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ABSTRACT

3,5,7-Tris(arylmethyl)-1-aza-adamantanetrione donor −σ−acceptor compounds have been synthesized in four steps. Computational and 1H NMR
analyses rationalize the solubility, gelation, and conformational properties of the C3-symmetric molecules toward employing σ-coupled donor −
acceptor interactions in molecular self-assembly.

Donor-σ(spacer)-acceptor molecules1 are unique alterna-
tives to traditionalπ-conjugated chromophores in applica-
tions ranging from nonlinear optics2,3 to unimolecular
electrical rectification;4 a high transparency in the visible
region and significantly dipolar excited state5 underlie their
function. While well-studied at the molecular level, only
recently have these chromophores been considered as build-
ing blocks for advanced materials and polymers.6,7 A

common motif within the donor-σ-acceptor class features
a nitrogen donor atom and carbonylπ-acceptor at opposite
ends of a saturated three-carbon spacer;8 the resulting
through-bond interactions1b are apparent even in the ground
state where they can influence the stereoselectivity of
addition to the carbonyl group9 and bias conformation at
nitrogen.10 We have initiated a research study that employs
such donor-σ-acceptor chromophores in supramolecular
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architectures; for example, reversible assemblies wherein the
inherent dipole of the molecules should facilitate their one-
dimensional organization in solution, an important morphol-
ogy for gels,11 liquid crystals,12 and hydrogen-bonded
assemblies13 that display polar order.

The shape, symmetry, and rapid entry into 1-aza-adaman-
tanetriones1 made them an attractive scaffold to initiate our
studies. Elegant work by Nicholas Risch and co-workers
demonstrated the single-step conversion of 2,4,6-trialkyl-
phloroglucinol derivatives2 (where R) Me, Et, andi-Pr)
to 3,5,7-trisubstituted 1-aza-adamantanetriones1 via a Man-
nich-type reaction effected by hexamethylenetetramine
(HMTA, Scheme 1).14 Three carbonyl groups and three “R”
groups converge on the concave underside of the adaman-
tanoid platform; the constrained orientation of the bridgehead
nitrogen lone pair with respect to the carbonylπ systems
via an intervening threeσ-bonds defines the donor-σ-
acceptor framework. Enforced through-bond interactions are
then evident in the ground state through greatly diminished
nitrogen basicity15 and nucleophilicity.16 Reported here are
the syntheses and solution-phase properties of the tris-
(arylmethyl) derivatives of the 1-aza-adamantantriones (1a-
j , Table 1); once prepared and studied, we reasoned that a
variety of structures could be derived from appropriate
modifications to the aromatic periphery.

Upon designing the synthesis of1a-j , only O-protected
tribenzyl precursor5a could be found in the literature,17 the
product of a five-step sequence beginning from phloroglu-
cinol. Our alternative two-step sequence to this compound

and various analogues (Table 1) begins with the bromo-
methylation18 of commercially available 1,3,5-trimethoxy-
benzene3 and subsequent 3-fold benzylic substitution with
an appropriate, freshly prepared aryl Grignard reagent. The
yields of5a-j are generally good, representing a minimum
80-90% average conversion at each of three benzylic sites.
Some decrease in yield is observed as the size of the aryl
group increases (e.g.,5e, 5j). Demethylation of5a-j is
performed quantitatively by treatment with BBr3 and con-
densation of the phloroglucinol products2a-j with HMTA
in the manner described by Risch (methanol, reflux)14

produces the tricyclic targets1a-j . While the yields of the
desired 1-aza-adamantanetriones are modest, the products
precipitate from methanol in each case and only filtration
and washing are required for their isolation. Moreover, a
variety of substituents can be accommodated in this final
reaction, including fluorinated (1h) and bicyclic aromatics
(1j) and phenols (1i).

The 1-aza-adamantanetrione cores have the expected
spectroscopic signatures.14 Using parent1a as an example,
two intense carbonyl stretches (1735 and 1692 cm-1) appear
in the IR spectrum (Fermi resonance), and a weak UV
transition is observed that is attributable to theσ-coupled
transition (λCT ) 284 nm (nf π*), εCT ) 2200 M-1 cm-1,
THF). The compounds show moderate solubility in haloge-
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Scheme 1. Synthesis of Donor-σ-Acceptor
1-Aza-adamantanetriones from Substituted Phloroglucinol

Derivatives14

Table 1. Synthesis of
Tris(arylmethyl)-1-aza-adamantanetrionesa

entry R1 R2 R3 R4

% yield
of 5b

% yield
of 1b,c

a H H H H 90 65
b CH3 H H H 55 61
c H CH3 H H 42 62
d H H CH3 H 66 43
e H CH3 H CH3 27 48
f i-Pr H H H 66 64
g H H t-Bu H 64 33
h H H F H 63 44
i H H OR H 63 (OMe) 58 (OH)
j 3-naphthalenyl 24 40

a See the Supporting Information for synthetic details.b Isolated yield.
c Yield for two steps where the conversion of5 to 2 is quantitative (HMTA
) hexamethylenetetramine; Ar) aryl).
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nated solvents and DMSO, with excellent solubility in
pyridine. A corresponding dependence of the N-R-CH2

1H
NMR chemical shift on solvent polarity/polarizability19 is
observed (Table 2) that roughly follows the expected dipolar
properties of the core in solution. Namely, as the core dipole
is stabilized (through-bond effects) in more polar solvents,
the bridgehead nitrogen becomes more electron deficient;
the consequence is a deshielding of the N-R-CH2 protons.20

That these effects are unique to the core and do not arise
from chemical shift anisotropy (involving the aromatic
substituents) is shown through model compounds. Three-
fold O-allylation of phloroglucinol6 followed by a Claisen
rearrangement offers new triallyl derivative7 (Scheme 2).

This material, although challenging to purify, was reacted
with HMTA directly to provide triallyl 1-aza-adamantantri-
one1k in 35% yield (isolated yield for two steps). Similar
chemical shift trends are observed for this compound and
saturated tris(propyl)1l (Table 2), demonstrating that ground-
state electronic stabilization of the core is responsible for
the downfield shifts in more polar solvents.

Unexpected given the modest solubility of1a-j in most
organic solvents, two derivatives,1aand1i, display gelation
behavior.21 Optically clear gels result from heating and
cooling DMSO (Figure 1a) and CHCl3 solutions of1a (∼0.5

wt %). The gels take nearly 1 h to form and then exhibit a
sol-gel transition (Tgel) at ∼45 °C (determined by the
inverted vial technique);21 importantly, the process is revers-
ible with no signs of decomposition or structural change to
the monomer by1H NMR (DMSO-d6).22 Similarly, addition
of water to DMSO solutions of1i results in gelation at the
solvent interface.

SEM and TEM techniques were used to explore the
morphologies of xerogels formed from1a (Figure 1b-d).
The solvent was removed from DMSO gels (e.g., Figure 1a)
via both critical point drying and conventional freeze-
drying.23 TEM images reveal 0.5µm fibers (Figure 1b) that
do not show any discernible higher-ordered structure,
although some do appear hollow (Figure 1b, inset). Extended
fibrillar structures are also detected by SEM from each of
the sample preparations; these show little entanglement,
consistent with more crystalline gelators.24,25In all cases, the

(19) Katritzky, A. R.; Fara, D. C.; Yang, H. F.; Tamm, K.; Tamm, T.;
Karelson, M.Chem. ReV. 2004, 104, 175-198.
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indicative of enhanced through-bond effects (data taken from ref 14).
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see: Frey, M. W.; Cuculo, J. A.; Spontak, R. J.J. Polym. Sci., Part B:
Polym. Phys.1996, 34, 2049-2058.

(24) Wang, G. J.; Hamilton, A. D.Chem. Eur. J.2002, 8, 1954-1961.
(25) DSC analysis of the monomer reveals a sharp endothermic transition

upon first heating (297.1°C) and sharp exotherm upon cooling (222.5°C).
Likewise, preliminary powder X-ray diffraction studies show a series of
low angle diffraction peaks that are not readily indexed.

Table 2. Solvent-Dependent1H NMR Chemical Shiftsa of the
N-R-CH2 Protons for Substituted 1-Aza-adamantantriones (300
MHz, 25 °C)b

compd DMSO-d6 pyridine-d5 CDCl3 C6D6

1a 3.15 3.37 3.11 2.63
1k 3.33 3.55 3.41 2.78
1l 3.47 3.62 3.38 2.74

a Reported in ppm versus TMS.b The shifts were concentration inde-
pendent over the range permitted by solubility (2.5-50 mM).

Scheme 2. Synthesis of Model Compounds1k and1l

Figure 1. Organogels from tribenzyl-1-aza-adamantanetrione1a:
(a) 0.5 wt % of1a in DMSO after heating and cooling; (b) TEM
and (c) SEM images of a xerogel formed from critical point drying
of an 0.5 wt % DMSO gel (inset: an∼0.5 µm fiber that appears
as a tube); (d) SEM images of a xerogel formed from conventional
freeze-drying of an 0.5 wt % DMSO gel.
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manifestation of fibers is consistent with other gelators, the
assembly of which is generally understood to be one-
dimensional organization of the monomers.21

As ascertaining molecular ordering and conformation from
the gel phase remains an interminable challenge,21 both
solution-phase NMR experiments and computation were
undertaken to preliminarily probe the conformational prefer-
ences of1a. Monte Carlo conformational searching26 identi-
fies the chiral (but racemic)C3-symmetric “all-arms-up”
arrangement as the lowest energy conformation (Figure 2a)
with values ofφ ∼ 45° andψ ∼ 90° (Figure 2b) for the two
relevant dihedral angles.27 Although appealing from a
molecular recognition standpoint, the “all-arms-down” con-
formations (Figure 2c) are predicted to be significantly higher
in energy. The lowest energy of these is shown (∆∆Erel )
5.75 kcal mol-1, HF/3-21G*)26 and reveals eclipsed interac-
tions between the N-R-CH2 hydrogens (Ha) and benzylic
hydrogens (Hb); additionally, theo-phenyl hydrogens are
poorly aligned to participate in favorable C-H‚‚‚O interac-
tions28 with the core carbonyl oxygens, and in fact, these
electrostatic interactions are likely repulsive.

Evidence for the lowest energy conformation in solution
comes through a NOESY experiment where NOEs are
observed between hydrogens Hc on the aromatic ring and
Ha on the core (Figure 2b;d ) 2.7 Å in the minimized
structure of1a), a result only possible if the “all-arms-up”
conformer is present in solution. In any case, compounds
1a-j exist as equilibrium mixtures of conformers in solu-
tion,29 as indicated by the relatively large temperature
dependence of their chemical shifts. The temperature de-
pendence coefficient is 0.2 ppb/K for Ha and 1.1 ppb/K for
Hb in 1a; these coefficients increase in1b to -2.6 and 2.3
ppb/K, respectively. Theo-CH3 protons of1b also display
a large temperature dependence (0.6 ppb/K) as does the
o-proton of the aromatic ring (4.1 ppb/K). The barriers to
conformational exchange become even higher for1e; at-80
°C, Ha and Hb display a pattern of at least eight lines which
coalesce into two at 20°C.

A survey of the literature reveals that while low molecular
weight organogelators of diverse structure have been identi-
fied,21 few possess the structural and functional attributes
of 1a,i. While our studies have offered a glimpse of the
monomer structure and behavior of1a in solution, our current
efforts seek to understand why this molecule is a gelator at
all. Certainly an appreciable ground-state dipole moment for
1a (∼4 D) is predicted by computation, and the dipole-driven
stacking of molecules is conceivable in solution12 where other
factorsscomplementary monomer shape, aryl substitution
(i.e., π-π interactions), weak intermolecular contacts (e.g.,
dispersion and C-H‚‚‚O), and solvationsalso play a role.30

Further studies are now conceivable to show how through-
bond interactions might both facilitate the organization of
donor-σ-acceptor molecules such as1a in solution and
impart their assemblies with unique electronic properties.
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Figure 2. Low-energy conformations of1a identified from Monte
Carlo conformational searching:26 (a) energy-minimized lowest
energy “all-arms-up” conformation (one enantiomer is shown); (b)
NOE contacts identified by a NOESY experiment and labeling of
critical dihedral angles,φ and ψ; (c) energy-minimized lowest
energy “all-arms-down” conformation, approximately 5.8 kcal
mol-1 higher in energy.
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