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Arynes and Cyclic Alkynes as Synthetic Building Blocks for 
Stereodefined Quaternary Centers 
Elias Picazo,† Sarah M. Anthony,† Maude Giroud, Adam Simon, Margeaux A. Miller, K. N. Houk*, and 
Neil K. Garg* 

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States 

ABSTRACT: We report a facile method to synthesize stereodefined quaternary centers from reactions of arynes and related 
strained intermediates using β-ketoester-derived substrates. Conversion of β-ketoesters to chiral enamines is followed by reaction 
with in situ generated strained arynes or cyclic alkynes. Hydrolytic workup provides the arylated or alkenylated products in enanti-
omeric excesses as high as 96%. We also describe the one-pot conversion of a β-ketoester substrate to the corresponding enantioen-
riched α-arylated product. Computations show how chirality is transferred from the N-bound chiral auxiliary to the final products. 
These are the first theoretical studies of aryne trapping by chiral nucleophiles to set new stereocenters. Our approach provides the 
most general known solution to the challenging problem of stereoselective β-ketoester arylation/alkenylation, with formation of a 
quaternary center. 

INTRODUCTION 
Arynes have historically been avoided as synthetic interme-

diates as a result of their high reactivity.1,2 However, recent 
studies have demonstrated that arynes can be generated under 
mild reaction conditions,3 trapped regioselectively using pre-
dictive models,4 and employed in a host of synthetic applica-
tions. The utility of arynes is evident, as they have now been 
used to synthesize natural products, ligands, materials, agro-
chemicals, and pharmaceutical agents (e.g., 1–3, Figure 1a).1,5 

The majority of reported synthetic applications of arynes are 
intermolecular reactions that lead to achiral or racemic prod-
ucts.6 We questioned if arynes and related strained intermedi-
ates could instead serve as building blocks to generate enanti-
oenriched products bearing quaternary centers. Only two 
methodologies leading to intermolecular, stereoselective aryne 
trappings have been reported and are limited to the synthesis 
of tertiary stereocenters.7,8 

We considered the reaction manifold in which β-ketoesters 
49 would be trapped with strained alkynes 5, to give their cor-
responding α-arylated products 6 with formation of a quater-
nary stereocenter (Figure 1b).10 As prior efforts to achieve this 
direct functionalization in a racemic sense were accompanied 
by an undesired C–C bond fragmentation,11 we considered a 
two-step, alternative approach. First, β-ketoesters 4 would be 
treated with amines 7 to afford the corresponding enamines 
8.12 Trapping of the enamines 8 with in situ-generated arynes 
(or strained cyclic alkynes) would give the α-arylated or 
alkenylated products 6 after hydrolysis in the same pot.13 The 
use of a chiral amine (i.e., 7) in this process would ultimately 
give rise to enantioenriched products 6 bearing quaternary 
stereocenters.10,14 It should be noted that the enantioselective 
α-arylation of β-ketoesters has remained a challenging syn-
thetic problem.15 Promising developments include the use of 
hypervalent iodine reagents (racemic or modest enantioen-
richment),16 the Cu-catalyzed, enantioselective coupling of 2-

methylacetates with 2-iodotrifluoroacetanilides,17 and the Pd-
catalyzed α-arylation of malonates and cyanoacetates (race-
mic).18

 A general method for the stereocontrolled α-arylation 
or -alkenylation of β-ketoesters has not been disclosed. 

 

 
Figure 1. Synthetic applications of arynes and strategy for the 
stereoselective arylation of β-ketoesters. 

We report the development of the synthetic sequence shown 
in Figure 1b, which provides a facile method to achieve the 
stereoselective α-arylation/alkenylation of β-ketoesters.9 In 
addition to providing access to adducts bearing stereodefined 
quaternary centers, this methodology demonstrates that highly 
reactive arynes and related intermediates can serve as building 
blocks to access enantioenriched products by intermolecular 
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trapping. In addition, the origins of stereoselectivity have been 
revealed by a computational investigation of these reactions. 

RESULTS AND DISCUSSION 
Development of a Racemic and Stereospecific Reaction 

to Generate Quaternary Centers. To commence our studies, 
we selected β-ketoester 9 as an initial substrate for the two-
step arylation procedure (Figure 2). As the use of enamines 
and arynes to construct quaternary stereocenters was un-
known, we first pursued a racemic transformation. Benzyla-
mine was condensed with ketoester 9 to yield enamine 10 
quantitatively. Next, enamine 10 was used to trap benzyne, 
which was generated in situ from silyl triflate 11 (1.5 equiv) in 
DME at 30 °C (6 h). After quenching with 1 M HCl(aq), we 
were delighted to obtain the desired α-arylated product 12 in 
92% yield with introduction of a quaternary center.19 Further-
more, we surveyed several other highly reactive intermediates 
to gauge the possibility of utilizing substituted benzynes and 
cyclic alkynes. The use of fused arynes 2,3-naphthalyne and 
N-Boc-4,5-indolyne20 provided arylated products 13 and 14, 
respectively.21 In addition, trapping with known heterocyclic 
alkynes22 delivered tetrahydropyridine 15 and dihydropyran 16 
in 67% and 74% yields, respectively. Regioselectivities for the 
formation of 14–16 were in accord with the distor-
tion/interaction model.20,22 These results represent a facile 
means to install aryl and vinyl moieties onto a cyclic β-
ketoester with quaternary center formation. 

 

 
Figure 2. Discovery of methodology for the arylation/vinylation 
of β-ketoesters in racemic fashion. Conditions for enamine for-
mation: ketoester 9 (1.0 equiv), benzylamine (1.5 equiv), Na2SO4 
(5:1 by wt.), benzene (0.7 M), 80 °C, 16 h. Conditions for aryla-
tion/alkenylation unless otherwise stated: i. enamine 10 (1.0 
equiv), silyl triflate 11 (1.5 equiv), CsF (7.5 equiv), DME (0.1 M), 
30 °C, 6 h; ii. 1 M HCl(aq), 23 °C, 30 min. Yields reflect the aver-
age of two isolation experiments. a Aryne trapping performed for 
3 h.  

Having developed the racemic arylation/alkenylation reac-
tion, we turned our attention to the discovery of a diastereose-
lective variant to access enantioenriched products (Table 1).23 
Thus, a series of enantioenriched chiral amines, readily pre-
pared using Ellman auxiliary chemistry (i.e., 18–24),24,25 were 
condensed with ketoester 9 to access enamines 17. Subsequent 
arylation under the conditions depicted in Figure 2 furnished 
12 in enantioenriched form. Utilization of phenyl derivative 18 
resulted in the formation of 12 in good yield and 74% enanti-
omeric excess (ee) (entry 1). Employing amine 19, bearing a 
cyclohexyl moiety, gave the desired product in a lower ee of 
30% (entry 2). Recognizing the importance of the aryl frag-
ment, we examined 1- and 2-naphthyl derived amines 20 and 

21, which provided 12 in 80% and 56% ee (entries 3 and 4, 
respectively). With improved results in the case of 20, we ex-
amined anthracenyl amines 22–24 (entries 5–7). As the use of 
ethyl derivative 23 furnished 12 with the best combination of 
yield and ee (entry 6), 23 was selected for subsequent studies. 
It should be noted that the Ellman-approach provides both 
enantiomers of 23, which, in turn, permits access to each enan-
tiomer of the products depicted subsequently.26,27 

 
Table 1 Survey of chiral auxiliaries to give optically enriched 
ketone 12.a 

 
a Reaction conditions: i. enamine 17 (1.0 equiv), silyl triflate 11 
(1.5 equiv), CsF (7.5 equiv), DME (0.1 M), 30 °C, 6 h; ii. 1 M 
HCl(aq), 23 °C, 30 min. 
 

Scope of Methodology. With a suitable chiral amine identi-
fied, we evaluated several cyclic alkynes in the stereoselective 
arylation/alkenylation reaction to form quaternary stereocen-
ters (Figure 3). The reaction was tolerant of substituted ben-
zyne intermediates and extended aryl units, giving rise to ary-
lated products 28 and 13, respectively.28 Moreover, trapping of 
an indolyne intermediate delivered heterocycle-containing 
product 14. When applied to non-aromatic, strained alkynes, 
the methodology provided alkenylated products in good yields 
and stereoselectivities. For example, trapping of cyclohexyne29 
provided cyclohexene derivative 29 in good yield and 86% ee. 
Additionally, by employing heterocyclic alkynes, products 15 
and 16 were obtained in excellent yields and comparable ste-
reoselectivities. 

As shown in Figure 4, the methodology is also tolerant of 
variation in the nucleophilic component. For example, re-
placement of the ethyl ester with a benzyl ester in the parent 
substrate gave rise to arylated product 32 in 71% yield and 
86% ee. Furthermore, piperidinone and tetrahydropyranone 
derivatives could be employed to access heterocyclic products 
(i.e., 33–35). Enamines derived from 7-membered ring β-
ketoesters could also be utilized, as shown by the formation of 
arylated products 36 and 37 with excellent stereoselectivity. 
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Lastly, the formation of ketoester 38 demonstrates the viability 
of utilizing this methodology for the α-arylation of acyclic β-
ketoesters. 

 

 
Figure 3. Variation of the electrophile. Conditions unless other-
wise stated: i. enamine 25 (1.0 equiv), silyl triflate 26 (1.5 equiv), 
CsF (7.5 equiv), DME (0.1 M), 30 °C, 6 h; ii. 1 M HCl(aq), 23 °C, 
30 min. Yields reflect the average of two isolation experiments. a 
Aryne or cyclic alkyne trapping performed for 3 h. 

 

 
Figure 4. Variation of the nucleophilic component 30 in the trap-
ping with 11. Conditions unless otherwise stated: i. enamine 30 
(1.0 equiv), silyl triflate 11 (1.5 equiv), CsF (7.5 equiv), DME 
(0.1 M), 30 °C, 3 h; ii. 1 M HCl(aq), 23 °C, 30 min. Yields reflect 
the average of two isolation experiments. a Aryne trapping per-
formed for 6 h.  

 
One-pot, Stereoselective Arylation. As one final applica-

tion of this methodology, we developed a one-pot variant of 
the methodology to convert ketoester substrate 39 to α-

arylated product 36, with recovery of the chiral auxiliary (Fig-
ure 5). β-Ketoester 39 was reacted with amine 23 to generate 
enamine 40 in situ. Addition of CsF and silyl triflate 11, fol-
lowed by stirring at 30 °C for 6 h, and subsequent acid-
mediated hydrolysis yielded the desired α-arylated product 36. 
When performed on mmol scale, the reaction gave 36 in 68% 
yield and 92% ee, in addition to 67% recovered amine 23. 
This protocol provides a promising means to achieve the di-
rect, asymmetric α-arylation of β-ketoesters. 

 

 
Figure 5. One-pot, mmol-scale arylation reaction to furnish 36. 
Conditions for enamine formation: ketoester 39 (1.0 equiv), amine 
23 (1.0 equiv), benzene (0.7 M), 80 °C, 16 h, followed by evapo-
ration of benzene solvent. Conditions for arylation: i. silyl triflate 
11 (1.5 equiv), CsF (7.5 equiv), DME (0.1 M), 30 °C, 6 h; ii. 1 M 
HCl(aq), 23 °C, 12 h. 

 
Computational Analysis of Chirality Transfer. Density 

functional theory (DFT) calculations were performed to un-
derstand how stereochemical information is transferred from 
the chiral auxiliary to the newly formed quaternary stereocen-
ter. Our laboratories have studied reactions of arynes in nucle-
ophilic additions using computations,4 but no theoretical stud-
ies of aryne trapping by chiral nucleophiles to set new stereo-
centers have been reported. All calculations described here 
utilize the M06-2X30/def2-TZVPP–SMD31 (diethyl 
ether)//B3LYP32/6-31+G(d,p) level of theory (see the SI for a 
discussion of the computational methods and results with other 
density functionals). 

We first calculated the stereo-controlling transition struc-
tures for the reaction of benzyne and the S enantiomer of the 
chiral enamine derived from amine 20, which possesses the 1-
naphthyl group at the chiral center. The stereochemistry-
controlling transition structures are shown in Figure 6. Each 
pathway has a low barrier (∆G‡ = 9.6 and 11.6 kcal/mol, re-
spectively). TS1 leads to the experimentally preferred stereoi-
somer, (S)-12, whereas TS2 yields the minor enantiomer, (R)-
12.33 The difference in free energy of activation (∆∆G‡) is 2.0 
kcal/mol, within error of the experimentally observed selectiv-
ity of 80% ee (∆∆G‡ = 1.3 kcal/mol). In both TS1 and TS2, an 
intramolecular hydrogen bond between the NH and ester car-
bonyl is present. Axial-attack by benzyne occurs in both cases, 
as expected from the preference the forming bond to be stag-
gered with respect to the allylic CH bonds (known previously 
as the Fürst-Plattner rule).34 While attack is axial in both cases, 
and the chiral group is in its favored conformation, the interac-
tion of the CH at the stereogenic center is disfavorable in the 
minor TS.  
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Figure 6. Lowest-energy transition structures TS1 and TS2 for 
the addition of benzyne and the chiral enamine derived from 
amine 20 (M06-2X/def2-TZVPP–SMD (diethylether)//B3LYP/6-
31+G(d,p)). Free energy activation barriers (∆G‡) are compared to 
separated intermediates. The difference in free energies of activa-
tion (∆∆G‡), relative to TS1, are reported in kcal/mol. 

In TS2, there is a close-contact H–H interaction of 2.1 Å be-
tween the chiral center of the enamine and methylene of the 
six-membered ring. This contact is alleviated in TS1, with an 
H–H interaction distance of 2.4 Å. Our laboratory has previ-
ously examined the transmission of chirality in the reaction of 
a similar chiral enamine with acrylonitrile, which similarly 
revealed the importance of torsional interactions between 
forming bonds and allylic bonds.34 In that case, the same con-
formations and their energies were found for the chiral 
enamine with a phenyl ring instead of naphthyl. Torsional 
strain35 controls the stereoselectivity of this reaction, where the 
enamine conformations remain the same for both stereoiso-
meric transition states.  

One might expect that the stereoselectivity cannot be modu-
lated by the size of the substituent, but as found here, enamine 
25 has improved enantioselectivity with the larger 9-
anthracenyl substituent. We calculated the stereochemistry-
controlling transition structures for the reaction of chiral 
enamine 25 and benzyne using methyl groups in place of ethyl 
groups to simplify computations.36 The two lowest-energy 
transition structures leading to the major and minor stereoiso-
mers are shown in Figure 7. TS3 leads to the experimentally 
preferred stereoisomer, (S)-12, whereas TS4 yields the minor 
enantiomer. The difference in free energy of activation (∆∆G‡) 
is 2.5 kcal/mol, within error of the experimentally observed 
selectivity of 84% ee (∆∆G‡ = 1.5 kcal/mol) and 0.5 kcal/mol 
higher than observed with 20. Axial-attack by benzyne again 
occurs for the two half-chair conformers of the cyclohexene. 
However, here the conformation of the enamine stereogenic 
group differs between the stereoisomeric transition structures. 
Whereas the conformation of TS3 is analogous to that in TS1, 
the enamine in TS4 is in a higher-energy conformation be-
cause the face being blocked to form the (R)-isomer is ob-

structed by the anthracene group. This conformation yields a 
higher-energy penalty than the torsional strain found in TS2, 
which enables an increase in enantiospecificity. 

 

 
Figure 7. Lowest-energy transition structures TS3 and TS4 for 
the addition of benzyne and chiral enamine 25 (M06-2X/def2-
TZVPP–SMD (diethylether)//B3LYP/6-31+G(d,p)). Free energy 
activation barriers (∆G‡) are compared to separated intermediates. 
The difference in free energies of activation (∆∆G‡), relative to 
TS1, are reported in kcal/mol. 

CONCLUSIONS 
We have developed the first methodology that allows for 

arynes and related strained intermediates to be trapped inter-
molecularly for the formation of stereodefined quaternary 
centers. The strategy relies on the facile conversion of β-
ketoesters to chiral enamines, which undergo nucleophilic 
trapping of in situ generated strained arynes or cyclic alkynes. 
Hydrolysis in the same pot provides the arylated products in 
good to excellent enantiomeric excesses (up to 96% ee). This 
strategy circumvents a previously known undesired C–C bond 
fragmentation, while providing the most general solution to 
the challenging problem of stereoselective β-ketoester aryla-
tion/alkenylation, with formation of a quaternary center. In 
addition, a one-pot procedure for the conversion of a β-
ketoester substrate to the corresponding enantioenriched α-
arylated product was developed. Finally, computations show 
how chirality transfer is achieved from the chiral auxiliary to 
the final products, a type of conformational transmission oper-
ating in the trapping of arynes by chiral nucleophiles. We ex-
pect these studies will enable further developments of intermo-
lecular, stereoselective reactions of highly reactive aryne and 
cyclic alkyne intermediates. 
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