

Accepted Article

Title: Isolable CO2 Adducts of Polarized Alkenes: High Thermal Stability and Catalytic Activity for CO2 Chemical Transformation

Authors: Hui Zhou, Rui Zhang, and Xiao-Bing Lu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Adv. Synth. Catal. 10.1002/adsc.201801194

Link to VoR: http://dx.doi.org/10.1002/adsc.201801194

10.1002/adsc.201801194

Isolable CO₂ Adducts of Polarized Alkenes: High Thermal Stability and Catalytic Activity for CO₂ Chemical Transformation

Hui Zhou,^{a,*} Rui Zhang^a and Xiao-Bing Lu^{a,*}

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China E-mail: zhouhui@dlut.edu.cn; xblu@dlut.edu.cn

Received: ((will be filled in by the editorial staff))

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201#######.((Please delete if not appropriate))

Abstract. Various CO₂ adducts of tetra-hydropyrimidin-2ylidene (THPE) derived from the commercially available 1, 5-diazabicyclo[4.3.0]non-5-ene (DBN) were firstly synthesized. X-ray single crystal analysis revealed the bent geometry of the binding CO₂ having an O-C-O angle of 127.50~129.51° for THPE-CO₂ adducts. In situ FTIR experiments demonstrated that THPE-CO₂ had unprecedented thermal stability in DMSO, even at 100 °C without decomposition. It was found that the THPE-CO₂ adducts were highly active in catalyzing the carboxylative cyclization of CO₂ with propargylic alcohols under mild conditions, significantly higher than the previously reported

Introduction

The development of efficient catalytic processes for carbon dioxide (CO₂) transformation into valuable organic chemicals/materials has been a longstanding goal for chemists, since CO₂ represents a nontoxic, abundant, and renewable C1 building block for chemical synthesis and industrial applications as an alternative to the common feedstocks based on natural gas, petroleum oil or coal.^[1,2] The biggest obstacle is lack of effective catalysts to facilitate its activation and subsequent transformation, since CO₂ is such a thermodynamically and kinetically inert molecule.^[3] Although CO₂ is a linear nonpolar molecule in the ground state, its two carbon-oxygen double bonds are polar. A net partial charge is present on carbon and oxygen atoms, in which the carbon atom plays the role of a Lewis acid center, while the oxygen atoms show a Lewis base character. As a result, electron-rich nucleophiles tend to interact with CO₂ by binding to the carbon atom, while electrophiles will attack one or two of the oxygen atoms. In 1975, Aresta et al. reported the isolation of the first CO₂-based complex, Ni(PCy₃)₂(CO₂), in which the CO₂ ligand was coordinated in η^2 mode through the carbon atom and one of the oxygen atoms, possessing a bent geometry with an O-C-O angle of 133°.^[4] More recently, Bourissou and coworkers described a rare example of η^1 -CO₂ adduct of a group 10 metal (Pt), stabilized by $O \rightarrow Al$ interaction. The

organocatalysts. Various internal and terminal functionalized propargylic alcohols were tolerated in there processes to afford the corresponding α -alkylidene cyclic carbonates in moderate to good yields with complete (Z)stereoselectivity. Isotope labeling, in combination with insitu FTIR and stoichiometric experiments, revealed that the catalytic reaction tends to proceed via the THPE-CO2mediated basic ionic pair mechanism.

Keywords: CO₂ adducts; Organocatalysis; Polarized Alkenes; CO₂ transformation; Cyclic carbonates

binding CO₂ molecule is also bent [O-C 122.9°(9)]. ^[5]

Generally, CO_2 is a better acceptor than donor of electron density, due to the higher electrophilicity of carbon atom than the nucleophilicity of the oxygen atoms. It has been reported that strong Lewis bases such as the amidines and guanidines containing nitrogen heterocycles to react with CO₂, expectantly affording zwitterionic adducts.^[6] The representative example is the N-heterocyclic carbene (NHC)-CO₂ adduct, in which a bent geometry with an O-C-O angle of 129~131° was revealed by X-ray singlecrystal analysis.^[7] Following this study, various organic base systems including 1.5.7-

molecules

heterocyclic

triazabicyclo[4.4.0]dec-5-ene

olefins

(TBD).^[8] N-(NHOs),^[9] alkoxide-(AFIBs),^[10] functionalized imidazolium betaines phosphorus ylides (P-ylides),^[11] 1,3-diisopropyl-4,5dimethylimidazolin-2-ylidenamino substituted phosphines (NI'Pr-P)^[12] and frustrated Lewis pairs (FLPs),^[13] have been systematically studied for CO₂ sequestration, and the corresponding CO_2 adducts were successfully isolated (Figure 1). Moreover,

these CO₂ adducts of superbases were found to be active in catalyzing the coupling of CO₂ with epoxides or aziridines to afford cyclic carbonates or oxazolidinones,[7c,14] the carboxylation with propargylic alcohols α -alkylidene to cyclic carbonates,^[7f,9,10b] and the reduction of CO_2 to methanol, formamides and methylamines.^[15] Noting that the structures of CO₂ adducts significantly affect their catalytic activities in CO₂ transformation. For example, the carboxylative cyclization of CO₂ with propargylic alcohols is one of the atom-economical routes to afford α -alkylidene cyclic carbonates.^[16] In 2009, Ikariya et al reported the use of NHC-CO2 adducts as organic catalysts for this process under a high CO₂ pressure of 4.5 MPa.^[7f] Surprisingly, the significant increases in catalytic activity were observed in the application of NHO-CO₂ adducts as catalysts at the same conditions, in comparison with the corresponding NHC-CO₂ adducts.^[9,17] Following this discovery, Lu et al. successively reported the AFIBs-CO₂ adducts^[10b] and P-ylide CO₂ adducts^[11b] catalyst systems for this process.

Indeed, both isotope labeling experiments and kinetic studies indicated that the above catalytic processes all concerned the decarboxylation of CO₂ adducts, in which the superbases could be really catalytic active species. In this process, the departure of the product from organic bases might be a possible rate-limiting step in the catalytic cycle. Although the decarboxylation of CO₂ adducts to free-superbases is beneficial for abstracting hydrogen of propargylic alcohol to form the intermediate, but has a negative effect on the departure of the product from organic bases. Therefore, from the comprehensive point, their CO₂ adducts rather than superbases themselves benefits for the final release of the product (the possible rate-limiting step), and thus probably significantly increasing the reaction rate.

In this paper, we firstly report the synthesis of various CO₂ adducts of tetra-hydropyrimidin-2ylidene (THPE) derived from the commercially available 1, 5-diazabicyclo[4.3.0]non-5-ene (DBN)

and unveil their geometries by X-ray single crystal analysis. Additionally, these adducts were also applied as effective organocatalysts for CO_2 transformation to useful chemicals under mild conditions, especially with a focus on the relevancy between the thermal stability and catalytic activity.

Results and Discussion

Synthesis and Characterization. THPE-CO₂ adducts (3a-3d) were synthesized in excellent yields using a procedure illustrated in Scheme 1. Firstly, in the presence of KH and a catalytic amount of *t*BuOK, the available DBN salts (1a-1d) were deprotonated in THF at ambient temperature, selectively affording THPEs **2a-2d**. Then, the resultant THPE solution was exposed to 1.0 atm CO₂ to afford THPE-CO₂ adducts as white solids. The characterizations including ¹H-NMR, ¹³C-NMR data and FT-IR analysis for these THPE-CO₂ adducts **3a-3d** are given in the supporting information.

Scheme 1. Synthesis of THPE-CO₂ adducts 3a-3d.

Single crystals of THPE-CO₂ adducts **3a**, **3c** and **3d** for the X-ray crystal structure analysis were obtained by slow diffusion of diethyl ether into CH₃CN solution at -35 °C. The selected bond lengths and bond angles are shown in Figure 2. The O-C-C angles of THPE-CO₂ adducts are in the range of 127.50~129.51°, which are nearly equivalent to those of the imidazo-functionalized NHO-CO₂ systems^[9]. Interestingly, the two C–O bond distances regarding the binding CO₂ are different and the biggest discrepancy up to 0.033 Å was observed in the crystal data of compound 3d. These data indicate that the negative charge of the THPE-CO₂ adducts is preferentially delocalized on O(2) atom, which is closer to N(2) atom.

Figure 2. POV-Ray illustrations of the molecular structure of 3a, 3c and 3d. Selected bond lengths (Å) and angles (°) for 3a: C1-C2 1.566, O1-C1 1.245, O2-C1 1.249, O1-C1-O2 128.27; 3c: C1-C2 1.544, O1-C1 1.231, O2-C1 1.251, O1-C1-O2 127.50; 3d: C1-C2 1.548, O1-C1 1.210, O2-C1 1.243, O1-C1-O2 129.51.

Thermostability Studies. Decarboxylation of CO₂ adducts of organic nucleophiles is normally observed at enhanced temperatures. Their thermal stabilities are significantly affected by the donating ability of organic nucleophiles and steric hindrance. In situ infrared spectroscopy was utilized to investigate the thermal stability of THPE-CO₂ adducts at different temperatures. As shown in Figure 3, the absorption peaks at 1679 cm⁻¹ and 1604 cm⁻¹ are attributable to the C=N and C=O band of **3a**, respectively. The C=O stretching frequency obviously red-shifted compared to the previously reported NHC-CO₂ or NHO-CO₂ adducts due to the inductive effect.^[7b-d,7h,8-10,12b] In-situ FTIR study demonstrated that 3a was very stable in DMSO at various temperatures. Even increasing the temperature to 100 °C still could not provoke the decarboxylation of 3a, due to no obvious change in intensity both at 1679 cm⁻¹ and 1604 cm⁻¹ in 2 hours (Figure 3). It is worth mentioning that the previously reported NHC-CO₂ and NHO-CO₂ adducts are rapidly decarboxylated in DMSO solution at 40 °C (Figure 4). Meanwhile, in-situ FT-IR experiments by monitoring the C=O stretching frequency of 3b-3d indicate that these CO₂ adducts are also very stable in DMSO solution at 100 °C (Figure S1-S7, see Supporting information for details).

Figure 3. Thermal stability of 3a in DMSO solution under different temperatures.

Figure 4. Difference in thermal stability of THPE-CO₂, NHC-CO₂ and NHO-CO₂ adducts in DMSO at different temperatures.

Catalytic Activities. The unique thermal stability of THPE-CO₂ adducts inspired us to further test their potential as organocatalysts for CO₂ transformation. We initially investigated these THPE-CO₂ adducts for catalyzing carboxylative cyclization of 2-methyl-4phenylbut-3-yn-2-ol (4a) with CO_2 as model reaction. When using 5 mol % 3a, the yield of 5a was 92% under 60 °C and 2.0 MPa CO₂ pressure within 2 h (Table 1, entry 1). The catalytic activity of **3a** is obviously higher than that of imidazo-functionalized NHO-CO₂ adducts, which need 12 h to reach the similar yield under the same conditions.^[9] **3b** and **3c** showed relatively lower activity, affording 5a in 63% and 72% yields in 2 h, respectively (Table 1, entries 2, 3). **3d** is also an efficient catalyst, in which 90% yield was obtained (Table 1, entry 4). Notably, 3a was found to be efficient even under room temperature, affording **5a** in good yield with a prolonged reaction time (Table 1, entry 5). Decreasing CO₂ pressure from 2.0 MPa to ambient pressure rapidly decreased the yield of 5a (Table 2, entries 6-8). However, 20% yield of 5a still could be obtained under ambient condition with 24 h. No reaction occurred without THPE-CO₂ adducts (Table 1, entry 9).

Table 1. Optimization of reaction conditions for the carboxylative cyclization of propargyl alcohol **4a** with CO_2 .^{*a*}

Entry	Cat.	T (°C)	P (MPa)	T (h)	Yield (%) b
1	3 a	60	2.0	2	92
2	3b	60	2.0	2	63
3	3c	60	2.0	2	72
4	3d	60	2.0	2	90
5 ^c	3 a	25	2.0	24	86
6 ^{<i>c</i>}	3 a	25	1.0	24	80
7 ^c	3 a	25	0.5	24	66
8 ^c	3 a	25	0.1	24	20
9	-	60	2.0	24	NR^{d}

^{*a*} General conditions: neat, substrate **4a** (0.80 g, 5 mmol), THPE-CO₂ adduct (0.25 mmol, 5 mol%), CO₂ 2.0 MPa. ^{*b*} Isolated yield. ^{*c*} CH₂Cl₂ (1.0 mL) was used as solvent. ^{*d*} No reaction.

$R^{1} \xrightarrow[OH]{} R^{2} + CO_{2} \xrightarrow[OH]{} Cat. 3a 5 mol\% \xrightarrow[OH]{} O \cap OH]{} O \xrightarrow[OH]{} O \xrightarrow[$							
Entry	Substrates 4	Products 5	Yield $(\%)^b$	Entry	Substrates 4	Products 5	Yield(%) ^b
1	R-{	R-C		5	$\langle \rangle = \overset{OH}{\underset{Ph}{\overset{OH}{\overset{H}}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}}}}}}}}$	o ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	92 ^{<i>c</i>}
	4b : R = CH ₃ 4c : R = OCH ₃	5b 5c	64 57	6			90 ^c
	4d : $R = Cl$	5d	94	7	чк ≕ { он		91
	4e : $R = CF_3$ 4f : $R = COCH_3$	5f O	94 96	8	4І ≡-{⊂ _{он}		95
2	<u>⟨_</u> <mark>} <u>=</u> </mark>		94	9	4m ═┿ _{он}	5m 9 0 0 0 0 0 0	86 ^c
3	⊘_ ————————————————————————————————————		96	10	$\stackrel{4n}{=} \stackrel{Ph}{\leftarrow}_{OH}$	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95 ^c
4	м <u>́_</u> ́он 4і		78	11	$\stackrel{HO}{=}_{4p}$	o o 5p	90 ^c

Table 2. TH	IPE-CO ₂ adduct 3a	catalyzed carbox	vlative cyclizatio	on of propargyl alcoho	1 4b-4p with CO ₂ . ^{<i>a</i>}
	-	2	2 2		1

^a Reaction conditions: neat, substrate **4b-4p** (5 mmol), **3a** (5 mol%), 60 °C, 2 h, CO₂ 2.0 MPa. ^b Isolated yield. ^c 4 h.

Table 3. THPE-CO₂ adduct 3a catalyzed carboxylative cyclization of propargyl alcohol 4q-4s with CO2.

^a Reaction conditions: neat, substrate 4q-4s (5 mmol), 3a (10 mol%), 60 °C, 4 h, CO₂ 2.0 MPa. ^b Isolated yield. ^c The ratio of 5/5' was determined by ¹H-NMR spectroscopy of the crude mixture.

Having established that THPE-CO₂ adduct **3a** is a highly active catalyst for the formation of α alkylidene cyclic carbonate 5a (Table 1), we further examined the scope of the carboxylative cyclization of CO₂ to a variety of highly functionalized propargylic alcohols, providing organic carbonates 5b-5s, as shown in Tables 2 and 3. The reaction of 2methyl-4-phenylbut-3-yn-2-ol bearing both electrondonating and electron-withdrawing groups on the aryl ring **4b-4f** gave the corresponding cyclic carbonates 5b-5f in moderate to excellent yields (Table 2, entry 1). Alkynes bearing pyridine ring on the acetylenic carbon atoms 4g-4i were also tolerated in this transformation to selectively generate 5g-5i in high yields (Table 2, entries 2-4). Additionally, the high reactivities of various terminal propargylic alcohols **4l-4p** were discovered in the carboxylative cyclization with CO₂, providing excellent yield with a prolonged reaction time of 4 h (Table 2, entries 7-11). When 1,4-bis(1-hydroxyisopropyl)-1,3-butadiyne 4q employed as the substrate, the carbonate 5q and biscarbonate 5q' were afforded in 18% and 76% yields, respectively (Table 3, entry 1). Both 5q and 5q' were easily isolated by silica gel column chromatography. It is noteworthy that the previously reported NHC-CO₂ or NHO-CO₂ adducts showed

very low activity at the same conditions (Supporting information, Table S5). Moreover, 1,4-bis(2-hydroxyisopentyl)-1,3-butadiyne 4r and 1,4-bis(1-hydroxycyclohexyl)-1,3-butadiyne 4s were also tolerated in this process (Table 3, entries 2 and 3). The molecular structure of 5s' was further elucidated by single-crystal X-ray diffraction (Figure 5), which demonstrated that the two-step consecutive carboxylative cyclization of 4s smoothly proceeded with complete (Z)-stereoselectivity to afford the double carboxylated product.

Figure 5. X-ray crystallographic structure of 5s'.

Proposed Mechanism. Indeed, the reaction mechanism of carboxylative cyclization of CO_2 and propargyic alcohols using Lewis base- CO_2 adducts is still ambiguous. Earlier studies suggest that a dynamic equilibrium exists between organic nucleophiles and the corresponding CO_2 adducts under high temperature and high CO_2 pressure. Both of them could act as the nucleophiles to trigger the reaction on the basis of the nucleophilic addition mechanism or the basic ionic pair mechanism.^[18]

¹³C labeled 3a (0.25 mmol) 4h (0.25 mmol)

Figure 6. Preliminary mechanistic studies.

In order to better understand the reaction mechanism of THPE-CO₂ adducts for the carboxylic cyclization, several control experiments were carried out (Figure 6). Firstly, a stoichiometric reaction involving equivalent THPE-CO₂ adducts **3a** and propargylic alcohol **4h** was run in the absence of free CO₂ (Figure 6, I). No desired product **5h** was generated, and only the starting materials were

retained in the reaction mixture according to ¹H NMR and HRMS spectra. When the above reaction proceeded in the presence of ¹³CO₂ atmosphere, ¹³C labeled **5h** was generated as the sole product (Figure 6, **II**). Moreover, only **5h** was detected by employing THPE-¹³CO₂ adducts **3a** in the presence of CO₂ atmosphere (Figure 6, **III**). These results indicate that the nucleophilic addition mechanism for THPE-CO₂ system could be excluded and the stable THPE-CO₂ adducts themselves act as organic bases for this process. This is different with that of the previously reported NHC-CO₂^[7f] or NHO-CO₂ adducts^[9,18].

Figure 7. Three-dimensional stack plots of IR spectra collected every 15 s. Reaction conditions: (**A**) 2.0 mmol of **3a**, 10.0 mmol of propargylic alcohol, 60 °C, 1.5 h; (**B**) CO₂ balloon, 1.5 h. The absorption peaks at 1825, 1679 and 1604 cm⁻¹ are attributable to the **5l** and **3a**, respectively.

Furthermore, in situ FTIR experiments showed that THPE-CO₂ **3a** is very stable in the presence of propargylic alcohol at 60 °C, and no product **51** was observed (Figure 7A), which is in well agreement with NMR analysis. When introduced free CO₂, the carbonyl peak of **51** at 1825 cm⁻¹ gradually increased (Figure 7B). These results further demonstrate that CO₂ moiety of cyclic carbonates comes from free CO₂, rather than CO₂ moiety in THPE-CO₂ adducts (Further support for the assignment analysis of IR absorption peaks generated in Figure 7B, see Supporting Information).

Based on the above experimental observations and previous publications, ^[7f, 9, 11b, 19] a mechanism in which THPE-CO₂ adducts themselves primarily acted as organic nucleophile to initiate the carboxylative cyclization of propargylic alcohols with CO₂ is proposed (Figure 8), leading to the formation of [THPE-CO₂H]⁺[carbonate]⁻ ion pair intermediate **A**. The [carbonate]⁻ anion could be stabilized by the [THPE-CO₂H]⁺ cation, which allows the carbonate anion to attack the triple bond of propargylic alcohol to generate an intermediate **B**. Then, the protonation of the alkenyl carbon anion allows the production of α -alkylidene cyclic carbonates, and meanwhile the release of THPE-CO₂ for the next catalytic cycle.

Figure 8. Proposed mechanism for synthesis of cyclic carbonates catalyzed by THPE-CO₂ adducts.

Application of THPE-CO₂ for other CO₂ transformations. The high activity profile for THPE-CO₂ adducts **3a** as organocatalyst for the carboxylative cyclization of propargylic alcohols with CO₂ inspires us to further investigate the new potential of this organocatalytic system for other related CO₂ conversion, and the preliminary results are presented in Figure 9.

Figuer 9. THPE-CO₂ adducts as organocatalysts for other related CO₂ transformations.

Firstly, the cycloaddition of CO_2 with terminal epoxides was carried out under optimized conditions (1.0 mol% Cat. **3a** 120 °C, CO_2 2.0 MPa, 12 h), and the desired cyclic carbonates **6a** and **6b** were successfully obtained in 95% and 83% yield, respectively (Figure 9. I). Then, in the presence of PhSiH₃ as the reducing agent, **3a** also could effectively catalyze the reductive functionalization of CO_2 with *N*-methylaniline as functionalizing reagent to form methylated **7a** and formylated **7b** at 90 °C under 2.0 MPa of CO_2 (Figure 9. II). Finally, **3a** catalyzed cycloaddition of 1-butyl-2-phenylaziridine with CO_2 proceeded smoothly to selectively synthesize *N*-butyl-5-phenyl oxazolidinone **8a** with high yield (Figure 9. III).

Conclusion

In summary, we have successfully synthesized a series of structurally simple THPE-CO₂ adducts derived from the readily available DBN. The singlecrystal X-ray crystallographic analysis clearly shows the molecular structures of 3a, 3c and 3d with the O-C–O angles of $126.13 \sim 129.51^{\circ}$. In situ FTIR experiments reveal that THPE-CO₂ adducts have exceptional thermal stability. Further catalytic application of THPE-CO₂ adducts as organocatalysts were undertaken to selectively synthesize the cis α alkylidene cyclic carbonates by the cyclization of CO₂ with propargylic alcohols in moderate to high yields under mild conditions. To the best of our knowledge, THPE-CO₂ adducts are the most efficient among the reported organocatalysts for thu carboxylative cyclization of CO₂ and propargylic alcohols. The reaction is tolerant to a wide range of internal and terminal functionalized propargylic alcohols with high stereoselectivity. Isotope labeling experiments, stoichiometric experiments and in situ FTIR data provide a proposed basic ionic pair_ mechanism for this process.

Moreover, THPE-CO₂ adducts systems exhibit considerable catalytic diversity in other CO_2 related transformations to selectively synthesize cyclic carbonates, methylamines, formamides and 5substituted oxazolidinones.

Experimental Section

Representative experimental procedure for the synthesis of THPE-CO₂ adducts.

In a glove box, KH (0.12 g, 3.0 mmol) and KOtBu (22.4 mg, 0.2 mmol) were added to a suspension of **1a** (0.53 g, 2.0 mmol) in THF (10 mL) respectively, and the mixture was stirred at room temperature for 48 h in the absence of light. After filtration, the filtrate was collected and exposed to 1.0 atm of CO₂ at ambient temperature for 2 h. The resulting white precipitate was collected via filtration, washed with *n*-hexane (3×20 mL) and then dried under high vacuum to afford desired product **3a** (0.32 g, 88% yield). ¹**H NMR** (400 MHz, d₆-DMSO): δ 3.65 (q, *J* = 9.6 Hz, 1H), 3.518 (d, *J* = 8.8 Hz, 1H), 3.51 (dt, *J* = 1.9, 9.6 Hz, 1H), 3.31-3.36 (m, 4H), 3.16, (s, 3H), 2.06-2.23 (m, 2H), 1.87-1.99 (m, 2H). ¹³**C NMR** (100 MHz, d₆-DMSO): δ

3b. White solid (0.38 g, 85% yield). ¹**H** NMR (400 MHz, d₆-DMSO): δ 3.64-3.73 (m, 2H), 3.49-3.56 (m, 2H), 3.31-3.36 (m, 5H), 2.13-2.18 (m, 2H), 1.88-1.96 (m 2H), 1.52-1.61 (m, 2H), 1.21-1.29 (m, 2H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹³**C** NMR (100 MHz, d₆-DMSO): δ 167.48, 164.83, 53.58, 52.84, 52.51, 44.26, 42.23, 29.29, 25.92, 19.69, 19.32, 14.11. **IR** *v*_{C=0}: 1608 cm⁻¹ (vs). **HRMS (ESI)**: [M-CO₂+H]⁺ calcd for C₁₁H₂₁N₂: 181.1699; Found: 181.1700.

3c White solid (0.44 g, 86% yield). ¹**H** NMR (400 MHz, d₆-DMSO): δ 7.33-7.39 (m, 5H), 4.93 (d, *J* = 15.4 Hz, 1H), 4.69 (d, *J* = 15.4 Hz, 1H), 3.75 (q, *J* = 9.2 Hz, 1H), 3.68 (d, *J* = 8.4 Hz, 1H), 3.57 (dt, *J* = 2.1, 9.2 Hz, 1H), 3.4-3.42 (m. 2H), 3.13-3.18 (m, 1H), 2.16-2.28 (m, 2H), 1.83-1.96 (m, 2H). ¹³C NMR (100 MHz, d₆-DMSO): δ 167.06, 164.83, 134.90, 128.64, 128.12, 127.92, 55.29, 53.46, 52.83, 43.69, 41.84, 25.39, 18.76. **IR** *v*_{C=0}: 1611 cm⁻¹ (vs). **HRMS (ESI)**: [M-CO₂+H]⁺ calcd for C₁₄H₁₉N₂: 215.1543. Found: 215.1541.

3d White solid (0.34 g, 87% yield). ¹**H** NMR (400 MHz, d_6 -DMSO): δ 3.57 (t, J = 7.2 Hz, 2H), 3.34 (t, J = 5.4 Hz, 2H), 3.05 (s, 3H), 2.34 (dt, J = 7.7, 12.2 Hz, 1H), 1.94-1.95 (m, 2H), 1.76-1.82 (m, 1H), 1.29 (s, 3H). ¹³**C** NMR (100 MHz, d_6 -DMSO): δ 170.35, 167.97, 56.24, 51.58, 47.17, 41.84, 34.62, 21.34, 18.71. **IR** $v_{C=0}$: 1600 cm⁻¹ (vs). **HRMS (ESI)**: [M-CO₂+H]⁺ calcd for C₉H₁₇N₂: 153.1386. Found: 153.1387.

Representative experimental procedure for the carboxylative cyclization of CO_2 with functionalized propargylic alcohols to α -alkylidene cyclic carbonates

In a glove box, a 10 ml autoclave containing a stir bar was charged with propargylic alcohol **4a** (0.80 g, 5 mmol), and catalyst THPE-CO₂ **3a** (45.5 mg, 0.25 mmol, 5 mol%). After purging the autoclave with CO₂ three times, the sealed autoclave was pressurized to the appropriate pressure with CO₂. The reaction was carried out at 60 °C for 2 h with continuous stirring. Then, the autoclave was cooled, and the excess CO₂ was vented. The residue was purified by column chromatography (eluent: petroleum ether/EtOAc=10:1) to give the corresponding α -alkylidene cyclic carbonate **5a** (0.94 g, 92 %) as a white solid. ¹H **NMR** (400 MHz, CDCl₃): δ = 7.51-7.53 (m, 2H), 7.23-7.35 (m, 3H), 5.47 (s, 1H), 1.66 (s, 6H). ¹³C **NMR** (100 MHz, CDCl₃): δ = 151.2, 150.5, 132.4, 128.7, 128.8, 127.5, 101.3, 85.5, 27.4. All the resonances in ¹H and ¹³C NMR spectra were in good agreement with literature values.^[8]

X-Ray structure: Supplementary crystallographic data was deposited at the Cambridge Crystallographic Data Centre (CCDC) under the numbers CCDC 1455223 (**3a**), CCDC 1455222 (**3c**), CCDC 1401873 (**3d**), CCDC 1455756 (**5s**') and can be obtained free of charge from via www.ccdc.cam.ac.uk/data_request.cif.

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 21402021), the Fundamental Research Funds for the Central Universities (DUT18LK55) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-17R14). X.-B. Lu gratefully acknowledges the Chang Jiang Scholars Program (No. T2011056) from Ministry of Education, People's Republic of China.

References

- [1] a) M. Aresta, A. Dibenedetto, A. Angelini, Chem Rev 2014, 114, 1709-1742; b) D. J. Darensbourg, Chem Rev 2007, 107, 2388-2410; c) T. Sakakura, J.-C. Choi, H. Yasuda, Chem Rev 2007, 107, 2365-2387; d) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kuhn, Angew Chem Int Ed 2011, 50, 8510-8537; e) Z.-Z. Yang, L.-N. He, J. Gao, A.-H. Liu, B. Yu, Energy Environ Sci 2012, 5, 6602-6639; f) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat Commun 2015, 6, 5933; g) I. Omae, Coord Chem Rev 2012, 256, 1384-1405; h) F. G. Fontaine, M. A. Courtemanche, M. A. Legare, Chem-Eur J 2014, 20, 2990-2996; i) L. J. Murphy, K. N. Robertson, R. A. Kemp, H. M. Tuononen, J. A. Clyburne, Chem Commun 2015, 51, 3942-3956; j) D. W. Stephan, J Am Chem Soc 2015, 137, 10018-10032; k) A. Tlili, E. Blondiaux, X. Frogneux, T. Cantat, Green Chem 2015, 17, 157-168; 1) E. Lee, H. Song, Y. Kim, J. Park, K. Kim, Synlett 2015, 27, 477-485; m) W. Leitner, Coord Chem Rev 1996, 153, 257-284; n) X. B. Lu, W. M. Ren, G. P. Wu, Acc Chem Res 2012, 45, 1721-1735; o) N. Kielland, C. J. Whiteoak, A. W. Kleij, Adv Syn & Catal 2013, 355, 2115-2138; p) S. Sopeña, A. W. Kleij, Top Organomet Chem 2016, 53, 39-72.
- [2] a) C. J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adan, E. Martin, A. W. Kleij, J Am Chem Soc 2013, 135, 1228-1231; b) D. W. Stephan, G. Erker, Angew Chem Int Ed 2015, 54, 6400-6441; c) Z. Xin, C. Lescot, S. D. Friis, K. Daasbjerg, T. Skrydstrup, Angew Chem Int Ed 2015, 54, 6862-6866; d) Z. Zhang, L. L. Liao, S. S. Yan, L. Wang, Y. Q. He, J. H. Ye, J. Li, Y. G. Zhi, D. G. Yu, Angew Chem Int Ed 2016, 55, 7068 7072; e) J. Rintjema, R. Epping, G. Fiorani, E. Martin, E. C. Escudero-Adan, A. W. Kleij, Angew Chem Int Ed 2016, 55, 3972-3976; f) J. H. Ye, L. Song, W. J. Zhou, T. Ju, Z. B. Yin, S. S. Yan, Z. Zhang, J. Li, D. G. Yu. Angew Chem Int Ed 2016, 55, 10022-10026; g) Y. Y. Gui, N. F. Hu, X.-W. Chen, L.-L Liao, T. Ju, J.-H. Ye, Z. Zhang, J. Li, D. G. Yu, J Am Chem Soc 2017, 139, 17011-17014.
- [3] a) A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. Kenis, C. A. Kerfeld, R. H. Morris, C. H. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, *Chem Rev* 2013, *113*, 6621-6658; b) M. Aresta, A. Angelini, *Top Organomet Chem* 2016, *53*, 1-38.
- [4] M. Aresta, C. F. Nobile, V. G. Albano, E. Forni, M. Manassero, J. Chem. Soc., Chem. Commun. 1975, 636 637.
- [5] M. Devillard, R. Declercq, E. Nicolas, A. W. Ehlers, J. Backs, N. Saffon-Merceron, G. Bouhadir, J. C. Slootweg, W. Uhl, D. Bourissou, *J Am Chem Soc* 2016, *138*, 4917-4926.
- [6] a) E. R. Perez, R. H. Santos, M. T. Gambardella, L. G. de Macedo, U. P. Rodrigues-Filho, J. C. Launay, D. W. Franco, *J Org Chem* 2004, *69*, 8005-8011; b) T. Endo, D. Nagai, T. Monma, H. Yamaguchi, B. Ochiai, *Macromolecules* 2004, *37*, 2007-2009; c) P. M. Mathias, K. Afshar, F. Zheng, M. D. Bearden, C. J.

Freeman, T. Andrea, P. K. Koech, I. Kutnyakov, A. Zwoster, A. R. Smith, P. G. Jessop, O. G. Nik, D. J. Heldebrant, *Energy Environ Sci* **2013**, *6*, 2233-2242; d) D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert, C. L. Liotta, *J Org Chem* **2005**, *70*, 5335-5338.

- [7] a) K. Norbert, S. Manfred, W. Gerd, Z Naturforsch B 1999, 427-433; b) H. A. Duong, T. N. Tekavec, A. M. Arif, J. Louie, Chem Commun 2004, 112-113; c) H. Zhou, W. Z. Zhang, C. H. Liu, J. P. Qu, X. B. Lu, J Org Chem 2008, 73, 8039-8044; d) L. Delaude, Eur J Inorg Chem 2009, 2009, 1681-1699; e) B. R. Van Ausdall, J. L. Glass, K. M. Wiggins, A. M. Aarif, J. Louie, J Org Chem 2009, 74, 7935-7942; f) Y. Kayaki, M. Yamamoto, T. Ikariya, Angew Chem Int Ed 2009, 48, 4194-4197; g) I. Tommasi, F. Sorrentino, Tetrahedron Lett 2009, 50, 104-107; h) E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Science 2009, 326, 556-559; i) D. Martin, N. Lassauque, B. Donnadieu, G. Bertrand, Angew Chem Int Ed 2012, 51, 6172-6175; j) Z. Guo, N. R. Song, J. H. Moon, M. Kim, E. J. Jun, J. Choi, J. Y. Lee, C. W. Bielawski, J. L. Sessler, J. Yoon, J Am Chem Soc 2012, 134, 17846-17849.
- [8] C. Villiers, J. P. Dognon, R. Pollet, P. Thuery, M. Ephritikhine, Angew Chem Int Ed 2010, 49, 3465-3468.
- [9] Y. B. Wang, Y. M. Wang, W. Z. Zhang, X. B. Lu, J Am Chem Soc 2013, 135, 11996-12003.
- [10] a) Y. Tsutsumi, K. Yamakawa, M. Yoshida, T. Ema, T. Sakai, *Org Lett* **2010**, *12*, 5728-5731; b) Y.-B. Wang, D.-S. Sun, H. Zhou, W.-Z. Zhang, X.-B. Lu, *Green Chem* **2014**, *16*, 2266-2272.
- [11] a) J. Zheng, J. Cai, J. H. Lin, Y. Guo, J. C. Xiao, *Chem Commun (Camb)* 2013, 49, 7513-7515; b) H. Zhou, G.-X. Wang, W.-Z. Zhang, X.-B. Lu, ACS Catal 2015, 6773-6779; c) W. Petz, C. Kutschera, M. Heitbaum, G. Frenking, R. Tonner, B. Neumuller, *Inorg Chem* 2005, 44, 1263-1274.
- [12] a) M. A. Wunsche, P. Mehlmann, T. Witteler, F. Buss,
 P. Rathmann, F. Dielmann, *Angew Chem Int Ed* 2015, 54, 11857-11860; b) F. Buss, P. Mehlmann, C. Muck-Lichtenfeld, K. Bergander, F. Dielmann, *J Am Chem Soc* 2016, *138*, 1840-1843.
- [13] a) C. M. Momming, E. Otten, G. Kehr, R. Frohlich, S. Grimme, D. W. Stephan, G. Erker, *Angew Chem Int Ed* **2009**, *48*, 6643-6646; b) A. Berkefeld, W. E. Piers, M. Parvez, *J Am Chem Soc* **2010**, *132*, 10660-10661; c) M. A. Dureen, D. W. Stephan, *J Am Chem Soc* **2010**, *132*, 13559-13568; d) L. J. Hounjet, C. B. Caputo, D. W. Stephan, *Angew Chem Int Ed* **2012**, *51*, 4714-4717; e) M. Sajid, G. Kehr, T. Wiegand, H. Eckert, C.

Schwickert, R. Pottgen, A. J. Cardenas, T. H. Warren, R. Frohlich, C. G. Daniliuc, G. Erker, *J Am Chem Soc* **2013**, *135*, 8882-8895; f) I. Purushothaman, S. De, P. Parameswaran, *RSC Adv* **2014**, *4*, 60421-60428.

- [14] a) H. Zhou, Y.-M. Wang, W.-Z. Zhang, J.-P. Qu, X.-B. Lu, *Green Chem* 2011, *13*, 644-650; b) Y.-B. Wang, D.-S. Sun, H. Zhou, W.-Z. Zhang, X.-B. Lu, *Green Chem* 2015, *17*, 4009-4015; c) V. B. Saptal, B. M. Bhanage, *ChemSusChem* 2016, *9*, 1980-1985.
- [15] a) S. N. Riduan, Y. Zhang, J. Y. Ying, Angew Chem Int Ed 2009, 48, 3322-3325; b) D. W. Stephan, G. Erker, Angew Chem Int Ed 2010, 49, 46-76; c) G. Ménard, D. W. Stephan, J Am Chem Soc 2010, 132, 1796-1797; d) C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuery, M. Ephritikhine, T. Cantat, Angew Chem Int Ed 2012, 51, 187-190; e) M.-A. Courtemanche, M.-A. Légaré, L. Maron, F.-G. Fontaine, J Am Chem Soc 2013, 135, 9326-9329; f) Su Das, F. D. Bobbink, G. Laurenczy, P. J. Dyson, Angew Chem Int Ed 2014, 53, 12876-12879; g) M.-A. Courtemanche, M.-A. Légaré, L. Maron, F.-G. Fontaine, J Am Chem Soc 2014, 136, 10708-10717; h) Q. Zhou, Y. Li, J Am Chem Soc 2015, 137, 10182-10189; i) C. C. Chong, R. Kinjo, Angew Chem Int Ed 2015, 54, 12116-12120.
- [16] a) P. Toullec, A. Carbayo Martin, M. Gio-Batta, C. Bruneau, P. H. Dixneuf, *Tetrahedron Lett* 2000, 41, 5527-5531; b) B. Ochiai, T. Endo, *Prog Polym Sci* 2005, 30, 183-215; (c) W. Yamada, Y. Sugawara, H. M. Cheng, T. Ikeno, T. Yamada, *Eur J Org Chem*, 2007 2007, 2604-2607; (d) L. Ouyang, X. Tang, H. He, C. Qi, W. Xiong, Y. Ren, H. Jiang, *Adv Synth Catal*, 2015 357, 2556-2565; (e) K. Sekine, T. Yamada, *Chem Soc Rev*, 2016, 45, 4524-4532. (f) J. Hu, J. Ma, Q. Zhu, Q. Qian, H. Han, Q. Mei, B. Han, *Green Chem*, 2016, 18, 382-385; (g) G. Yuan, C. Qi, W. Wu, H. Jiang, *Curr Opin Green Sustainable Chem*, 2017, 3, 22-27.
- [17] R. D. Crocker, T. V. Nguyen, *Chem–Eur J* 2016, 22, 2208-2213.
- [18] a) W. Y. Li, N. Yang, Y. J. Lyu, J Org Chem 2016, 81, 5303-5313; b) Z. E. Yan, R. P. Huo, L. H. Guo, X. Zhang, J Mol Model 2016, 22, 94; c) B. Ye, L. Yang, J. Sun, C. Luo, H. Wang, J Theor Comput Chem 2016, 15, 1650058.
- [19] a) B. Grignard, C. Ngassamtounzoua, S. Gennen, B. Gilbert, R. Méreau, C. Jerome, T. Tassaing and C. Detrembleur, *ChemCatChem*, 2018, **10**, 2584-2592. b) R. Méreau, B. Grignard, A. Boyaval, C. Detrembleur, C. Jerome and T. Tassaing, *ChemCatChem*, 2018, **10**, 956-960.

FULL PAPER

Isolable CO_2 Adducts of Polarized Alkenes: High Thermal Stability and Catalytic Activity for CO_2 Chemical Transformation

Adv. Synth. Catal. Year, Volume, Page - Page

Hui Zhou,^{a,*} Rui Zhang^a and Xiao-Bing Lu^{a,*}

