
LETTER934

Preparation of 3-Alkyl-Oxindoles by Copper(II)-Mediated C–H, 
Ar–H Coupling Followed by Decarboxyalkylation
Preparation of 3-Alkyl-OxindolesDavid. S. Pugh, Johannes E. M. N. Klein, Alexis Perry, Richard J. K. Taylor*
Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
Fax +44(1904)434523; E-mail: rjkt1@york.ac.uk
Received 14 December 2009

Dedicated to Professor Saverio Florio in celebration of his 70th birthday

SYNLETT 2010, No. 6, pp 0934–0938xx.xx.2010
Advanced online publication: 18.02.2010
DOI: 10.1055/s-0029-1219392; Art ID: D36209ST
© Georg Thieme Verlag Stuttgart · New York

Abstract: A novel route for the conversion of anilides into 3-alkyl-
oxindoles is described in which a copper(II)-mediated cyclization
process is followed by an acid-mediated decarboxyalkylation.
Scope and limitation studies are reported together with a telescoped
variant which incorporates in situ N-deprotection.
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We recently developed a novel copper(II)-mediated route
for the conversion of anilides 1 into 3-alkyl-3-carbo-
ethoxy-oxindoles 2 by a formal C–H, Ar–H coupling pro-
cess as shown in Scheme 1.1,2 In the case of the 3-
methylated example 1a it proved possible to carry out a
‘one-pot’ cyclisation–decarboxyalkylation process to pro-
duce 3-methyl-oxindole (3a) in reasonable yield
(Scheme 2).1

In view of the utility of 3-alkylated oxindoles as synthetic
building blocks3 and as drug candidates,4 and given the
low yields often observed in the 3-alkylation of oxin-

doles,3f we attempted to generalize this procedure. Un-
fortunately, the base-mediated saponification–
decarboxylation sequence proved to be unsuccessful with
other 3-alkyl-3-carboethoxy-oxindoles 2 (e.g., 3-allyl and
3-benzyl analogues); such problems during basic proce-
dures are precedented.3g,h As shown in Scheme 3, we
therefore proposed the use of the corresponding tert-butyl
esters 4 to evaluate their utility5 in the copper(II)-mediat-
ed cyclization process with a view to exploring an acid-
mediated route to 3-alkyl-oxindoles 3.

To test this approach, anilide 4a (R = Me) was prepared as
shown in Scheme 4.6 Thus, Mukaiyama coupling7 of N-
methylaniline (6) and tert-butyl malonate (7) gave amide
8 in essentially quantitative yield. Alkylation using meth-
yl iodide also proceeded efficiently to give cyclization
precursor 4a. The key copper(II)-mediated cyclization
was investigated next using the Cu(OAc)2·H2O–DMF
procedure developed earlier.1 We were delighted to ob-
serve the formation of oxindole 5a in good yield using
these conditions. The second crucial step in this sequence,
the acid-mediated decarboxyalkylation to produce 3-
methyl-oxindole (3a), proved to be relatively straightfor-
ward (Scheme 4). This transformation could be achieved
using several acids but neat TFA (with anisole as a cation
trap)8 at room temperature proved to be the most effective.

Having established the viability of the copper(II)-mediat-
ed cyclization route on tert-butyl ester 4a and the decar-
boxyalkylation of tert-butyl ester 5a, we went on to
explore the scope of this cyclisation–decarboxyalkylation
sequence with a range of anilides 49 (Table 1).

As can be seen, this cyclisation–decarboxyalkylation se-
quence was used to prepare a range of 3-substituted oxin-
doles including those with saturated alkyl substituents
(entries 1–3), allyl, benzyl, phenethyl, and naphthylmeth-
yl substituents (entries 4–7), as well as the benzyloxypro-

Scheme 1

N
Me

O

R
CO2Et

KOt-Bu, DMF

21

N
Me

O

CO2EtR

Cu(OAc)2⋅H2O

Scheme 2

N
Me

O

CO2Et

1a 3a

ii. NaOH 
    then NH4Cl

69%

N
Me

O

Me
Me i. KOt-Bu, DMF

  Cu(OAc)2⋅H2O

Scheme 3

N
Me

O

R
CO2t-Bu

KOt-Bu, DMF

54 3

N
Me

O

R

N
Me

O

CO2t-BuR
acid

Cu(OAc)2⋅H2O

D
ow

nl
oa

de
d 

by
: Q

ue
en

's
 U

ni
ve

rs
ity

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



LETTER Preparation of 3-Alkyl-Oxindoles 935

Synlett 2010, No. 6, 934–938 © Thieme Stuttgart · New York

pyl (entry 8) and 4-pyridylmethyl (entry 9) examples. All
reactions proceeded in the expected manner in fair to ex-
cellent yield. The conditions devised for 4a and 5a
(Scheme 4) were employed in all examples; it is likely
that the lower yields could be improved with further opti-
mization studies. One notable observation from this study

is the profound steric effect observed for the cyclization of
the isopropyl system with oxindole 5c being obtained in
only 42% yield after a reaction time of 72 hours.

Scheme 4
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Table 1 Scope of the Cyclisation–Decarboxyalkylation Sequence

Entry Cyclisation product 5 Yield 5 (%) 3-Alkyl-oxindole 3 Yield 3 (%)
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Finally, we briefly explored the utility of this methodolo-
gy for the preparation of unprotected oxindoles
(Scheme 5). Thus, we established that p-methoxybenzyl
(PMB) protection is compatible with the copper(II)-medi-
ated cyclization (9 → 10) and then investigated deprotec-
tion protocols.

Treatment of oxindole 10 using the TFA and room tem-
perature conditions developed earlier, for 2 hours, gave
efficient decarboxyalkylation producing the N-PMB-pro-
tected 3-benzyl-oxindole 11 in excellent yield. The use of
a higher temperature and a longer reaction time gave both
decarboxyalkylation and N-deprotection producing 3-
benzyl-oxindole 12 in 87% yield. The complementarity of

these deprotection procedures should be of value when the
product oxindoles are required for further synthetic elab-
oration.

In summary, an inexpensive and operationally straightfor-
ward sequence for the conversion of readily available
anilides 4 into 3-substituted-N-methyl-oxindoles 3 has
been developed, based on a copper(II)-mediated C–H,
Ar–H coupling process followed by decarboxyalkylation.
This procedure is compatible with alkyl, arylalkyl, and
functionalized substituents and can also be utilized to pre-
pare 3-substituted oxindoles in the N–H form. We are cur-
rently applying this new methodology in natural product
areas.
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aA reaction time of 72 h was required.

Table 1 Scope of the Cyclisation–Decarboxyalkylation Sequence (continued)
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(11) Representative Procedure for Decarboxyalkylation: 
1-Methyl-3-(naphthalen-2-ylmethyl) indolin-2-one (3g)
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Rf = 0.39 (3:1 PE–EtOAc); mp 91–93 °C. IR (film): nmax = 
3053, 2920, 2853, 1709, 1612, 1493, 1469, 1422, 1375, 
1350, 1256, 1127, 1089, 750, 732 cm–1. 1H NMR (400 MHz, 
CHCl3-d1): d = 3.04 (1 H, dd, J = 13.5, 9.5 Hz, CH2), 3.17 (3 
H, s, NMe), 3.67 (1 H, dd, J = 13.5, 4.5 Hz, CH2), 3.84 (1 H, 
dd, J = 9.5, 4.5 Hz, CH), 6.71–6.77 (2 H, m, J = 7.5 Hz, 
ArH), 6.88 (1 H, ddd, J = 7.5, 7.5, 1.0 Hz, ArH), 7.21 (1 H, 
dd, J = 8.0, 8.0 Hz, ArH), 7.34 (1 H, dd, J = 8.5, 1.5 Hz, 

ArH), 7.43–7.47 (2 H, m, ArH), 7.60 (1 H, br s, ArH), 7.73–
7.82 (3 H, m, ArH). 13C NMR (100 MHz, CHCl3-d1): d = 
26.2 (NMe), 37.0 (CH2), 46.9 (CH), 107.9 (ArH), 122.1 
(ArH), 124.5 (ArH), 125.5 (ArH), 126.0 (ArH), 127.6 (3 × 
ArH), 127.9 (2 × ArH), 128.0 (ArH), 128.3 (Ar), 132.3 (Ar), 
133.3 (Ar), 135.5 (Ar), 144.1 (Ar), 177.0 (C=O). ESI-MS: 
m/z = 310 [MNa]+. ESI-HRMS: m/z calcd for C20H17NNaO: 
310.1202; found: 310.1196 [MNa]+; 1.6 ppm error.
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