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A STABLE 1,2-DIAZOCINE SYSTEM: 3,8-DIPHENYL-1,2-DIAZACYCLOOCTA-2,4,6,8-TETRAENES 
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Stable 1,2-diazocines, 3,8-diphenyl-1,2-diazacycloocta-2,4,6,8-tetraenes, 

were prepared via halogenation-dehydrohalogenation sequences starting from 

readily available 3,8-diphenyl-1,2-diazacycloocta-2,8-diene. Thermolysis and 

photolysis of the 1,2-diazocines are also described.

In spite of rich chemistry of cyclooctatetraenes,1) 1,2-diazacycloocta-2,4,6,8-tetraenes (1,2-

diazocines) have not attracted much attention. Although dibenzo[c,g][1,2]diazocine2) and substi-

tuted dibenzo[d,f][1,2]diazocines3) have been prepared and found to be stable, 1,2-diazocines free 

of benzo groups have not been known until Trost et al. 4) succeeded in an elegant synthesis of parent 

1,2-diazocine 1, which decomposes slowly in solution at room temperature and rapidly in the neat, 

by irradiation of diazatetracyclooctene. On the other hand, an attempt to isolate substituted 1,2-

diazocines by thermal valence tautomerization of diazabicyclooctatrienes was unsuccessful, but in-

stead substituted benzenes were obtained with the elimination of nitrogen 5) (Scheme 1). Thus, 

substituted monocyclic 1,2-diazocines have not been prepared up to date.

Scheme 1

We have now prepared stable monocyclic 1,2-diazocines via a classical halogenation-dehydrohalo-

genation sequence starting from readily available 3,8-diphenyl-1,2-diazacycloocta-2,8-diene 26): 
This is in contrast to an unsuccessful attempt to prepare 1 via a halogenation-dehydrohalogenation 
sequence through 1,2-bis(t-butoxycarbonyl)-1,2-diazacyclooct-5-ene.7) In this communication we 
wish to report the preparation of 3,8-diphenyl-1,2-diazocines, their thermolysis, and photolysis. 

We have first investigated the preparation of a 1,2-diazocine via a chlorination-dehydrochlo-
rination sequence starting from 2. After several attempted chlorinations under various conditions, 
it has been found that the 4,4,7,7-tetrachloride 3 was obtained in 83% yield on chlorination of .2,
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with four equivalents of sulfuryl chloride in methylene chloride at room temperature for 1 h. De-

hydrochlorinations of 3 were investigated using various bases. Treatment of 3 with three equi-

valents of sodium hydroxide, sodium ethoxide, DBU or ethyl sodiomalonate in refluxing ethanol gave 

the expected 4,7-dichloro-3,8-diphenyl-1,2-diazocine 4, mp 158-159•Ž (dec), in 76, 79, 61 or 81% 

yield, respectively. On a similar treatment with triethylamine, however, 3 was unchanged. 

Structural elucidation of 3 and J was accomplished on the basis of spectral data.8)

Scheme 2

Next, a bromination-dehydrobromination sequence was investigated. Bromination of 2 with three 

equivalents of N-bromosuccinimide in the presence of benzoyl peroxide in refluxing carbon tetra-

chloride for 10 h gave a mixture of 4-bromo ,sand 4,7-dibromo derivative 6. Dehydrobromination of 

Q, with sodium hydroxide or ethyl sodiomalonate in refluxing ethanol afforded a mixture of 3,8-di-

phenyl-1,2-diazocine 7, mp 181-182•Ž, and cyclobutapyridazine 8, mp 195•Ž (lit. 9) mp 194•Ž).10) 

The yields of 5, 6, 7 and 8 are shown in Scheme 2. Structural elucidation of 5, 6,and,7 was again 

accomplished on the basis of spectral data. 11) 

Trost et al. 4) demonstrated that when heated 1 decomposed to benzene and pyridine with compa-

rable rates, and when irradiated with ultraviolet light 1 gave only benzene. Thus, we have in-

vestigated thermolysis and photolysis of stable 1,2-diazocines 4 and 7_. 

When heated in refluxing toluene for 4 h, 4 gave 3,6-dichloro-2-phenylpyridine 9 and benzo-

nitrile. The 1,2-diazocine 7 was rather thermally stable than 4, and when heated in toluene under 

reflux for 24 h, .7 afforded a mixture of 2-phenylpyridine 10 and benzonitrile, together with a 

trace amount of o-terphenyl 11 and unchanged 7 (35%). In contrast with 1,4) thermolysis of 4 and 

7 exclusively gave the pyridines with the extrusion of benzonitrile. 

The thermolysis of 4 or can be regarded as proceeding via a valence isomer, 1,8-diazabi-

cyclo[4.2.0]octatriene, with the extrusion of benzonitrile: This was proved by the following evi-

dence. When 4 was heated in wet toluene under reflux for 2 h,9, and 6-benzoyl-3-chloro-2-phenyl-
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pyridine 12 were obtained in 10 and 20% yields, respectively. The 1,2-diazocine 4 was stable in 

refluxing benzene. However, 4 gave 4-acetoxy-7-chloro- 13, mp 138-139•Ž (dec), and 4,7-bis(acetoxy)-

3,8-diphenyl-1,2-diazocine 14, mp 186-188•Ž (dec), in 6 and 53% yields respectively, when heated 

with six equivalents of silver acetate in benzene under reflux for 6 h. The structures 9-)4 were 

identified on the basis of spectral data. 12)

Scheme 3

The pathways for the above thermal reactions are illustrated as shown in Scheme 3. In particu-

lar, the formation of 12, 13 and 14 strongly supports the intervention of 1,8-diazabicyclo[4.2.0]-

octatrienes, A, D, E and k, and homocyclopropenium salts, B and F. In refluxing toluene A gives 9 

with the extrusion of benzonitrile, whereas in wet toluene under reflux A is partially converted 

into 12 via B and then C,(X=Cl or OH). The process 4ABC is closely similar to that of 

the rearrangement of bromocyclooctatetraene to trans-ƒÀ-bromostyrene via a homocyclopropenium salt 

like B.13) It is evident that the 1,2-diazocines 13 and 1,4 are formed via the processes BD 

13 and 13EFG14,respectively.

On the other hand, irradiation of 4 in benzene or ethanol with Pyrex-filtered light from a

200-W high-pressure mercury lamp for 2 h afforded 1,4-dichloro-2,3-diphenyl-

benzene ,5 in a quantitative yield.14) Under similar conditions, 7 gave 

o-terphenyl 11 in 43% yield together with unidentified oily products.
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Thus, the 1,2-diazocine 4 is an useful synthon for other 1,2-diazocines bearing various sub-

stituents at 4- and 7-positions, which are convertible into pyridines and o-terphenyls; work along 

this line is in progress. 
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