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ABSTRACT: Tetrahydrothiophene-functionalized N,S-heterocy-
clic carbene palladium(II) complexes are synthesized through an
unexpected rearrangement that proceeds with palladium(II)
trifluoroacetate but not with palladium(II) acetate, palladium(II)
bromide, or palladium(II) chloride. A series of these complexes
were isolated and characterized by X-ray crystallography. The
mechanism of formation of these [3.2.1]palladabicycles was
explored, and the catalytic capabilities of these complexes were demonstrated in representative C−C coupling reactions.

■ INTRODUCTION

The past few decades have witnessed a surge of interest in
carbenes as spectator ligands in transition-metal catalysis.1 An
increasingly vast collection of ligands, including N-heterocylic
carbenes (NHCs),2 cyclic (alkyl)- and (aryl)(amino)carbenes
(CAACs),3 and abnormal NHCs (aNHCs),4 have been
developed that collectively grant access to diverse steric and
electronic properties useful in catalyst development (Scheme
1A). While much of the research on NHC−metal complexes

has focused on those in which the metal is coordinated to the
C atom between two nitrogen atoms in an imidazole-based
framework,1d,2i interest in similar carbenes,5 such as those
where one N atom is replaced with an O (oxazole), P
(phosphazole), or S atom (thiazole) has led to the naming
system N,X-heterocyclic carbenes (X = O, P, S, etc.) or NXHC
(Scheme 1B).6 NXHC−metal complexes have been exten-
sively explored,7 with a number of studies being focused
specifically on NSHC−metal complexes.6

Polydentate ligands containing either multiple tethered
NHCs or an NHC and an additional pendant functional
group, such as an aminophosphine,8 an ester,9 or others,10 have
also been synthetically explored. Notably, a number of
palladium complexes bearing sulfur-containing NHCs have
been characterized (Scheme 1C)11 and shown to catalyze
various reactions, such as Suzuki−Miyaura couplings,12

Mizoroki−Heck reactions,13 asymmetric allylic alkylations,14

hydroaminations,15 direct arylations,15b,16 Sonogashira cou-
plings,17 and nitrile−amide interconversions.17 In catalysis,
metal-bound thioethers are hemilabile ligands that exhibit
reversible binding to the metal center when they are
incorporated in a polydentate ligand framework that contains
one or multiple NHCs; this property can be useful in ligand
design, for example in stabilizing resting states while still
allowing dissociation to open a coordination site for the
association of reactants.11d,15b,18
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Scheme 1. Examples of Relevant Carbenes
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■ RESULTS AND DISCUSSION
During the course of a previous study,19 a mixture of 2-(but-3-
en-1-ylthio)benzo[d]thiazole (1a) and palladium(II) trifluor-
oacetate (Pd(TFA)2) was stirred at 45 °C in 1,2-dichloro-
ethane (1,2-DCE) for 12 h in an attempt to isolate a palladium
species bound to both the benzothiazole directing group and
the pendant alkene. After vapor diffusion of diethyl ether into
the solution, a large number of yellow crystals formed. X-ray
analysis revealed these crystals to be composed of an
unexpected dimeric Pd2(NSHC)2(TFA)4 complex containing
the C,S-bidentate bridging NSHC ligand 3-(tetrahydrothio-
phen-3-yl)benzo[d]thiazol-3-ium-2-ide (Figure 1). This prod-

uct, (±)-2a, was isolated in 82% yield, and its structure was
further confirmed by 1H NMR, 13C NMR, and high-resolution
mass spectrometry (HRMS). As of yet, a palladium complex
with this type of bidentate ligand based on an NSHC with a
pendant thioether has not been reported, to the best of our
knowledge. Notably, when other palladium sources were used,
PdBr2, PdCl2, and Pd(OAc)2, this product was not observed,
suggesting that trifluoroacetate (TFA) ligands are uniquely
suited for the formation of the NSHC complex (Table 1). This
may be attributed to the highly electrophilic nature of the Pd
center in Pd(TFA)2, which may promote key steps in the
rearrangement process (vide inf ra).
This complex was of interest from both a structural and a

mechanistic perspective. First, the formation of a bridged
[3.2.1]palladabicycle containing a five-membered tetrahydro-
thiophene ring is a unique structure combining both an NSHC
and a pendant bridging cyclic thioether. Second, the significant
rearrangement of the starting material, which involves the
breaking of a C(benzothiazole)−S(thioether) bond and the
formation of C−S and C−N bonds, requires an unusual
mechanism. Furthermore, due to the previously demonstrated
synthetic utility of this benzothiazole thioether directing
group,19 a greater understanding of this mechanism could
lead to further applications in reaction development.
Finding this complex and its formation interesting, we

sought to synthesize and characterize several similar com-
pounds to understand the generality and limitations of this
process (Scheme 2). (S)-2-(Pent-4-en-2-ylthio)benzo[d]-
thiazole ((S)-1b), which was added in a 2:1 ratio relative to
Pd(TFA)2, successfully provided product 2b (70% yield)

(Scheme 2A), isolated as a mixture of diastereomers (dr =
1.4:1, as determined by 1H NMR of the bulk solid). The 1H
NMR spectrum of this mixture shows that only two major
species are present in solution, suggesting that this series of
palladium complexes, while being Pd−Pd dimers in the solid
state, are monomeric in solution, since three diastereomeric
species would be expected in the case of dimers. Furthermore,
the Pd−Pd bond lengths of all the dimers in crystal form are

Figure 1. Molecular structure of (±)-2a showing 50% probability
ellipsoids. Hydrogen atoms and (CO)CF3 groups from trifluoroace-
tate ligands are omitted for clarity. Selected bond lengths (Å) and
bond angles (deg): Pd1−Pd1′ 3.2086(5), Pd1−S1 2.2581(10), N1−
C1 1.482(5), N1−C5 1.332(5), N1−C11 1.407(5), S2−C5 1.711(4),
S2−C10 1.736(4), S1−Pd1−C5 94.21(11), C5−Pd1−O3 90.14(13),
O3−Pd1−O1 83.25(11), O1−Pd1−S1 92.48(8), C5−Pd1−Pd1′
91.49(10).

Table 1. Synthesis of Bidentate NSHC Pd(TFA)2
Complexesa

PdX2 A (%) B (%)

Pd(TFA)2 0b 82
PdBr2 46 0b

PdCl2 51 0b

Pd(OAc)2 <5c 0b

aIsolated yields calculated as percentage of total possible product.
bNone isolated. cObserved only by 1H NMR as part of a complex
mixture of unassignable compounds.

Scheme 2. Scope and Limitations of Ligand
Rearrangementa

aIsolated yields calculated as percentage of total possible dimer.
bProduct from (S)-2-(pent-4-en-2-ylthio)benzo[d]thiazole. cd.r. =
Diastereomeric ratio. dA diastereomeric ratio of 3.3:1 was seen for the
racemic product, due likely to solubility differences during
crystallization. eReaction conditions: Pd(TFA)2 (1 equiv), benzo[d]-
thiazole thioether (2 equiv), 1,2-DCE, 45 °C, 12 h, air.
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above 3.2 Å, suggesting semicoordination that would not
persist in the presence of solvent (see Table S56 in the
Supporting Information). From this sample of 2b, selective
crystallization of the major S,S;S,S diastereomer allowed for
further characterization by X-ray crystallography.20 These
findings suggest that the stereochemistry at the carbon−sulfur
bond of the thioether in the starting material is maintained
during the rearrangement, with the diastereoselectivity
established in the bond-forming step between C1 (the carbon
γ to the sulfur of the thioether in the starting material) and N1
with the major diastereomer favored due to attenuated steric
interactions between the methyl group and palladium (Figure
2).

Next, (E)-2-(hex-3-en-1-ylthio)benzo[d]thiazole ((E)-1c),
which was added in a 2:1 ratio relative to Pd(TFA)2,
successfully provided complex (±)-2c (74% yield) (Scheme
2A). Analysis of the bulk solid by 1H NMR showed that this
reaction yielded a single diastereomer, and X-ray analysis of a
single crystal confirmed this to be the Pd(TFA)2 complex with
the bidentate trans-3-(2-ethyltetrahydrothiophen-3-yl)-benzo-
[d]thiazole-3-ium-2-ide ligand. Notably, (Z)-2-(hex-3-en-1-
ylthio)benzo[d]thiazole ((Z)-1c) does not provide any
product for reasons that are not immediately obvious (Scheme
3). Additionally, (E)-5-chloro-2-(hex-3-en-1-ylthio)benzo[d]-

thiazole (1d) was also subjected to the same conditions, and
complex (±)-2d was isolated (72% yield) (Scheme 2A). No
analogous complexes were observed in attempts to use S-
substituted benzo[d]thiazoles bearing internal or terminal
alkynyl groups, longer or shorter tethers to the alkene, or 1,1-
disubstituted terminal alkenes (Scheme 2B).

In order to gain insight into the rearrangement mechanism,
we revisited the results in Table 1 to more rigorously
characterize the coordination mode of the substrates in
nonrearranged complexes containing other counterions.
Notably, trans-PdBr2(1a)2 (complex 3a) contains two
molecules of the starting material coordinated through
nitrogen (Figure 3). The analogous product 3b was also

observed with PdCl2 (see Table 1 and Figure S11 in the
Supporting Information). Under the same conditions, treating
Pd(TFA)2 with 2-((2-methylbutyl)thio)benzo[d]thiazole (1e),
which contains no alkene, provides the corresponding
structure, 4 (Scheme 4). Of note, no evidence of palladium

C5(benzothiazole)−S1(thioether) insertion was observed,
which suggests that C5(benzothiazole)−S1(thioether) oxida-
tive addition occurs after cyclization onto the alkene. Next, we
tested whether other transition metals can trigger this
cyclization. To this end, 1a was treated with numerous
commercially available salts, including those derived from
nickel, copper, platinum, iron, ruthenium, and silver. From
these experiments, we obtained a novel silver complex from the
treatment of 1a (2 equiv) with silver(I) trifluoromethanesul-
fonate (AgOTf), which provided complex 5 (Figure 4). In the
solid-state structure, Ag(I) is simultaneously bound to the
thioether, the corresponding alkene, and the nitrogen of the
benzothiazole group in a bimetallic dimer form, establishing
that late transition metals can indeed coordinate to the alkene
moiety in the presence of a benzothiazole group. Finally,
consistent with a recent literature report,21 we found that the
treatment of 1a with an iodine source leads the substrate to

Figure 2. Two diastereomers formed in a 1.36:1 ratio, respectively,
from the reaction of (S)-1b when the bulk solid was analyzed by 1H
NMR. Legend: (a) major and minor diastereomers observed,
respectively, and identified by 1H NMR and NOESY.

Scheme 3. Reactivity of E versus Z Internal Alkenesa

aIsolated yields calculated as percentage of total possible dimer.
bReaction conditions: Pd(TFA)2 (1 equiv), (E)-2-(hex-3-en-1-
ylthio)benzo[d]thiazole (2 equiv), 1,2-DCE, 45 °C, 12 h, air.
cReaction conditions: Pd(TFA)2 (1 equiv), (Z)-2-(hex-3-en-1-
ylthio)benzo[d]thiazole (2 equiv), 1,2-DCE, 45 °C, 12 h, air. dNo
reaction.

Figure 3. Molecular structure of 3a showing 50% probability
ellipsoids; hydrogen atoms not on alkene are omitted for clarity.
Selected bond lengths [Å] and bond angles [deg]: Pd1−N1 2.017(4),
N1−C5 1.311(7), N1−C11 1.405(7), S2−C5 1.738(6), S2−C10
1.741(6), N1−Pd1−Br1 88.81(13), N1−Pd1−Br2 90.61(13), N1′−
Pd1−Br1 88.90(13), N1′−Pd1−Br2 91.86(13).

Scheme 4. Pd(TFA)2 Coordination to Benzo[d]thiazolea

aIsolated yield.
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undergo iodocyclization through nitrogen to give compound 6
(Figure 4).
On the basis of these initial results, several possible

mechanisms of formation can be envisioned. Herein we
describe two plausible pathways. In both proposals, we suggest
that the Pd(TFA)2 first coordinates to the starting material
through the benzothiazole nitrogen and the alkene, as was
previously computationally determined for the same starting
material in an oxidative-Heck reaction with Pd(OAc)2.

19 While
in principle this coordination could alternatively proceed
through the thioether, as is seen in complex 5, or through a
manner akin to that in complexes 3a, 3b, and 4, in which the
Pd coordinates only to the benzo[d]thiazole nitrogen and not
the alkene, the time course data suggest that an N1-bound
Pd(II) species coordinated to the alkene is the major species in
solution (vide inf ra). After substrate coordination, the first
mechanistic proposal involves a cyclization via anti-amino-
palladation, with the benzothiazole nitrogen acting as the
nucleophile, similar to the known cyclization induced by
iodine. This cyclization step most likely requires a highly
electrophilic Pd, which explains the unique reactivity observed
with Pd(TFA)2 over Pd(OAc)2, PdBr2, and PdCl2. This could
then be followed by intramolecular oxidative addition into the
now weakened C5(benzothiazole)−S1(thioether) bond.22

Following this, a C2(sp3)−S1 SN2-type reductive elimination
would need to occur in a stereoinvertive fashion, as has been
observed previously in C(sp3)−heteroatom reductive elimi-
nation from Pd(IV) centers.23 This inversion would provide
the observed final product upon S1 coordination and complex
dimerization (Scheme 5A). Alternatively, a cyclization could
occur first through a syn-aminopalladation that, when it is
followed by oxidative addition into the C5(benzothiazole)−
S1(thioether) bond and stereoretentive C2(sp3)−S1 reductive
elimination, would lead to the observed product upon
thioether coordination and dimerization (Scheme 5B).
To further probe the viability of the proposed mechanisms,

we monitored the reaction progress over time with two model
substrates, 1a and 1c, at 45 °C in air in CDCl3 by setting up a
series of parallel trials and halting them at predetermined time
points; we then assayed the solution (CDCl3) and precipitate
(DMSO-d6). In both reaction sets, a new downfield peak was
observed at 9.31 ppm in CDCl3 upon mixing of 1a or 1c with
Pd(TFA)2. On the basis of shift, integration, and data from the
analogous compounds 3a, 3b, and 4, this peak was assigned to
the N-bound Pd(II) species. This species was short-lived for
the reaction with terminal alkene 1a (Figure 5) but was
persistent in the reaction with the internal alkene 1c,
suggesting that the initial cyclization is much faster for the
terminal alkene. In the time-course experiment with 1c, a
downfield shift by 0.10 ppm of the alkene protons is observed,

and the new 1H resonances integrate in a 1:1:1 ratio with the
aryl proton peak at 9.31 ppm, suggesting the formation of a
stable intermediate with palladium coordinated to the alkene,
such as is seen with silver in complex 5, and to the
benzothiazole nitrogen (and not the thioether). Furthermore,
at 1−3 h, novel peaks at 5.88 and 6.51 ppm for the reaction
with 1a in CDCl3 and DMSO-d6, respectively, are observed,
consistent with the proposed cyclized intermediates. Similarly,
the corresponding cyclic alkyl proton at the 1′-position in 6
(Figure 4) is significantly downfield at 5.58−5.51 ppm in
DMSO-d6.

21 Similar compounds, such as 2,3-dihydro[1,3]-
thiazolo[2,3-b][1,3]benzothiazol-4-ium bromide,24 also show
downfield cyclic alkyl protons at around 5 ppm in DMSO-d6.
Finally, in a series of preliminary C−C coupling experi-

ments, we found that (±)-2a was a competent precatalyst for
several reactions, including a Suzuki−Miyaura coupling, a
Mizoroki−Heck reaction, and a dehydrogenative cross-
coupling, when it was tested in air with conditions from the
literature without further optimization (see Scheme S3 in the
Supporting Information).

Figure 4. Isolated compounds with relevance to the proposed
mechanisms.

Scheme 5. Plausible Mechanisms of Formation
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■ CONCLUSIONS
We have herein identified a novel rearrangement leading to
tetrahydrothiophene-functionalized NSHC palladium(II) com-
plexes. Using X-ray, NMR, and HRMS data, the identities of
these [3.2.1]palladabicyclic products were confirmed. Through
the synthesis of analogous complexes as well as the monitoring
of the reaction progress of the formation of (±)-2a and
(±)-2c, two plausible and closely related mechanisms can be
proposed. Understanding this rearrangement process may
bolster use of the benzo[d]thiazole directing group in catalytic
alkene functionalization reactions. Additionally, (±)-2a can
successfully catalyze three C−C coupling reactions, suggesting
that complexes containing bidentate NSHC ligands can be
developed and explored further as a new class of catalysts.

■ EXPERIMENTAL SECTION
General Information. Except where otherwise stated, all

materials were used as received from commercial sources without
further purification. All reactants, reagents, and solvents unless
otherwise mentioned were purchased from Aldrich, Alfa Aesar,
Oakwood, and Combi-Blocks and used without further drying or
purification. All reactions were run in an atmosphere of air. NMR
spectra were recorded on an AV-600 machine. Spectra were internally
referenced to SiMe4, the solvent signal, or an internal standard. The
following abbreviations (or combinations thereof) were used to
explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p
= pentet, m = multiplet. High-resolution mass spectra (HRMS) for
new compounds were obtained with a Waters I-Class LC with diode
array and G2-XS time-of-flight (TOF) mass spectrometer or with an
Agilent LC/MSD TOF mass spectrometer.
Synthesis of Complexes (±)-2a−4. In a 1 dram (4 mL) vial

equipped with a magnetic stir bar were placed the corresponding
benzo[d]thiazole-containing material (0.2 mmol, 2 equiv) and the
palladium-containing material (PdX2) (0.1 mmol, 1 equiv). To this
mixture was added 1,2-DCE (1 mL, 0.1 M), and the vial was capped.
The reaction mixture was stirred at 500 rpm at 45 °C for 12 h.
Without cooling to room temperature, the crude solution was
transferred into a new 1 dram (4 mL) vial. This uncapped vial with
the crude mixture was placed inside a scintillation vial (20 mL).
Diethyl ether (2 mL) was placed in the scintillation vial without any

addition into the 1 dram vial containing the crude material in
preparation for vapor diffusion. The scintillation vial was capped and
allowed to sit undisturbed for 72 h. The 1 dram vial was then removed
from the scintillation vial and the solvent carefully removed with a
pipet, leaving crystals, which were washed with additional diethyl
ether (3 × 3 mL). The remaining diethyl ether was then removed in
vacuo to provide the pure product.

Complex (±)-2a. The title compound was prepared with 2-(but-3-
en-1-ylthio)benzo[d]thiazole (1a) and Pd(TFA)2 on a 0.300 mmol
scale. Purification afforded (±)-2a as a yellow crystal (137 mg, 41%).
1H NMR (600 MHz, acetone-d6): δ 8.33 (d, J = 8.6 Hz, 1H), 8.25
(dd, J = 8.1, 1.2 Hz, 1H), 7.79 (ddd, J = 8.5, 7.2, 1.2 Hz, 1H), 7.72−
7.67 (m, 1H), 6.65 (t, J = 5.6 Hz, 1H), 4.14 (tt, J = 8.4, 5.0 Hz, 1H),
3.81 (d, J = 13.9 Hz, 1H), 3.51−3.42 (m, 2H), 3.12−3.03 (m, 1H),
2.89−2.84 (m, 1H). 13C NMR (151 MHz, DMSO-d6): δ 178.37,
142.99, 132.90, 127.91, 126.74, 123.18, 115.44, 66.23, 45.11, 41.96,
38.51, 34.19. HRMS: calcd for C13H11F3NO2

106PdS2
+ [M/2 − TFA]+,

439.9218; found, 439.9219. Single crystals suitable for X-ray
diffraction were obtained directly from the procedure described
above (CCDC 2057872).28

Complex 2b. The title compound was prepared with 2-(pent-4-en-
2-ylthio)benzo[d]thiazole (1b) and Pd(TFA)2. Purification afforded
2b as a yellow crystal (40 mg, 35%) with dr = 1.4:1 when (S)-2-(pent-
4-en-2-ylthio)benzo[d]thiazole was used and dr = 1:3.3 when the
racemic starting material was used. 1H NMR (600 MHz, acetone-d6):
δ 8.31−8.23 (m, 2H), 7.78 (dtd, J = 8.5, 7.2, 1.2 Hz, 1H), 7.69 (ddt, J
= 8.2, 7.2, 1.9 Hz, 1H), 6.65 (t, J = 4.9 Hz, 0.55H), 6.57 (t, J = 6.0 Hz,
0.42H), 4.85 (h, J = 7.2 Hz, 0.59H), 3.93 (dt, J = 9.2, 6.8 Hz, 0.45H),
3.81 (d, J = 14.2 Hz, 1H), 3.66 (dd, J = 14.1, 4.3 Hz, 0.55H), 3.59
(dd, J = 14.0, 4.8 Hz, 0.39H), 3.42−3.34 (m, 0.43H), 3.13−3.06 (m,
0.44H), 2.56 (ddd, J = 14.5, 7.2, 5.7 Hz, 0.50H), 2.40−2.32 (m,
0.45H), 1.97 (d, J = 6.8 Hz, 1.34H), 1.57 (d, J = 7.1 Hz, 1.67H). 13C
NMR (151 MHz, acetone-d6): δ 181.37, 144.53, 144.32, 134.62,
128.84, 128.79, 127.66, 127.64, 123.91, 123.86, 115.88, 115.77, 69.20,
66.93, 53.24, 53.13, 44.47, 44.18, 42.96, 40.41, 21.67, 21.27. HRMS:
calcd for C14H13F3NO2

102PdS2
+ [M/2 − TFA]+, 449.9396; found,

449.9388. Single crystals suitable for X-ray diffraction were obtained
directly from the procedure described above (CCDC 2057870).28

Complex (±)-2c. The title compound was prepared with (E)-2-
(hex-3-en-1-ylthio)benzo[d]thiazole ((E)-1c) and Pd(TFA)2. Purifi-
cation afforded (±)-2c as an orange crystal (43 mg, 37%). 1H NMR
(600 MHz, acetone-d6): δ 8.39 (d, J = 8.6 Hz, 1H), 8.25 (dd, J = 8.1,
1.2 Hz, 1H), 7.77 (ddd, J = 8.5, 7.2, 1.2 Hz, 1H), 7.69 (t, J = 7.6 Hz,
1H), 6.35 (d, J = 6.4 Hz, 1H), 4.17−4.07 (m, 2H), 3.59 (ddd, J =
13.7, 10.7, 5.1 Hz, 1H), 3.17 (ddt, J = 14.8, 10.7, 6.0 Hz, 1H), 2.07−
2.11 (m, 2H), 1.86 (ddq, J = 14.5, 9.7, 7.3 Hz, 1H), 1.21 (t, J = 7.3
Hz, 3H). 13C NMR (151 MHz, acetone-d6): δ 180.18, 143.14, 132.90,
127.40, 126.27, 122.45, 116.55, 114.60, 114.26, 70.13, 60.09, 43.94,
36.08, 32.22, 29.24, 24.09, 11.12. HRMS: calcd for
C15H15F3NO2

106PdS2
+ [M/2 − TFA]+, 467.9531; found, 467.9530.

Single crystals with a triclinic structure suitable for X-ray diffraction
were obtained directly from the procedure described above (CCDC
2057864)28 and regrown in a trigonal structure from CDCl3 (CCDC
2057865).28

Complex (±)-2d. The title compound was prepared with (E)-5-
chloro-2-(hex-3-en-1-ylthio)benzo[d]thiazole (1d) and Pd(TFA)2.
Purification afforded (±)-2d as an orange crystal (45 mg, 36%). 1H
NMR (600 MHz, acetone-d6): δ 8.57−8.49 (m, 1H), 8.27 (d, J = 8.6
Hz, 1H), 7.79−7.60 (m, 1H), 6.37 (d, J = 6.7 Hz, 1H), 4.22−4.06 (m,
2H), 3.72−3.52 (m, 1H), 3.25−3.08 (m, 1H), 2.94−2.86 (m, 1H),
2.26−2.06 (m, 1H), 1.86 (dddd, J = 17.6, 15.0, 8.4, 5.0 Hz, 1H), 1.20
(q, J = 8.1 Hz, 3H). 13C NMR (151 MHz, acetone-d6): δ 183.13,
144.60, 133.85, 132.15, 127.03, 124.14, 115.42, 115.13, 115.06, 70.98,
60.60, 44.42, 36.61, 32.65, 24.51, 11.59. HRMS: calcd for
C15H14

35ClF3NO2
104PdS2

+ [M/2 − TFA]+, 499.9147; found,
499.9134. Single crystals suitable for X-ray diffraction were obtained
directly from the procedure described above (CCDC 2057869).28

Complex 3a. The title compound was prepared with 2-(but-3-en-
1-ylthio)benzo[d]thiazole (1a) and PdBr2. Purification afforded 3a as
a yellow crystal (33 mg, 46%). 1H NMR (600 MHz, CDCl3): δ 9.16

Figure 5. Time course of the reaction between 1a and Pd(TFA)2 to
yield 2a, taken in CDCl3 with important new peaks highlighted. Full
1H NMR spectra, precipitate analysis (DMSO-d6), and the time
course experiment with 1c are available in the Supporting
Information.
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(d, J = 8.3 Hz, 0.75H), 9.08 (d, J = 8.2 Hz, 0.25H), 7.71 (d, J = 7.9
Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 5.99 (td, J
= 16.9, 6.9 Hz, 1H), 5.40−5.11 (m, 2H), 3.50−3.38 (m, 2H), 2.86−
2.70 (m, 2H). 13C NMR (151 MHz, CDCl3): δ 174.35, 173.72,
150.39, 134.93, 134.86, 131.22, 131.11, 127.78, 125.72, 122.72,
122.62, 121.35, 121.26, 118.23, 118.06, 35.50, 35.45, 33.08, 32.96,
29.86. HRMS: calcd for C22H24

79BrN2
106PdS4

+ [M − Br + 2H]+,
628.9041; found, 628.9022. Single crystals suitable for X-ray
diffraction were obtained directly from the procedure described
above (CCDC 2057868).28

Complex 3b. The title compound was prepared with 2-(but-3-en-
1-ylthio)benzo[d]thiazole (1a) and PdCl2. Crystals were regrown to
X-ray quality by slow evaporation of CDCl3 in an NMR tube.
Purification afforded 3b as a yellow crystal (32 mg, 51%). 1H NMR
(600 MHz, CDCl3): δ 9.26 (dt, J = 8.3, 0.9 Hz, 0.65H), 9.18 (dt, J =
8.2, 0.9 Hz, 0.35H), 7.76−7.71 (m, 1H), 7.68 (ddd, J = 8.4, 7.3, 1.2
Hz, 1H), 7.45 (dddd, J = 8.2, 7.2, 6.1, 1.1 Hz, 1H), 6.04−5.93 (m,
1H), 5.36−5.18 (m, 2H), 3.48−3.42 (m, 2H), 2.82−2.71 (m, 2H).
13C NMR (151 MHz, CDCl3): δ 173.90, 173.27, 166.39, 152.87,
149.53, 135.26, 134.77, 134.33, 134.25, 130.67, 130.56, 127.32,
125.57, 125.16, 125.13, 123.73, 121.85, 121.70, 121.05, 120.77,
120.69, 120.50, 117.65, 117.48, 116.51, 34.82, 34.80, 32.90, 32.42,
32.30, 29.27. HRMS: calcd for C22H22

35ClN2
106PdS4

+ [M − Cl]+,
582.9386; found, 582.9402. Single crystals suitable for X-ray
diffraction were obtained directly from the procedure described
above (CCDC 2051103).28

Complex 4. The title compound was prepared with 2-((2-
methylbutyl)thio)benzo[d]thiazole (1e) and Pd(TFA)2. Purification
afforded 4 as an orange crystal (23 mg, 40%). 1H NMR (600 MHz,
CDCl3): δ 9.30 (dd, J = 11.2, 8.4 Hz, 1H), 7.70 (dq, J = 12.6, 8.8 Hz,
2H), 7.44 (t, J = 7.7 Hz, 1H), 3.37 (ddd, J = 13.1, 7.8, 5.9 Hz, 1H),
3.25−3.16 (m, 1H), 2.00 (qd, J = 13.7, 6.7 Hz, 1H), 1.68 (dtt, J =
13.0, 10.1, 6.3 Hz, 1H), 1.44 (dpd, J = 14.8, 7.4, 3.0 Hz, 1H), 1.19
(dd, J = 6.7, 4.2 Hz, 3H), 1.01 (q, J = 7.1 Hz, 3H). 13C NMR (151
MHz, CDCl3): δ 176.59, 176.41, 149.81, 149.72, 130.54, 130.42,
128.08, 127.98, 125.81, 125.78, 122.02, 122.00, 121.18, 43.14, 43.04,
35.07, 35.01, 28.98, 28.94, 19.01, 11.37. HRMS: calcd for
C26H30F3N2O2

106PdS4
+ [M − TFA]+, 693.0177; found, 693.0168.

Single crystals suitable for X-ray diffraction were obtained directly
from the procedure described above (CCDC 2057871).28

Synthetic Procedure for Complex 5. In a 1 dram (4 mL) vial
equipped with a magnetic stir bar were placed 2-(but-3-en-1-
ylthio)benzo[d]thiazole (1a) (0.10 mmol, 2 equiv) and silver triflate
(AgOTf) (0.05 mmol, 1 equiv). To this mixture was added 1,2-DCE
(0.5 mL, 0.1 M), and the vial was capped. The reaction mixture was
stirred at 500 rpm at 45 °C for 12 h. Without cooling to room
temperature, the crude solution was transferred into a new 1 dram (4
mL) vial. This uncapped vial with the crude mixture was placed inside
a scintillation vial (20 mL). Diethyl ether (2 mL) was placed in the
scintillation vial without any addition into the 1 dram vial containing
the crude material in preparation for vapor diffusion. The scintillation
vial was capped and allowed to sit undisturbed for 72 h. The 1 dram
vial was then removed from the scintillation vial and the solvent
carefully removed with a pipet, leaving crystals, which were washed
with additional diethyl ether (3 × 3 mL). The remaining diethyl ether
was then removed in vacuo to provide the pure product 5 as a gray
crystal (20 mg, 42%).

1H NMR (600 MHz, acetone-d6): δ 8.12 (dd, J = 15.3, 8.2 Hz,
2H), 7.59 (ddd, J = 8.3, 5.0, 1.3 Hz, 1H), 7.56−7.49 (m, 1H), 6.24
(ddtd, J = 13.4, 8.4, 6.7, 1.8 Hz, 1H), 5.45−5.36 (m, 2H), 3.71 (td, J
= 6.5, 1.8 Hz, 2H), 2.75 (q, J = 6.7 Hz, 2H). 13C NMR (151 MHz,
acetone-d6): δ 171.79, 152.45, 135.76, 134.98, 128.28, 126.71, 122.93,
122.63, 114.01, 36.68, 33.85. HRMS: calcd for C11H11

107AgNS2
+ [M

− OTf]+, 327.9384; found, 327.9395. Single crystals suitable for X-ray
diffraction were obtained directly from the procedure described above
(CCDC 2057866).28

Synthetic Procedure for 4-(Iodomethyl)-3,4-dihydro-2H-
benzo[4,5]thiazolo[2,3-b][1,3]thiazin-5-ium Triiodide (6). In a
1 dram (4 mL) vial equipped with a magnetic stir bar were placed 2-
(but-3-en-1-ylthio)benzo[d]thiazole (1a) (0.5 mmol, 1 equiv) and

samarium(II) iodide (SmI2) (0.5 mmol, 0.1 M solution in THF, 1
equiv). To this mixture was added 1,2-DCE (5 mL, 0.1 M), and the
vial was capped. The reaction mixture was stirred at 500 rpm at 45 °C
for 12 h. Without cooling to room temperature, the crude solution
was transferred into a new 1 dram (4 mL) vial. This uncapped vial
with the crude mixture was placed inside a scintillation vial (20 mL).
Diethyl ether (2 mL) was placed the scintillation vial without any
addition into the 1 dram vial containing the crude material. The
scintillation vial was capped and allowed to sit undisturbed for 72 h.
The 1 dram vial was then removed from the scintillation vial and the
solvent carefully removed with a pipet, leaving crystals, which were
washed with additional diethyl ether (3 × 3 mL). The remaining
diethyl ether was then removed in vacuo to provide the pure product.
While some X-ray-quality crystals were retrievable, the yield of crystals
was low (<10%). The reaction was rerun following a literature
procedure.21

1H NMR (600 MHz, DMSO-d6): δ 8.32 (dt, J = 8.3, 2.0 Hz, 1H),
8.11 (dd, J = 8.6, 3.0 Hz, 1H), 7.86−7.78 (m, 1H), 7.71 (td, J = 7.7,
3.0 Hz, 1H), 5.54 (dh, J = 9.6, 3.1 Hz, 1H), 3.74−3.66 (m, 2H),
3.67−3.54 (m, 2H), 3.01 (dq, J = 15.1, 3.3 Hz, 1H), 2.46 (ddd, J =
15.5, 10.0, 4.3 Hz, 1H). 13C NMR (151 MHz, DMSO): δ 175.83,
140.77, 128.69, 127.66, 127.09, 123.98, 114.96, 55.10, 23.25, 23.16,
2.10. Single crystals suitable for X-ray diffraction were obtained
directly from the procedure described above (CCDC 2057863).28

Synthetic Procedure for [1,1′-Biphenyl]-4-carbaldehyde
(7).25 In a 1 dram (4 mL) vial equipped with a magnetic stir bar
were placed 4-bromobenzaldehyde (0.3 mmol, 1 equiv), phenyl-
boronic acid (0.36 mmol, 1.2 equiv), potassium carbonate (K2CO3)
(1.0 mmol, 2 equiv), and (±)-2a (0.0015 mmol, 0.5 mol %). To this
mixture was added a 1/1 mixture of H2O and DMF (3 mL, 0.1 M).
The vial was capped, placed on a preheated hot plate at 100 °C, and
stirred at 500 rpm for 12 h. The reaction mixture was removed from
the stir plate and cooled. The contents of the vial were transferred to a
separation vial with subsequent washing of H2O and EtOAc.
Additional H2O (50 mL) was placed in the separation vial, and the
desired material was extracted with EtOAc (3 × 50 mL) and dried
with Na2SO4. After the solvent was removed in vacuo, the crude
residue was purified by SiO2 gel column chromatography (5%
EtOAc/95% hexanes). Purification afforded 7 as a white solid (90 mg,
>95%).

1H NMR (600 MHz, CDCl3): δ 10.06 (s, 1H), 7.95 (d, J = 8.2 Hz,
2H), 7.75 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H), 7.49 (t, J = 7.8
Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H). 13C NMR (151 MHz, CDCl3): δ
192.00, 147.24, 139.76, 135.27, 130.35, 129.10, 128.56, 127.75,
127.44.

Synthetic Procedure for (E ) -4-(4-Methylstyryl) -
benzaldehyde (8).26 In a 1 dram (4 mL) vial equipped with a
magnetic stir bar were placed the corresponding 4-bromobenzalde-
hyde (0.3 mmol, 1 equiv), 1-methyl-4-vinylbenzene (0.36 mmol, 1.2
equiv), potassium carbonate (K2CO3) (1.0 mmol, 2 equiv), and
(±)-2a (0.0015 mmol, 0.5 mol %). To this mixture was added a 1/1
mixture of H2O and DMF (3 mL, 0.1 M). The vial was capped, placed
on a preheated hot plate at 100 °C, and stirred at 500 rpm for 12 h.
The reaction mixture was removed from the stir plate and cooled. The
contents of the vial were transferred to a separation vial with
subsequent washing of H2O and EtOAc. Additional H2O (50 mL)
was placed in the separation vial, and the desired material was
extracted with EtOAc (3 × 50 mL) and dried with Na2SO4. After the
solvent was removed in vacuo, the crude residue was purified by SiO2
gel column chromatography (5% EtOAc/95% hexanes). Purification
afforded 8 as a yellow solid (45 mg, 67%).

1H NMR (600 MHz, CDCl3): δ 9.99 (s, 1H), 7.86 (d, J = 8.0 Hz,
2H), 7.64 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 7.8 Hz, 2H), 7.27−7.19
(m, 3H), 7.10 (d, J = 16.2 Hz, 1H), 2.38 (s, 3H). 13C NMR (151
MHz, CDCl3): δ 191.79, 143.83, 138.77, 135.31, 133.93, 132.33,
130.40, 129.71, 126.99, 126.92, 126.47, 21.49.

Synthetic Procedure for 5-(Benzo[d]oxazol-2-yl)thiophene-
2-carbaldehyde (9).27 In a 1 dram (4 mL) vial equipped with a
magnetic stir bar were placed benzo[d]oxazole (0.1 mmol, 1 equiv),
thiophene-2-carbaldehyde (0.2 mmol, 2 equiv), silver acetate
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(AgOAc) (0.2 mmol, 2 equiv), and (±)-2a (0.05 mmol, 5 mol %). To
this mixture was added a 1/1 mixtue of H2O and DMSO (1 mL, 0.1
M). The vial was capped, placed on a preheated hot plate at 110 °C,
and stirred at 500 rpm for 12 h. The reaction mixture was removed
from the stir plate and cooled. The contents of the vial were
transferred to a separation vial with subsequent washing of H2O and
EtOAc. Additional H2O (50 mL) was placed the separation vial, and
the desired material was extracted with EtOAc (3 × 50 mL) and dried
with Na2SO4. After the solvent was removed in vacuo, the crude
residue was purified by SiO2 gel column chromatography (5%
EtOAc/95% hexanes). Purification afforded 9 as a yellow solid (14
mg, 61%).

1H NMR (600 MHz, CDCl3): δ 10.00 (d, J = 2.1 Hz, 1H), 7.97
(dd, J = 3.9, 2.1 Hz, 1H), 7.82 (dd, J = 4.0, 2.1 Hz, 1H), 7.79 (dt, J =
8.5, 1.7 Hz, 1H), 7.63−7.57 (m, 1H), 7.40 (pt, J = 7.4, 1.7 Hz, 2H).
13C NMR (151 MHz, CDCl3): δ 183.00, 157.81, 150.82, 146.39,
141.97, 137.78, 136.25, 130.04, 126.37, 125.41, 120.61, 110.93.
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