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Abstract—A formal synthesis of loracarbef is described. The required key cis-substituted azetidinone skeleton was stereoselectively
constructed via �-amino acid, which was provided from the asymmetric aminohydroxylation of �,�-unsaturated ester. © 2001
Elsevier Science Ltd. All rights reserved.

Loracarbef is a carbacephalosporin antibiotic with the
extended chemical and serum stability.1 This oral
antibiotic is currently on the market and has found
specialized use in the treatment of paediatric ear
infections. However, unlike cephalosporins, which are
usually obtained by partial synthesis from either peni-
cillin sulfoxide esters or side-chain modification of 7-
aminocephalosphoranic acid(7-ACA), carbacephalo-
sporins are currently available only by total syn-
thesis.2

There are many elegant syntheses of loracarbef.2–4 It is
well known that the most direct access to loracarbef is
the utilization of a cis-(3S,4R)azetidinone 2. Many
published syntheses of this key intermediate utilize the
classical [2+2] ketene-imine cyclization (Staudinger
reaction)3 or cyclization of �-hydroxy-�-amino acids.4

Our synthetic plan for the construction of the cis-sub-
stituted azetidinone is illustrated in Scheme 1. The
�-azido-�-amino acid 3 could be obtained via Sharpless

Scheme 1.
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* Corresponding author.

0040-4039/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0040 -4039 (01 )00757 -2



HO
OBn

O

EtO
OBn

O

EtO
OBn

OH

NHBoc

O

EtO
OBn

NHBoc

N3

O

HO
OBn

NH2 TFA

N3

NH
O

N3
OBn

PhO

O

H
N

NH
O

OBn PhO

O

H
N

NH
O

O

OH

6 5 4

7 83

9 2

a,b c d,e,f

g,h i j,k

l,m

loracarbef

J.-C. Lee et al. / Tetrahedron Letters 42 (2001) 4519–45214520

Scheme 2. Reagents and conditions : (a) (COCl)2, DMSO, Et3N, CH2Cl2, −78°C, 88%; (b) (EtO)2P(O)CH2CO2Et, DBU, LiCl,
CH3CN, 0°C, 82%; (c) t-Butylcarbamate, NaOH, t-BuOCl, (DHQD)2PHAL (6 mol%), K2[OsO2(OH)4] (4 mol%), n-PrOH–H2O
(2/1), 0°C, 65%; (d) C6H5CO2H, DEAD, Ph3P, THF, 84%; (e) K2CO3, MeOH, 95%; (f) HN3 (1.0 mol solution in benzene),
DEAD, Ph3P, THF, 80%; (g) K2CO3, MeOH–H2O (2/1); (h) TFA, 0°C; (i) 2-chloro-1-methylpyridinium iodide, Et3N, CH3CN,
rt–55°C, 45% (three steps); (j) Ph3P, THF–H2O (25/1); (k) PhOCH2COCl, CH3CN–aq. NaHCO3, 75% (two steps); (l) H2, 10%
Pd–C, EtOH; (m) Jones reagent, acetone, 0°C, 72% (two steps).

asymmetric aminohydroxylation5 of �,�-unsaturated
ester 5 followed by introduction of azide. The
intramolecular cyclization of 3 would afford the
required cis-substituted azetidinone skeleton possessing
the appropriate functionalities for further transforma-
tion. Introduction of the phenoxy acetyl group and
oxidation of primary alcohol would furnish 2, which is
the same intermediate reported by Ternansky et al. at
Eli Lilly.6 Compound 2 was set as the target molecule
for our synthetic study.

According to the synthetic plan, monoprotected 1,4-
butanediol 6 was then oxidized to the aldehyde (88%),
which was subjected to Horner–Emmons olefination
with triethyl phosphonoacetate to obtain the �,�-unsat-
urated ester 5 in 82% yield. The asymmetric aminohy-
droxylation of 5 with the sodium salt of t-butyl-
carbamate and a 4 mol% K2[OsO2(OH)2]/6 mol%
(DHQD)2PHAL admixture in n-PrOH–water led to the
desired regioisomer [2S,3R ]-4 in good yield with high
regioselectivity (>13:1) and enantioselectivity (89% ee)7

(Scheme 2).

Next, introduction of the required azide group into
�-position of [2S,3R ]-4 with retention of configuration
was accomplished by double Mitsunobu reactions.
Treatment of [2S,3R ]-4 with benzoic acid, Ph3P, and
DEAD afforded the benzoate (84%), which was easily
hydrolyzed with K2CO3 in MeOH to give the inverted
[2R,3R ]-alcohol (95%) at the �-position. Subsequently,
the resulting alcohol was treated with a 1.0 mol solu-
tion of HN3 in benzene, Ph3P, and DEAD to afford
[2S,3R ]-7 in 80% yield. Hydrolysis of the ester 7 with
K2CO3 in MeOH–water and subsequent TFA deprotec-
tion gave a quantitative yield of the �-amino acid 3.

Intramolecular cyclization of 3 using a Mukaiyama’s
condition8 afforded the cis-substituted azetidinone 8 in
45% yield for the three steps.

Reduction of the azide functionality of 8 with Ph3P in
THF and water, followed by acylation with phenoxy-
acetyl-chloride in CH3CN and aq. NaHCO3 provided 9
in 75% yield. Finally, deprotection of the benzyl group
of 9 and the following treatment with Jones reagent
afforded the desired cis-3,4-disubstituted azetidinone 2
in 72% yield.

In conclusion, a formal synthesis of loracarbef was
accomplished with high stereoselectivity. The stereo-
selective construction of the key intermediate cis-3,4-
disubstituted azetidinone 2 was performed by employ-
ing intramolecular cyclization of �-amino acid 3 which
was provided from the asymmetric aminohydroxylation
of �,�-unsaturated ester 5.

We are currently undertaking further investigation in
our laboratories to enhance the scope of this process
for a large-scale production.
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