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ABSTRACT: A palladium-catalyzed double carbonylative
cyclization of benzoins has been developed, which realizes
the synthesis of bis-ester-bridged stilbenes just in two steps
from aldehydes. Thus, the obtained fully fused tetracyclic π-
systems have a pyrano[3,2-b]pyran-2,6-dione (PPD) core on
their center, showing two reversible reductions at low
potentials. In addition, their photoluminescence properties
are strikingly affected by the aromatic rings fused to the PPD
core; bis-thieno-fused PPDs are found to be excellent
fluorophores with quantum yields up to 0.98.

Polycyclic fused π-conjugated systems such as bridged
stilbenes, triphenylenes, and acenes are a privileged motif

in optical and electronic materials, including organic light-
emitting diodes and organic photovoltaics.1 Therefore, efficient
synthetic strategies for such fused skeletons are of great interest.2

Many of the established routes construct them from
preorganized, nonfused π-systems (Figure 1a), e.g. from
oligoarenes by Scholl reaction or direct arylation,3 or from

functionalized diaryl acetylenes into bridged stilbenes.4 In this
context, benzoins can be a promising precursor for fused π-
systems, since they are available directly from aldehydes by
benzoin condensation and have a stilbene skeleton in the enol
form (Figure 1b). The development of a suitable transformation
of benzoins will expand the chemistry of bridged stilbenes that
are otherwise difficult to access. In particular, bis-ester-bridged
stilbenes (Y is CO in Figure 1b) are attractive because the
ester group is electron-withdrawing, chemically convertible, and
redox active, and it composes a weakly aromatic 2-pyrone
substructure.5,6 Interestingly, they are also found in some natural
products.7 Nonetheless, the synthesis and properties of bis-
ester-bridged stilbenes are virtually unexplored.8

We envisioned that Pd-catalyzed carbonylation chemistry9

would offer a powerful solution for the conversion of benzoins
into bis-ester-bridged stilbenes. In particular, carbonylative
cyclization has been utilized in the synthesis of heterocycles,10

although the construction of multiple rings is rarely achieved.11

Herein, we have developed a palladium-catalyzed double
carbonylative cyclization of benzoins, which affords bis-ester-
bridged stilbenes having a pyrano[3,2-b]pyran-2,6-dione (PPD)
core on its center. The reaction reveals a stilbene skeleton, fixes
the planar π-system, and installs electron-withdrawing function-
ality at one time, thus providing themwith unique electronic and
photophysical properties.
We began by benzoin condensation of 2-bromoarylaldehydes

1a−1e, which are readily available by several approaches
(Scheme S1 in the Supporting Information (SI)).12 After the
corresponding benzoins 2a−2e were successfully synthesized,
double carbonylative cyclization of 2e was examined under
various conditions (Table 1). The reaction mainly produced
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Figure 1. Synthetic strategy toward polycyclic fused π-systems utilizing
(a) preorganized π-systems and (b) benzoins as an easily available,
latent π-system (This work). FG = functional group.
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fully fused target 3e and its structural isomer 4e, and was
quantitatively evaluated by 1H NMR using an internal standard.
First, we tested the effect of a base by using Pd2(dba)3·CHCl3 as
a catalyst precursor and Xantphos as a ligand9b under 1 atm of
carbon monoxide (CO) in toluene at 110 °C (entries 1−4).
When we used Cs2CO3, 3e was obtained in 42% yield (entry 1),
which was the highest among other tested carbonate bases and
KOtBu. These strong bases were expected to facilitate enolate
formation.10b However, weakly basic acetates were found to be
far more effective for this transformation, possibly due to the
easily enolizable nature of benzoins. Using CsOAc, 3e was
obtained in 75% yield along with a non-PPD structural isomer
4e (13%, entry 2).13 The best yield for 3e was achieved by
employing KOAc; the combined yield of 3e and 4e reached 95%,
and the ratio was 87/13 (entry 3). Although the selectivity was
improved withNaOAc, the total yield dropped to 49% (entry 4).
The choice of ligand was also crucial. Other bidentate
phosphines DPEphos, dppf, and rac-BINAPwere not as effective
as Xantphos was; the total yields decreased to 65%, 52%, and
20%, respectively (entries 5−7). The selectivity (isomer ratio)
was much affected, even reversed in the case of dppf and rac-
BINAP, implying that the catalyst is involved in the selectivity-
determining step (see SI for further discussion). As for a catalyst
precursor, a divalent palladium source, PdCl2(PhCN)2 complex,
led to a slight decrease in the yield while maintaining the
selectivity, suggesting that the palladium complexes enter the
catalytic cycle as Pd(0) species (entry 7). The yield was restored
by increasing the amount of KOAc to 3 equiv (entry 8).
With the optimized conditions in hand, we completed the

synthesis of fused PPDs by the double carbonylative cyclization
of benzoins 2a−2e (Table 2). The conditions were demon-
strated to be effective not only for thiophene-derived benzoins
but also for benzene-derived benzoins. For example, 2a was

efficiently converted to 3a and 4a in a ratio of 90/10 as judged
from 1H NMR of the crude mixture. Product 3a was isolated in
81% yield after silica-gel column chromatography (entry 1). The
same reaction was also performed in 1.0 mmol scale, affording
170 mg of 3a (entry 2). The syntheses of fused PPDs 3b, 3c, and
3e having alkyl chain, fluorine, and silyl substituents,
respectively, were also examined because these substituents
are often utilized to control crystal packing.1a,b,f,14 As a result,
those fused PPDs were successfully synthesized and isolated in
good yields (65−72%). Thieno-fused PPD without any
substituents (3d) was obtained, albeit in low yield, partly
owing to its limited solubility.
We further extended the strategy to the synthesis of

unsymmetrically fused PPDs. Benzoin 2f was prepared by
cyanosilylation of 1a followed by deprotonation with lithium
diisopropylamide and trapping with 1e (see Supporting
Information (SI) for detail). Double carbonylative cyclization
of 2f proceeded efficiently under the standard conditions,
affording benzo-thieno-fused PPD 3f in 72% isolated yield (eq 1).

Table 1. Pd-Catalyzed Double Carbonylative Cyclization of
2e

entry ligand base yield (%)a 3e/4eb

1 Xantphos Cs2CO3 42 >95/5
2 Xantphos CsOAc 88 85/15
3 Xantphos KOAc 95 87/13
4 Xantphos NaOAc 49 >95/5
5 DPEphos KOAc 65 60/40
6c dppf KOAc 52 42/58
7 rac-BINAP KOAc 20 25/75
8d Xantphos KOAc 76 88/12
9d Xantphos KOAce 92 85/15

aCombined yields of 3e and 4e determined by 1H NMR using 1,3,5-
trimethoxybenzene as an internal standard. bDetermined by 1H NMR.
cPdCl2(dppf) (6 mol %) was used as the catalyst. dPdCl2(PhCN)2 (6
mol %) was used instead of Pd2(dba)3·CHCl3.

eKOAc (3.0 equiv) was
used.

Table 2. Synthesis of Fused PPDs 3a−3e from Benzoins 2a−
2ea

aConditions: 2 (0.20 or 0.10 mmol), Pd2(dba)3·CHCl3 (3 mol %),
Xantphos (6 mol %), KOAc (2.0 equiv) in toluene (0.2 M) under CO
(1 atm, closed) at 110 °C. bOn 1.0 mmol scale. cAt 90 °C. Si =
triisopropylsilyl.
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All the structures of fused PPDs 3a−3f were unambiguously
determined by single-crystal X-ray structure analysis (Figure 2

for 3a and 3d; see SI for others). Except 3f whose skeleton was
slightly bent in the crystal, all the other fused PPDs had planar
skeletons. All, except 3e, were packed very tightly (interplanar
distances of the parallel stacked pairs: 3.17−3.39 Å) with various
short contacts including hydrogen bonding on the carbonyl
oxygen. Moreover, their packing modes can be tuned by
substituents and the skeleton: herringbone stacking for 3a and
3c, brick wall 2D stacking for 3b, 1D columnar stacking for 3d,
and antiparallel pairwise 1D stacking for 3f. We also performed
thermogravimetric analysis of 3a and 3d, which did not show
any indication of decomposition (Figure S1). Temperatures for
5% weight loss were at 275 and 317 °C, respectively, both of
which corresponding to sublimation of the compounds. As for
the electrochemical property, cyclic voltammograms of 3b and
3e in tetrahydrofuran were measured. They showed two
reversible reduction peaks at −2.71 and −2.31 V for 3b and
−2.37 and−1.91 V for 3e (versus Fc/Fc+), which demonstrated
their electrochemical stability and low lying LUMO(−2.5 eV for
3b and−2.9 eV for 3e, Figures S2 and S3).5,6 These thermal and
electrical properties as well as tunable molecular arrangements
in crystal indicate that fused PPDs are promising materials for
the application in organic electronics.
UV−vis absorption and photoluminescence (PL) spectra as

well as photoluminescence quantum yields (ΦF)
15 of fused

PPDs were measured in degassed dichloromethane (Figure 3
and Table 3 for representative data; see SI for full details). For all
fused PPDs 3a−3f, UV−vis and PL spectra are mirror images of
each other with vibrational structure, and the Stokes shifts are
very small. These features imply their rigidness and structural
similarity in the ground state (S0) and the first singlet excited
state (S1). More specifically, along with replacing the peripheral
fused ring from benzene to thiophene (i.e., 3a→ 3f→ 3e, from
bottom to top in Figure 3), the vibrational structure became
sharper with progression of 0−0 band, and the Stokes shifts
became smaller (11 nm for 3a, 9 nm for 3f, and 4 nm for 3e).
These trends clearly indicate that the structural displacement in
S1 becomes much smaller in this order. In addition, both UV−
vis and PL spectra are bathochromically shifted about 40 nm in

total, suggesting that thieno-fused systems have a smaller
HOMO−LUMO gap and more delocalized π-system than
benzo-fused ones do. Indeed, according to time-dependent
density functional theory (TD-DFT) calculation at the B3LYP/
6-31+G(d,p) level of theory, the strongest transitions in 3a, 3f,
and 3e are of S0−S1 (HOMO−LUMO 94% or more) and are
essentially a π−π* transition in nature, for both absorption and
emission.
The peripheral aromatic rings most substantially effected ΦF.

Thieno-fused PPDs 3d and 3e exhibited much higherΦF (≥0.9)
than benzo-fused PPDs 3a−3c did (ΦF < 0.1). The highest ΦF
was observed for 3e (0.98) while 3d still showed a high ΦF of
0.90, suggesting that the highly fluorescent nature is attributed
to the core skeleton itself, rather than to the silyl substituent.16

This is also evident from a comparison of 3e and its structural
isomer 4e. Their UV/PL spectra were similar in peak positions
and molar extinction coefficient (ε); however, 4e showed
somewhat broadened spectra (Figure S4), as well as a much
diminished quantum yield of 0.31. This emphasizes the

Figure 2. ORTEP drawing of the crystal structures for 3a (a) and 3d
(b). Thermal ellipsoids are set at the 50% probability level. Selected
bond lengths for 3a: C1−C7, 1.437(2); C7−C7a, 1.341(2) Å. For 3d:
C4−C5, 1.435(7); C5−C5a, 1.343(6) Å.

Figure 3. UV−vis absorption (blue) and normalized PL (red) spectra
for 3e (top), 3f (middle), and 3a (bottom) in CH2Cl2. Oscillator
strengths of absorption (TD-DFT//B3LYP/6-31+G**) are depicted
as gray bars. ΦF are relative to quinine sulfate.15 Left axis for UV−vis,
right axis for others.

Table 3. Photophysical Properties of 3a−3f and 4e

compd
λabs

(nm)a ε (M−1 cm−1)b
λem

(nm)c ΦF
d

kr
(ns−1)e

knr
(ns−1)e

3a 373 16 000 384 0.009 0.29f 32f

3b 382 19 600 395 0.049 n.d. n.d.
3c 364 18 100 370 0.004 n.d. n.d.
3f 394 26 900 403 0.32 0.37 0.79
3d 408 33 700 413 0.90 0.38 0.042
3e 420 40 800 424 0.98 0.38 0.0078
4e 419 45 900 427 0.31 0.41 0.92

aThe longest absorption maxima. bAt the global maxima. cThe
shortest emission maxima. dDetermined relative to quinine sulfate.15
eCalculated with ΦF and τ according to the formula kr = ΦF/τ and knr
= (1 − ΦF)/τ.

fCalculated with λem, oscillator strength, and ΦF. See
Table S2 in SI for detail. n.d. = not determined.
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superiority of the PPD core for the structural rigidity even in the
excited states.
We further evaluated the radiative and nonradiative decay rate

constants (kr and knr) of 3a, 3d−3f, and 4e (Table 3; see SI for
details). According to the equationΦF = kr/(kr + knr), it is clearly
revealed that the strong dependency of ΦF on their fused
aromatics originates from a difference in knr, which is 4 orders of
magnitude for 3a to 3e. In addition, 4e exhibits a 2-order larger
knr than that of 3e. These trends in the rate constants again prove
the structural rigidity, or more specifically, the sharpness of
potential energy surface17 of fused PPDs especially for thieno-
fused ones. It should be noted that knr includes intersystem
crossing. Nonetheless, a negligible decrease of PL intensity was
observed under air-saturated condition. Moreover, the PL
spectrum of 3a measured at 77 K in 2-methyltetrahydrofurane
displayed imperceptible phosphorescence (Figure S6). Thus,
the intersystem crossing is sufficiently slower than the radiative
S1−S0 decay and can be ignored in the photophysical process.
In summary, we have developed a novel Pd-catalyzed double

carbonylative cyclization of benzoins, and established the
versatile synthesis of bis-ester-bridged stilbenes in two steps
from aldehydes. They exhibited unique thermal and electrical
properties as well as tunable crystal packing, owing to the
carbonyl functionality. Moreover, their photophysical properties
unexpectedly depend on the peripheral aromatic rings fused to
the PPD core, and bis-thieno-fused PPDs are demonstrated to
be a novel class of excellent fluorophores. Further studies to
exploit the potential of the fused PPDs are ongoing in our
laboratory.
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