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Abstract: A novel palladium(II)-catalyzed [5++2] oxidative
annulation of readily available o-arylanilines with alkynes has
been developed for building a seven-membered N-heterocyclic
architecture containing a biaryl linkage. This method is
applicable to a wide range of unprotected o-arylanilines and
internal alkynes, and results in the chemoselective preparation
of imine-containing dibenzo[b,d]azepines in high yields with
excellent diastereoselectivity with respect to the two types of
stereogenic elements.

Dibenzo[b,d]azepines represent an important class of
medium-sized N-heterocycles because they are the key
structural motifs in many natural products and bioactive
compounds (Figure 1). For example, dimeric erythrivarine B,
which contains the seven-membered skeleton, was isolated
from cultivated E. variegata.[1] LY-411575 was identified
as an effective g-secretase inhibitor for the treatment of
melanoma and AlzheimerÏs disease.[2] Functionalized
dibenzo[b,d]azepines were also investigated as serotonin (5-
HT) receptor[3] and potassium channel inhibitor.[4] Therefore,
the search for new reliable synthetic approaches for the
preparation of dibenzo[b,d]azepines from readily available
starting materials is of great interest.

Recently, transition-metal-catalyzed C¢H functionaliza-
tion has emerged as an efficient and versatile method for
accessing various heterocycles and carbocycles.[5] In partic-
ular, nitrogen-group-assisted heteroannulations of nitrogen-
containing coupling partners with alkynes by a C¢H cleavage/
alkyne insertion/cyclization cascade have been widely used to
generate structurally diverse N-heterocyclic compounds, such
as indoles,[6] pyrroles,[7] isoquinolines,[8] isoquinolinones,[9] and
so on.[10] Remarkably, most of these transformations were
realized by formal [3++2] or [4++2] cycloadditions to give five-
or six-membered rings, but the construction of larger rings by
means of related annulations is quite rare.[10c,e] In this context,
we set out to develop a new type of [5++2] annulation between
simple biaryl precursors and alkynes involving a C¢H
activation step for the synthesis of functionalized dibenzo-
[b,d]azepines.[11]

This work originated from our recent studies on
ruthenium(II)-catalyzed oxidative annulation of o-arylphenol
derivatives with alkynes through a C¢H activation strategy
(Scheme 1a).[12] It is noteworthy that the reaction proceeded
exclusively by a dearomatizing [3++2] annulation pathway to
generate spirocyclic enones as the sole product, but not
dibenzoxepines through a possible [5++2] cycloaddition route.
Presumably, a clear steric clash between the two twisted
aromatic groups of the intermediate A played a key role in
driving the essential ring contraction from A to B, thus
hampering the reductive elimination of A to form a dibenzox-
epine and rendering the [3++2] spiroannulation more favor-
able than a seven-membered ring formation. Moreover,
a recent seminal report from the group of MascareÇas and
Gul�as demonstrated that simple o-vinylphenols (R = H),
which cannot engage in a similar steric interaction, were well
suited for a rhodium(III)-catalyzed [5++2] annulation to give
benzoxepines (Scheme 1b).[13] These prior studies imply that
adapting the sterically more hindered biaryl coupling partner
for a potential [5++2] annulation with alkynes represents
a formidable challenge, and to date, no example of such
transformations has been realized. To address this limitation,
we switched gears to attempt analogous o-arylaniline deriv-
atives by exchanging the hydroxy group for an amino group.
Herein, we report the successful development of a palladium-
(II)-catalyzed [5++2] annulation of easily accessible o-arylani-
lines with alkynes for the direct synthesis of imine-containing
dibenzo[b,d]azepines (Scheme 1c).

At the outset, we first examined a series of commonly
used o-arylanilines,[14] which were N-substituted with a car-
bonyl, sulfonyl, alkyl, aryl, or heteroaryl groups, for the
anticipated [5++2] annulation by using either rhodium(III)-,
ruthenium(II)-, or palladium(II)-catalyzed C¢H activation

Figure 1. Selected examples bearing the dibenzo[b,d]azepine core
structure.
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under various reaction conditions. Unfortunately, no desired
[5++2] dibenzo[b,d]azepine product was observed. A key
breakthrough was ultimately achieved by identifying 2-
phenylaniline (1a) as an effective substrate for the envisioned
transformation. It has long been known that N-unprotected o-
arylanilines could undergo cyclometalation by transition-
metal-mediated C¢H bond cleavage,[15] whereas the related
catalytic processes, which might be suppressed by the tight
coordination of the free amino group to the metal center,
were not reported until very recently.[16] In our investigation,
the initial observation showed that a [5++2] annulation
product, the imine-containing dibenzo[b,d]azepine 3 a, was
formed in 57% yield upon treatment of 1a and 2a in the
presence of a catalytic amounts of Pd(OAc)2 (5.0 mol %) and
2.1 equivalents of Cu(OAc)2 in DMF at 100 88C for 5 hours
(Table 1, entry 1). The optimal reaction conditions were then
quickly established by switching the solvent to DMSO
(entry 6) and elevating the temperature to 120 88C (entry 7),
thus providing 3a in 91% yield upon isolation. Control
experiments indicated that replacing Pd(OAc)2 with either
[{Cp*RhCl2}2] or [RuCl2(p-cymene)2], or removing the cata-
lyst completely shut down the titled reaction (entries 8–10).
Notably, 3a was obtained as the sole product under the
optimized reaction conditions, without giving either an
enamine-containing dibenzo[b,d]azepine or other side prod-
ucts.

Under the optimal reaction conditions, the reaction scope
was then surveyed by employing a great number of o-

arylanilines (1a–t) to react with 2 a, and it was found that
substrates containing substituents of varying electronic and
steric character, at any position of either aromatic ring, were
tolerated, thus providing the desired [5++2] annulation
products 3a–t in moderate to good yields (47–94 %;
Table 2). Notably, the reaction with the substrate 1n, which
contains two possible C¢H functionalization sites, proceeded
preferentially at the least sterically encumbered position to
give 3n as the major regioisomer (12.5:1 r.r.). The substrate
1o, featuring the increased steric hindrance for C¢H func-
tionalization, also participated in the process, although the
yield was slightly lower (54 % yield). More importantly, the
reaction was compatible with several challenging substrates
(1m, 1 s,t), which would cause more severe steric clash in the
intermediate A’’’’ (see Scheme 1), and the anticipated products
3m, 3s, and 3t were isolated in 91, 51, and 47 % yield,
respectively.

The structure of the dibenzo[b,d]azepines 3 was then
further elucidated by X-ray crystallographic studies on 3d,
3m, and 3n.[17] It is clear that they exist in the imine form.
Moreover, the stereochemistry is of particular interest in that,
in addition to the one tertiary carbon center, the moiety has
a chiral biaryl axis. Notably, a single diastereomer was always
observed as the sole product for all the reactions between 1a–
t and 2 a, and the relative configuration is depicted in Figure 2.

Next, we sought to investigate the scope with respect to
the alkynes (Table 3). Regarding symmetrical alkynes (2b–e)
containing either electron-rich or electron-deficient aromatic
groups, the anticipated [5++2] annulation proceeded smoothly
to generate the imines 3a’’–d’’ as single diastereomeric
products in good yields (62–90 %). When the unsymmetrical
diaryl alkyne 2 f was tested, the reaction led to a mixture of
two separable regioisomers 3e’’ (2.4:1 r.r.) possessing the same
relative configuration.[17] Moreover, the dialkylacetylene 2g
was tolerated under the reaction conditions, thus the provid-
ing compound 3 f’’ in 67 % yield with 6.2:1 d.r. Notably, the
incorporation of an alkyl group into the tertiary carbon center

Scheme 1. Development of [5++2] oxidative annulations of biaryls with
alkynes. a) Ruthenium(II)-catalyzed annulation of o-arylphenol deriva-
tives with alkynes (Ref. [12]). b) Rhodium(III)-catalyzed [5++2] annula-
tion of o-vinylphenols with alkynes (Ref. [13a]). c) This work:
Palladium(II)-catalyzed [5++2] annulation of o-arylanilines with alkynes.

Table 1: Optimization of the reaction conditions.[a]

Entry [M] mol% Solvent T [88C] Yield [%][b]

1 Pd(OAc)2 5.0 DMF 100 57
2 Pd(OAc)2 5.0 1,4-dioxane 100 29
3 Pd(OAc)2 5.0 THF 100 18
4 Pd(OAc)2 5.0 CH3CN 100 23
5 Pd(OAc)2 5.0 tAmOH 100 16
6 Pd(OAc)2 5.0 DMSO 100 72
7 Pd(OAc)2 5.0 DMSO 120 91
8 [{Cp*RhCl2}2] 2.5 DMSO 120 0
9 [RuCl2(p-cymene)2] 2.5 DMSO 120 0
10 – 0 DMSO 120 0

[a] Reactions were conducted with 0.30 mmol of 1a. [b] Yield of isolated
product. DMF=N,N-dimethylformamide, DMSO= dimethylsulfoxide,
THF = tetrahydrofuran.
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eroded the diastereoselectivity in comparison to the examples
having diaryl alkynes (> 19:1 d.r. for all the cases). To further
evaluate the regioselectivity of the reaction with respect to
unsymmetrical alkynes, one sterically differentiated alkyne
(2h) and two alkyl-aryl mixed alkynes (2 i,j) were studied.
Gratifyingly, they participated in the [5++2] annulation to give
3g’’–i’’ in 80–97% yields with excellent regioselectivity (> 19:1
r.r.), albeit with low diastereoselectivity. Remarkably, the
diastereoselectivity for the process with alkyl-aryl alkynes
could be enhanced by using alkynes with a larger alkyl group

(2j versus 2 i). Finally, it should be noted that ethyl 3-
phenylpropiolate was also an excellent coupling partner for
the [5++2] annulation, thus giving the imine-formed dibenzo-
[b,d]azepine 3j’’ in 94 % yield with 10.1:1 d.r., and the
structure of its major diastereomer was confirmed by X-ray.[17]

We conducted a series of experiments to probe the
reaction mechanism (Scheme 2). An intermolecular competi-
tion between 1a and [D5]-1 a demonstrated a kinetic isotope
effect (kH/kD = 3.2; Scheme 2a), which suggests that the C¢H
activation is probably involved in the rate-determining step.
Treatment of the o-arylanilines 2 r (4-MeO) and 2p (4-CF3)

Table 2: The reaction substrate scope of o-arylanilines.

Figure 2. X-ray structures of 3d, 3m, and 3n (from left to right).
Thermal ellipsoids shown at 60% probability.

Table 3: The reaction substrate scope of alkynes.

Scheme 2. Mechanistic studies.
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with alkyne 2a (1.0 equiv) afforded the corresponding
products 3r and 3p, respectively, in a 1.8:1 ratio (Scheme 2b).
The preferential formation of 3r, having an electron-rich
substituent, implies that the slow hydrogen abstraction might
occur after the electrophilic attack of palladium(II) on the
aromatic ring in the C¢H activation process.[18] Moreover,
reacting the palladacycle complex 4, which was generated
from 1a by palladium(II)-mediated C¢H bond cleavage,[15a]

with an equal molar amount of 2a successfully led to 3a in
93% yield (Scheme 2c), thus providing solid evidence to
support a free-amine-directed C¢H activation mechanism for
the title transformation. Finally, two control reactions were
performed, and the experimental data revealed that 3a was
not formed from 5 by a possible amination/oxidation
sequence (Scheme 2d),[16a] but generated through the tauto-
merization of its enamine-counterpart 6 (Scheme 2e).

A plausible reaction mechanism based on the above
results is proposed in Scheme 3. The catalytic cycle is initiated
with an amino-assisted C¢H bond cleavage of 1a by Pd-
(OAc)2 to give rise to a stable palladacycle (4). Next, this
dimeric palladium complex is broken into its component parts

by 2 to form the intermediate I. Notably, it was known from
prior work that migratory insertion of the alkyne 2 with 4
favored a regioselective insertion into the Pd¢C bond to
afford the eight-membered intermediate II.[15b] Furthermore,
C¢N reductive elimination takes place to deliver the enam-
ine-containing dibenzo[b,d]azepine 6 and concomitantly
regenerate Pd(OAc)2 to complete the cycle. Finally, tautome-
rization of 6 leads to the formation of the thermodynamically
more stable 3a as the sole product.

In summary, we have developed an unprecedented
palladium(II)-catalyzed [5++2] oxidative annulation of biaryl
precursors with alkynes by relying on a C¢H activation
approach. This method provides a straightforward and atom-
economical access to a new class of fascinating imine-
containing dibenzo[b,d]azepines in high yields and stereose-
lectivities by using readily available o-arylanilines and
alkynes as starting materials.
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