
13 2-Phenylethanol 0.5 90 (2m)11c 75.5 — 237.1044 237.1044
14 2-(1-Naphthyl)ethanol 0.5 93 (2n) 75.7 — 287.1201 287.1201
15 Menthol 3 95 (2o) 73.32 (50%) 73.28 (50%) 271.1828 271.1827

73.36 (50%) 73.33 (50%)11d
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Scheme 3. Esterification of 1-hydroxy-3,4-dimethyl-3-phospholene 1-oxide (3) in
the presence of T3P�.
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Scheme 4. Esterification of 1-hydroxy-3-methyl-phospholane 1-oxide (5) in the
presence of T3P�.
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We herein describe the esterification of cyclic phosphinic acids
with alcohols in the presence of the T3P� reagent.

Initially, the model compound, 1-hydroxy-3-methyl-3-phos-
pholene 1-oxide (1),9 was reacted with 1.1 equiv of T3P� in ethyl
acetate at 25 �C for 10 min. Next, 1.5–3 equiv of an alcohol was
added and the mixture was stirred further. With simple alcohols,
such as methanol, ethanol, propanol, butanol, i-butanol, pentanol,
i-pentanol, benzyl alcohol, 2-phenylethanol, and 2-(1-naph-
thyl)ethanol, the esterification was complete after 30 min, while
the use of sterically hindered alcohols (i-propanol, sec-butanol,
3-pentyl alcohol, cyclohexanol, and menthol) required longer
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Scheme 5. Esterification of 1-hydroxy-3,4-dimethyl-p
reaction times, typically three hours. With tert-butanol there was
no reaction at all. The corresponding phosphinates 2a–o where ob-
tained in yields of 76–95% after flash column chromatography
(Scheme 2, Table 1).10 Phosphinates 2g and 2o were obtained as
1:1 mixtures of two isomers.

The T3P� promoted esterification was then extended to 1-hy-
droxy-3,4-dimethyl-3-phospholene 1-oxide (3),9 and 1-hydroxy-
3-methyl- and 1-hydroxy-3,4-dimethyl-phospholane 1-oxides (5
and 7)2b with butanol as the alcohol component. Carrying out the
esterifications as described for the 1?2 transformation, phosphi-
nates 4, 6, and 8 were obtained in yields of 81%, 70%, and 75%,
respectively (Schemes 3–5). 1-Butoxy-3-methyl-phospholane 1-
oxide (6) was obtained as a mixture of two isomers (on the basis
of GC–MS), while the dimethyl analogue 8 was isolated as a mix-
ture of three isomers. The isomers 8A, 8B1, and 8B2 were identified
on the basis of our earlier study.2b The major isomer (8A) was sep-
arated by column chromatography in a yield of 42%.

The known phosphinates (2a–e, 2h, 2i, 2l, 2o, 4, 6, and 8) were
identified by 31P NMR spectroscopy and HRMS (Tables 1 and 2),
while the new products (2f, 2g, 2j, 2k, 2m, and 2n) were also char-
acterized by 13C and 1H NMR spectroscopy.

The role of the T3P� reagent is to form a reactive anhydride type
intermediate (9) from the phosphinic acid, which may then under-
go reaction with the alcohol at room temperature. The by-product
HOP(O)(Pr)OP(O)(Pr)OP(O)(Pr)OH formed was removed by extrac-
tion from the organic phase with water.

9
P(O)OP(O)(Pr)OP(O)(Pr)OP(O)(Pr)OH

The T3P�-mediated reaction of phosphinic acids with alcohols
is obviously of more general value.
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Table 2
Selected spectral data for phosphinates 4, 6, and 8

Product 31P NMR (121.5 MHz, CDCl3) d2b
P ½Mþ H�þfound ½Mþ H�þrequires

4 68.5 68.6 203.1203 203.1201
6 79.4 (broad) 79.40 (50%)

79.38 (50%)
191.1204 191.1201

8A 72.4 (92%) 72.5 (60%) 205.1350 205.1357
8B1 78.3 (7%) 78.4 (20%)
8B2 79.9 (5%) 79.0 (20%)
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In summary, a mild and efficient esterification of a series of five-
membered cyclic phosphinic acids was elaborated utilizing the
T3P� reagent.
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Spectral data for the additional products (4, 6 and 8) are listed in Table 2.
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