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ABSTRACT: Chiral phosphoric-acid-catalyzed asymmetric reduc-
tions of trans-chalcones have been investigated in this work. A
BINOL-derived boro-phosphate-catalyzed asymmetric transfer hydro-
genation of the carbon−carbon double bond of trans-chalcone
derivatives employing borane as a hydride source was realized. This
methodology provides a convenient procedure to access chiral
dihydrochalone derivatives in high yields and with high enantiose-
lectivities under mild conditions.

Many noteworthy achievements have been made in the
field of asymmetric transfer hydrogenation (ATH).1 To

date, a plethora of ATH methodologies have been reported
that depend mostly on transition-metal catalysis (e.g., Ir,2 Ru,3

Rh,4 and Fe5). Organocatalysts, those catalysts derived from
small chiral organic molecules, have become an attractive
alternative to metal/chiral ligand-based catalysts for ATH
reactions in recent years. Examples of these organocatalysts
include chiral Brønsted acids, iminiums, and imidazolidi-
nones.6

Chiral phosphoric acids (CPAs) have shown potential in
rendering a number of interesting transformations into
catalytic and stereoselective variants.7 When one looks at the
ATH methods, CPAs have been widely employed in the
hydrogenation of CO,8 CN,9 and CC10 bonds,
although the selective hydrogenation of carbon−carbon double
bonds of α,β-unsaturated ketones with organocatalysts is still
rare, especially with acyclic unsaturated ketone substrates.6 In
2006, MacMillan and List revealed the hydrogenation of
unsaturated cyclic ketones by imidazolidinone or counterion
catalysts with Hantzsch ester as the hydride source,
respectively (Scheme 1a).11 In List’s work, the enantioselec-
tivity of acyclic unsaturated ketones was distinctly lower than
that with cyclic ketones.11a Additionally, in 2018, Cramer and
coworkers demonstrated a valuable stereoselective 1,4-
reduction of acyl pyrrole using chiral diazaphospholenes as
the catalyst.12 In this work, several unsaturated ketones were
demonstrated to be viable substrates with moderate
enantioselectivities. Compared with these two methods, the
reactions that obtained the corresponding products from
acyclic ketones are undoubtedly more challenging.
In recent studies, Nakajima and coworkers reported the

ATH of β,β-disubstituted α,β-unsaturated ketones employing

(S)-BINAPO as an organocatalyst to form related products
with excellent enantioselectivities and a broad scope (Scheme
1b).13 Conventional ATH reactions catalyzed by CPAs have
mostly utilized Hantzsch esters as the hydride source.
Benzothiazolines could also be used as another efficient
hydride donor.9−11 Our group observed that the BINOL-
derived CPA forms a new phosphoryl boronate catalyst in situ
in the presence of catecholborane (Figure 1) to reduce ketones
(Scheme 1c).8a In this previous work, a plausible mechanism
suggested that the boro-phosphate could behave as a chiral
bifunctional activator. There have been several additional
asymmetric hydrogenation reactions utilizing the combination
of CPAs and boranes.8,14 On the basis of these successes, in
this study, we describe the asymmetric hydrogenation of the
CC bonds of trans-chalcone derivatives by chiral boro-
phosphate catalysts (Scheme 1d).
We began this investigation by optimizing the reaction

conditions. First, a series of CPA catalysts were screened with
(E)-1a and pinacolborane (B1) in toluene at 50 °C (Table 1,
entries 1−5). Catalysts PA1 and PA2 could allow for
preliminary enantioselectivity (entries 1 and 2, 68% ee and
52% ee). On the basis of these results, some solvents were also
screened in efforts to improve the enantioselectivity. Full
conversion and an obvious increase in enantioselectivity were
obtained with cyclohexane (entry 6, 74% ee). In addition, when
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the temperature was lowered, a higher ee was obtained at 30 °C
(entry 7, 87% ee). Additional cycloalkanes were explored as
solvents, but no improvements were found (entries 8 and 9).
Subsequently, PA2 was utilized, and a 91% ee was found for the
reaction product (entry 10). We were pleased to see that when
the catalyst loading was lowered to 5 mol %, the reaction
proceeded to full conversion, and a 94% ee was obtained (entry
11). Moreover, a full conversion was achieved using a 1 mol %
catalyst loading, albeit with a moderate drop to 88% ee (entry
12). Notably, the hydrogenated compound was not detected
when using Hantzsch ester (entry 13). Different boranes were
also used to evaluate the ee value (entries 14 and 15).
However, the desired product was not observed using B2. The
use of B3 allowed for an outstanding result in the
enantiocontrol, but the conversion declined precipitously.
When the substrates with a mixture of E/Z isomers (entry 16)
or the pure Z-isomer (entry 17) were used in this
transformation, the enantioselectivity decreased. These results
indicated that the Z-isomer has a negative effect on the yield
and enantioselectivity.
Inspired by our preliminary findings, various trans-chalcone

derivatives were subjected to the optimized reaction conditions
(Scheme 2), and substitutions of the R1 group were examined.
Phenyl derivatives bearing halogens at the para and meta
positions could give the corresponding products in good yield
with excellent enantioselectivity (Scheme 2, 2b−e, 94−96%

ee). With strong electron-withdrawing groups (EWGs) such as
trifluoromethyl and cyano in the para position, the related
chiral products were obtained in high yield with excellent
enantioselectivity (Scheme 2, 2f,g, 96 and 90% ee). Phenyl
derivatives bearing electron-donating groups (EDGs) like
methyl and methoxy in the para and meta positions also
showed excellent results (Scheme 2, 2h−k, 90−96% ee). In
addition, other aromatic groups (2-thienyl, 2-naphthyl) were
tried for this hydrogenation. The corresponding products 2l
and 2n were formed with 90 and 97% ee. Only a slight decrease
in the ee value was found with the use of a furan group
(Scheme 2, 2m, 84% ee). We also attempted to modify the R2
group and used ethyl instead of methyl (Scheme 2, 2o). The
desired product was obtained, and the yield was still high, but
an obvious drop to 78% ee was found. Larger groups at R2 had
adverse effects on the enantiocontrol.
Various R3 groups were subsequently explored, and this

included phenyl derivatives with EWGs and EDGs. These
substrates were excellent, with high yields and good
enantioselectivities found for the reduction (Scheme 3, 3a−
g). The use of a 4-tBu phenyl group resulted in a
corresponding product with a moderate decline in ee probably

Scheme 1. Transfer Hydrogenations of Ketones

Figure 1. Proposed formation of a boro-phosphate catalyst.

Table 1. Screening of Transfer Hydrogenationa

entry catalyst solvent
temp.
(°C) conversion (%)b ee (%)c

1 PA1 toluene 50 90 68
2 PA2 toluene 50 92 52
3 PA3 toluene 50 50 12
4 PA4 toluene 50 21 17
5 PA5 toluene 50 53 41
6 PA1 cyclohexane 50 100 74
7 PA1 cyclohexane 30 100 87
8 PA1 methylcyclohexane 30 100 72
9 PA1 cyclopentane 30 100 70
10 PA2 cyclohexane 30 100 91
11d PA2 cyclohexane 30 100 94
12e PA2 cyclohexane 30 100 88
13f PA2 cyclohexane 30 n.d.
14g PA2 cyclohexane 30 n.d.
15h PA2 cyclohexane 30 50 91
16i PA2 cyclohexane 30 50 70
17j PA2 cyclohexane 30 21 39

aReaction conditions: (E)-1a (1.0 equiv), borane (3.0 equiv), 10 mol
% CPA with solvent indicated 0.10 M at temperature. bDetermined
by 1H NMR. cee was determined by HPLC analysis. dReaction
performed with 5 mol % catalyst. eReaction performed with 1 mol %
catalyst. fHE instead of B1. gB2 instead of B1. hB3 instead of B1. iE/
Z isomers (1:1) instead of (E)-1a. j(Z)-1a instead of (E)-1a. n.d. =
not determined.
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due to the steric hindrance of the tert-butyl group (Scheme 3,
3h, 84% ee). Both 2-thienyl and 2-naphthyl group substitutions
led to excellent yields and ee values for the reaction (Scheme 3,
3i,j). However, in the case of an alkyl substitution at the one-
position of the ketone, the desired reduction was not found
(Scheme 3, 3k), but rather the carbonyl was reduced to give
chiral alcohol 4. This example illustrated the significance of
aromatic groups in the one-position for the chemoselective
hydrogenation of the CC moiety. The absolute config-
urations of 2−4 were confirmed by the comparison of the
optical rotations of known compounds in the reported
literature.13,15,16

After successfully expanding the scope of the substrates for
the methodology, we sought to explore the subsequent
transformation of interest utilizing the chiral products. A
Friedel−Crafts-type reaction (Scheme 4a) and a Wittig

reaction (Scheme 4b) were attempted with 2a as a substrate
under typical conditions, and the products 5 and 6 were
obtained in good yields and high ee values were retained. We
were satisfied that the yield and ee value of the model reaction
were also maintained at a high level of efficiency operating on a
1 g scale (Scheme 4c).
On the basis of our previous published work with this

catalytic system, we hypothesized a plausible mechanism for
this transformation (Figure 2). Previous 11B NMR studies
already indicated the formation of a boro-phosphate from the
reaction of CPA and borane.8a We assumed a similar catalyst
for this methodology. For the reaction, the boron Lewis acid
could be envisioned to activate the carbonyl oxygen of 1a via

Scheme 2. Scope of Three-Substitutentsa

aReaction conditions: (E)-1a (1.0 equiv), B1 (3.0 equiv), 5 mol %
(R)-PA2 with solvent indicated 0.10 M at 30 °C. bIsolated yield. cee
was determined by HPLC analysis.

Scheme 3. Scope of 1-Substitutentsa

aReaction conditions: (E)-1a (1.0 equiv), B1 (3.0 equiv), 5 mol %
(R)-PA2 with solvent indicated 0.10 M at 30 °C. bIsolated yield. cee
was determined by HPLC analysis.

Scheme 4. Derivative Formation and Gram-Scale Reactions

Figure 2. Proposed mechanism.
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an Lewis acid/Lewis base (LA/LB) interaction. Simultane-
ously, the oxygen of the phosphoryl group acts as a Lewis base
to coordinate with another molecule of pinacolborane, and this
activated borane provides a hydride to attack the β-position of
unsaturated ketone 1a. The resulting boron enolate would then
pick up a proton, providing the chiral ketone 2a.
In conclusion, we have described the ATH of trans-chalcone

derivatives with unique BINOL-derived boro-phosphate
catalysts. We realized this reaction using relatively mild
conditions and readily accessible or commercially available
materials, hydrides, and catalysts. Meanwhile, excellent yields,
high enantioselectivities, and also an extensive substrate scope
were exhibited.17 According to our previous efforts, we
speculate on the mechanism of this reaction. Other meaningful
reactions with boro-phosphates are currently in progress in our
laboratory.
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