Polyhedron 29 (2010) 2739-2746

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Self assembly of asymmetric tetranuclear Cu(II) $[2 \times 2]$ grid-like complexes and of a dinuclear Ni(II) complex from pyridyl-phenol Schiff base ligands

François Robert^a, Bernard Tinant^a, Rodolphe Clérac^{b,c}, Pierre-Loïc Jacquemin^a, Yann Garcia^{a,*}

^a Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium ^b CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP), Equipe "Matériaux Moléculaires Magnétiques", 115 Avenue du Dr. Albert Schweitzer, Pessac, F-33600, France ^c Université de Bordeaux, UPR 8641, Pessac, F-33600, France

ARTICLE INFO

Article history: Received 21 April 2010 Accepted 23 June 2010 Available online 30 June 2010

Keywords: Grid-like complexes Molecular magnetism Schiff bases Self-assembly Copper(II)

ABSTRACT

Self assembly of *N*-salicylidene 2-aminopyridine (**L1H**) with Cu(NO₃)₂·3H₂O affords [Cu₄(**L1**)₄(NO₃)₃·(CH₃OH)][Cu(**L1**)(NO₃)₂](2-aminopyridinium)(NO₃)·5CH₃OH (**1**) which is composed of an asymmetric [2 × 2] grid-like cationic complex that co-crystallizes with a Cu(II) mononuclear anion. This remarkable tetranuclear unit presents three penta-coordinated and one hexa-coordinated Cu(II) sites. This quadruple helicate structure reveals strong anti-ferromagnetic coupling ($J = -340(2) \text{ cm}^{-1}$) between Cu(II) ions through a double alkoxo bridge. Reacting **L1H** with Cu(NO₃)₂·3H₂O in slightly different conditions affords however a more symmetric tetranuclear grid-like complex: [Cu₄(**L1**)₄(NO₃)₂(OH)₂](2-aminopyridinium)(OH)·CH₃OH) (**2**). A dinuclear Ni(II) complex, [Ni₂(**L2**)₂(**L2**H)₂(NCS)₂(CH₃OH)(**3**), obtained with another related donor ligand (**L2H** = *N*-salicylidene 3-aminomethylpyridine) was also prepared.

1. Introduction

A major concept in crystal engineering is that covalent blocks can be encoded to interact in a given orientation affording crystal packing control [1]. In such self assemblies, building blocks are directly connected through inter-molecular interactions or by the use of metal ions that can present diverse coordination sphere geometries and natures. Following this synthetic plan, various functional nano-structures (e.g. racks [2], cages [3] and grids [4–7]), which can often reorganize under a given stimulation [8-10], were synthesized. Grid-like metal ion arrays are particularly attractive in this respect for molecular electronic applications because of the well controlled 2D arrangement that can be extended on a given surface [11,12]. In the frame of molecular magnetism, these molecules can behave as single-molecule magnets [13] and be potentially interesting for data storage applications by addressing electronic properties of metal ions (spin state [14], oxidation state [15]). The magnetic properties of $[2 \times 2]$ grid-like complexes [16] are relatively rich. In particular, ferromagnetic [17a] and/or anti-ferromagnetic [17] couplings have been observed within and between the supramolecules. High-nuclearity transition metal complexes are also of common interest in bioinorganic chemistry as they can mimic multimetallic active sites of metalloproteins [18]. A biomimetic application was considered

E-mail address: yann.garcia@uclouvain.be (Y. Garcia).

in this context for a Cu(II) $[2 \times 2]$ grid-like complex [19]. Thus, the synthesis of asymmetric $[2 \times 2]$ nanogrids with different metals [13], spin states [14], coordination spheres [17b] and geometries remains a challenging perspective, particularly in the frame of magnetochirality [20,21]. There exist various ways of generating chiral coordination complexes and assemblies [22,23]. Transfer of chiral information from predesigned optically active ligands or coordination building blocks is generally targeted [24]. This strategy has been successful for developing chiral tetranuclear Cu(II) complexes [25], most examples being found for cubanes [26].

We present herein two new examples of metal directed supramolecular grid self-assemblies using N-salicylidene 2-aminopyridine ligand (L1H). First, a unique asymmetric $[2 \times 2]$ grid-like complex that co-crystallizes with a Cu(II) mononuclear anion: $[Cu_4(L1)_4(NO_3)_3(CH_3OH)][Cu(L1)(NO_3)_2](2-aminopyridinium)(NO_3)]$ ·5CH₃OH (1). It is a sophisticated architecture comprising not less than three Cu(II) coordination sphere geometries. This asymmetric self-assembly is generated without any ligand conformation asvmmetry [27] and affords a strong anti-ferromagnetic (AF) coupling between spin carriers. A more symmetric $[2 \times 2]$ grid-like complex was obtained with L1H using modified synthetic conditions: [Cu₄(L1)₄(NO₃)₂(OH)₂](2-aminopyridinium)(OH)·CH₃OH (2). A Ni(II) dinuclear complex, [Ni₂(L2)₂(L2H)₂(NCS)₂(CH₃OH)₂]·2CH₃OH (3), was also prepared with the related Schiff base N-salicylidene 3-(aminomethyl)pyridine (L2H). It structurally represents half of the $[2 \times 2]$ grid-like complex **1** and **2**, and is helpful to understand the complex grid architecture.

^{*} Corresponding author. Fax: +32 1047 2330.

^{0277-5387/\$ -} see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2010.06.017

2. Experimental

2.1. Starting materials

Solvents (HPLC grade methanol from Prolabo; DMSO-d₆ 99.98 atom% D, HPLC grade, *n*-hexane from Aldrich and benzene \geq 99% from Fluka) and reagents (ammonium thiocyanate 99+%, copper(II) nitrate trihydrate 99% and salicylaldehyde 99% from Acros Organics; 3-(aminomethyl)pyridine \geq 99% from Aldrich; 2-aminopyridine 99% from Lancaster; nickel(II) chloride from UCB) were obtained commercially and used as received. *N*-salicylidene 2-aminopyridine (**L1H**) was synthesized following the reported procedure [28].

2.2. Instrumentation

¹H and ¹³C NMR spectra were recorded with a Brüker AC 300 MHz instrument with DMSO as the internal standard. Infrared spectra were recorded with a Shimadzu FTIR-8400S spectrometer with KBr discs. Elementary analyses were performed at University College London. TGA analysis of 1 was made on a Mettler Toledo TGA/SDTA 851e TGA with alumina crucibles filled with approximately 20 mg of sample. Crystalline sample of **1** was taken from the solution and directly sampled under dried air. The temperature program was: (i) isotherm 25 °C, 2 h; (ii) heating to 130 °C, 1 °C/min; (iii) isotherm 130 °C, 1 h; (iv) cooling down to 25 °C, 1 °C/min; (v) stabilization at 25 °C, 5 min; (vi) heating to 450 °C, 10 °C/min. TGA analysis of **3** was made on a TA instrument SDT2960 Simultaneous DSC-TGA with alumina crucibles filled with approximately 10 mg of sample. Approximately 10 mg of dried aluminum oxide were used as reference for DTA measurements. The sample was filtered and stored under dried atmosphere and rapidly measured to avoid moisture absorption. The temperature program was: (i) stabilization at 30 °C; (ii) heating to 150 °C, 1 °C/min; (iii) isotherm 150 °C, 20 min; (iv) cooling down to 25 °C, 1 °C/min; (v) stabilization at 25 °C; (vi) heating to 500 °C, 5 °C/min. Magnetic susceptibility of 1 was measured with a Quantum Design SQUID magnetometer MPMS-XL. M vs. H measurements were performed at 100 K to check for the presence of ferromagnetic impurities; none were observed. The magnetic data were corrected for the sample holder and diamagnetic contributions. Magnetic susceptibilities of 2 and 3 were not recorded because of the too low available sample quantity of **2** and the likely Curie paramagnetism of 3.

3. Synthesis

3.1. N-salicylidene 3-(aminomethyl)pyridine (L2H)

3-Aminomethylpyridine (2.70 mL) was mixed to benzene (100 mL) in a 250 mL round bottom flask with a Dean-Stark setup that allows trapping water released during condensation reaction. Salicylaldehyde (3.34 mL) was added to give a yellow solution, which was heated at reflux for 24 h. This solution was evaporated and a crude orange oil was isolated. The product was triturated $5 \times$ in hexane and a pure solid was filtered and dried under a vacuum line (4.9987 g, 24 mmol, 99%). ¹H NMR (300 MHz, [D₆] DMSO, 298 K): 4.85 (s, 2H), 6.92 (m, 2H), 7.35 (m, 2H), 7.49 (dd, $I_1 = 1.68$ Hz, $I_2 = 7.64$ Hz, 1H), 7.76 (dt, $I_1 = 7.92$ Hz, $I_2 = 7.89$ Hz, 1H), 8.51 (dd, J_1 = 1.56 Hz, J_2 = 4.78 Hz, 1H), 8.60 (d, J_1 = 1.89 Hz, 1H), 8.76 (s, 1H), 13.22 (s, 1H). ¹³C NMR (300 MHz, [D₆] DMSO, 298 K): 60.67, 117.68, 119.93, 120.01, 124.97, 133.06, 133.79, 135.52, 136.84, 149.76, 150.34, 161.56, 168.36. Anal. Calc. (%) for $C_{13}H_{12}N_2O$ (*M*_t = 212.25 g mol⁻¹): C, 73.57; H, 5.70; N, 13.20. Found: C, 73.12; H, 5.59; N, 12.87%. FTIR (KBr): 1630 (s), 1589 (m), 1491 (m), 1474 (m), 1435 (m), 1389 (w), 1335 (w), 1278 (m), 1259 (m), 1221 (w), 1151 (m), 1117 (w), 1099 (w), 1047 (m), 1007 (w), 893 (w), 839 (w), 802 (m), 754 (s) cm⁻¹.

3.2. [Cu₄(**L1**)₄(NO₃)₃(CH₃OH)][Cu(**L1**)(NO₃)₂](2-aminopyridinium)-(NO₃)·5CH₃OH (**1**)

A solution of $Cu(NO_3)_2 \cdot 3H_2O$ (0.37 g, 1.51 mmol, 4 equiv.) dissolved in methanol (5 mL) was slowly added to a solution of L1H (0.3 g, 1.51 mmol, 4 equiv.) dissolved in hot methanol (10 mL). 2-Aminopyridine (0.04 g, 0.4 mmol, 1 equiv.) dissolved in methanol (5 mL) were then added to the mixture to give a dark green solution which was kept in darkness and under a diethyl ether saturated atmosphere over few weeks. A crystalline sample, constituted by a large number of green crystalline blocks, was obtained (0.16 g, 0.08 mmol, 21%). It was essential to control the ether diffusion rate to obtain large single crystals. Anal. Calc. (%) for $[Cu_4(L1)_4(NO_3)_3(CH_3OH)][Cu(L1)(NO_3)_2](2-aminopyridinium) (NO_3)$ ·CH₃OH·6H₂O: C₆₇H₇₇N₁₈O₃₁Cu₅ (M_t = 1948.18 g mol⁻¹): C, 41.31; H, 3.98; N, 12.94. Found: C, 40.93; H, 3.05; N, 12.55%. This analysis reveals that four non coordinated methanol molecules have been replaced by six water molecules, provided the samples are stored in air. Indeed, a perfect match is obtained between TGA and X-ray analyses when fresh crystals are quickly transferred from the mother solution to the thermogravimetric analyser. TGA weigh lost at onset temperatures: 25 °C, -1.1%, -1 CH₃OH; 122 °C, -3.8%, -2 CH₃OH; 130 °C, -2.7%, -3 CH₃OH; degradation temperature: 218(1) °C. FTIR (KBr): 3366 (l, s), 1763 (w), 1666 (m), 1601 (s), 1568 (m), 1545 (s), 1481 (m), 1470 (s), 1435 (s), 1385 (s), 1306 (m), 1290 (s), 1267 (m), 1200 (s), 1155 (m), 1128 (w), 1065 (w), 1036 (w), 1022 (w), 989 (w), 933 (w), 864 (m), 825 (w), 806 (m), 783 (w), 762 (m), 741 (w), 675 (w), 646 (w), 627 (w), 598 (w), 555 (m), 538 (w), 521 (w), 465 (w) cm⁻¹.

3.3. [*Cu*₄(*L*1)₄(*NO*₃)₂(*OH*)₂](2-aminopyridinium)(*OH*)·*CH*₃*OH* (**2**)

A solution of $Cu(NO_3)_2 \cdot 3H_2O(0.37 \text{ g}, 1.51 \text{ mmol}, 5 \text{ equiv.})$ dissolved in methanol (5 mL) was slowly added to a solution of **L1H** (0.3 g, 1.51 mmol, 5 equiv.) dissolved in hot methanol (10 mL). 2-Aminopyridine (0.03 g, 0.3 mmol, 1 equiv.) dissolved in methanol (5 mL) were then added to the mixture to give a dark green solution which was kept in darkness and under a diethyl ether saturated atmosphere over few weeks. A single crystal of **2** was isolated on the glassware and rapidly taken out from the mother solution to be measured by X-ray diffraction. The presence of free hydroxide and 2-aminopyridinium groups in the structure is proposed because such molecules are consistent with the composition of **1** but the possibility to have free water and 2-aminopyridine cannot be excluded.

3.4. [Ni₂(L2)₂(L2H)₂(NCS)₂(CH₃OH)₂]·2CH₃OH (3)

NiCl₂ (0.056 g, 0.24 mmol, 1 equiv.) was dissolved in methanol (5 mL) and added to a solution of NH₄NCS (0.036 g, 0.47 mmol, 2 equiv.) dissolved in methanol (5 mL). The resulting blue-green solution was then added to **L2H** (0.2 g, 0.94 mmol, 4 equiv.) dissolved in methanol (7 mL). A yellow precipitate (17 mg of crude product) was filtered and the resulting clear green solution was kept over one month in darkness. Complex **3** (0.08 g, 0.07 mmol, 58%) was obtained as green single crystals. *Anal.* Calc. (%) for $[Ni_2(L2)_2(L2H)_2(NCS)_2(CH_3OH)_2] \cdot 2CH_3OH \cdot H_2O$: C₅₆H₅₆N₁₀O₇S₂Ni₂ ($M_t = 1162.64 \text{ g mol}^{-1}$): C, 57.8; H, 4.85; N, 12.05; S, 5.52. Found: C, 57.50; H, 4.55; N, 12.22; S, 5.61%. TGA weigh lost at onset temperatures: 46 °C, -4.2%, -1.5 CH₃OH; 69 °C, -6.3%, -2.3 CH₃OH; degradation temperature: 169(1) °C. FTIR (KBr): 1624 (s), 1533 (w), 1479 (w), 1468 (m), 1452 (m), 1429 (m), 1400 (w), 1348

(w), 1329 (w), 1279 (w), 1215 (w), 1190 (m), 1126 (w), 1117 (w), 1036 (w), 984 (w), 903 (w), 841 (w), 806 (w), 756 (m), 706 (m) cm⁻¹.

4. Single crystal X-ray diffraction studies

The intensity data were collected at 120 K for 1 and 2, and at 115 K for **3** with a MAR345 image plate using Mo $K\alpha$ $(\lambda = 0.71069 \text{ Å})$ radiation. The crystal was mounted in inert oil and transferred quickly to the cold gas stream for flash cooling. Crystal data, data collection parameters, details of the refinement and the final R indices are summarized in Table 1. The unit cell parameters were refined using all collected spots after the integration process. The data were not corrected for absorption but the data collection mode partially takes the absorption phenomena into account. The structures 1-3 were solved by direct methods with shelxs97 [29]. All the structures were refined by full-matrix least-squares on F^2 using SHELXL97 [29]. All the non-hydrogen atoms were refined with anisotropic temperature factors and hydrogen atoms were calculated with AFIX. The H atoms were included in the refinement with a common isotropic temperature factor. Some H atoms of solvent molecules could not be localized. Constraints and geometrical parameters of some disordered solvent molecules were applied.

5. Results

5.1. Synthesis

Reacting Cu(NO₃)₂·3H₂O, **L1H** and 2-aminopyridine in a 4:4:1 ratio in methanol afforded large green blocks of $[Cu_4(L1)_4(NO_3)_3-(CH_3OH)][Cu(L1)(NO_3)_2](2-aminopyridinium)(NO_3)·5CH_3OH$ (1). These crystals transform to powder after filtration in air. This behaviour originates from the lost of lattice solvent methanol molecules as concluded from thermogravimetric and elemental analyses. Crystals thus had to be directly taken out from the mother

Table 1

Crystal data and structure refinement for 1-3.

Compound	1	2	3
Empirical formula	C ₇₁ H ₇₆ Cu ₅ N ₁₈ O ₂₉	$C_{60}H_{64}Cu_4N_{14}O_{16}$	$C_{57.5}H_{60}N_{10}O_{7.5}S_2Ni_2$
Formula weight	1963.20	1491.42	1192.70
T (K)	120(2)	120(2)	115(2)
Crystal system	Triclinic	Orthorhombic	Triclinic
Space group	ΡĪ	Pbcn	ΡĪ
a (Å)	15.002(2)	14.139(5)	13.639(4)
b (Å)	15.894(5)	24.896(7)	14.517(4)
c (Å)	17.764(3)	16.452(5)	15.404(4)
α (°)	70.20(2)	90	68.32(2)
β (°)	87.83(2)	90	87.47(2)
γ(°)	81.25(2)	90	81.35(2)
V (Å ³)	3938(2)	5791(3)	2802(1)
Ζ	2	4	2
$ ho_{ m calc}~(m mg~m^{-3})$	1.655	1.711	1.413
F(000)	2010	3064	1246
μ (mm ⁻¹)	1.425	1.536	0.809
Crystal size (mm)	$0.2\times0.2\times0.2$	$0.5\times0.2\times0.2$	$0.4 \times 0.1 \times 0.1$
θ_{max} (°)	24.40	23.55	24.42
Reflections collected/ unique	79617/12257	29887/4280	27850/8730
R _{int}	0.046	0.069	0.052
$R_1 [I > 2\sigma(I)]$	0.0424 [10535]	0.0898 [3611]	0.0397 [7501]
wR ₂	0.1104	0.2772	0.1060
Largest peak and hole	1.16 and -0.70	1.86 and -1.29	0.42 and -0.41

solution and quickly transferred to a diffractometer to enable a crystal structure determination that revealed an interesting $[2 \times 2]$ grid-like complex. Surprisingly, reacting Cu(NO₃)₂·3H₂O, L1H and 2-aminopyridine in a different ratio (5:5:1) also in methanol afforded $[Cu_4(L1)_4(NO_3)_2(OH)_2](2-aminopyridinium)(OH)-CH_3OH (2)$ whose crystal structure was determined. Although we assume that its crystal structure is not representative of the major reaction product, it is discussed below because, like 1, it is a $[2 \times 2]$ grid-like complex, and confirms the formation of such self-assembled architecture in the reaction scheme. Note that, in both cases, 2-aminopyridinium acted as a seeding agent. Indeed, all crystallization attempts without this molecule failed whatever the method employed. Single crystals of $[Ni_2(L2)_2(L2H)_2-(NCS)_2(CH_3OH)_2]\cdot 2CH_3OH (3)$ were obtained by reacting NiCl₂, NH₄NCS and L2H in a 1:2:4 ratio in methanol.

5.2. Structural aspects

5.2.1. Crystal structure of 1

The asymmetric part of the unit cell of **1**, which crystallizes in the triclinic space group $P\overline{1}$, is crowded. It contains a non-centrosymmetric cationic Cu(II) $[2 \times 2]$ grid-like complex with 4 copper ions labelled as Cu^i (*i* = 1–4), an anionic Cu(II) mononuclear unit, several uncoordinated species (five methanol molecules and one nitrate anion), as well as a disordered 2-aminopyridinium cation, required to ease crystallization (Fig. 1). The coordination sphere of the anionic mononuclear entity around Cu5, $[Cu(L1)(NO_3)_2]$, contains one L1 and two bidentate nitrato anions. Interestingly, L1 appears to be twisted (the dihedral angle between salicyl and pyridine rings, $\phi = 42(1)^{\circ}$) even though the pyridine moiety is not involved in the coordination sphere. In order to simplify the discussion of the tetranuclear complex, structurally different ligands have been labelled as Lj (j = a-e) (Table 2). Relevant bond length differences and angles are given in Table 3. The coordination sphere of Cu1 is built of five atoms in a square pyramidal geometry which is confirmed by the Addison structural index [30]. τ = 0.35. It involves O16 of a monodentate nitrate. N1 from the pyridine of L1a. N107 from the imine function of L1b. O115 and O215 from alcoholate functions of L1b and L1c, respectively (Fig. 2). Interestingly, Cu2 adopts a distorted hexa-coordinated coordination sphere with O116 and O119 from a bidentate nitrato anion, N301 from the pyridine of L1d, N207 from the imine function of L1c, O115 and O215 from alcoholate functions of L1b and L1c, respectively. The coordination sphere of Cu3, also displayed in Fig. 2, resembles the one of Cu1. It is also penta-coordinated ($\tau = 0.04$) but the nitrato anion has now been replaced by a methanol molecule. Indeed, we find one oxygen atom arising from a methanol molecule (020), N201 from the pyridine of L1c, N307 from the imine function of L1d, O15 and O315 from the alkoxo groups of L1a and L1d. As Cu1, Cu4 also presents a square pyramidal coordination sphere (τ = 0.40) made with O216 from a monodentate nitrato anion, N101 from the pyridine of L1b, N7 from the imine function of L1a, O15 and O315 from alkoxo groups of L1a and L1d. However, their connection through μ_2 -alkoxo groups to different copper ions (Cu2 and Cu3), makes Cu1 and Cu4 different from a crystallographic point of view (Table 3). The whole $[2 \times 2]$ grid forms a slightly distorted square (Fig. 1) with Cu-Cu distances of 3.064(3) Å, 3.067(3) Å, 3.253(3) Å and 3.343(3) Å (Table 2) which are in the same range than the distances observed for $[Cu_4(L1)_4]$ $(H_2O)_4$ (NO₃)₄ (**4**) [31]. The tetranuclear unit can be viewed as a pair of dinuclear complexes [33], the bridging geometry within each dinuclear unit being made of two μ_2 -alkoxo groups with Cu-O-Cu angles around 101.8-102.8° (Table 3) that suggest strong AF interactions between metal ions. Both dimers are linked by two N-C-N bridges including the imine and pyridine moieties of L1 (Fig. 3). A racemic mixture of two enantiomers, generated by the

Fig. 1. ORTEP view of the asymmetric part of the unit cell for 1, showing 50% probability displacement ellipsoids. The Cu^{II} grid-like complex (violet square) is shown on the right side and the mononuclear unit on the left side. H atoms were omitted for clarity. The inset shows a scheme of the L1 ligand.

Table 2Selected angles (°) and distances (Å) for 1–3.

$arPhi^{a}\left(^{\circ} ight)$	L1a	L1b	L1c	L1d	L1e			
1	48(1)	48(1)	42(1)	35(1)	42(1)			
2	35(1)	40(1)	-	-	-			
3	60(1)	76(1)	90(1)	69(1)	-			
C7-N8-C9-	C7-N8-C9-C10 ^b (°)							
3 ^c	125(1)	97(1)	109(1)	126(1)	-			
d _{Himine-Hβ} (Å)							
1	2.52(5)	2.48(5)	2.38(5)	2.36(5)	2.33(5)			
2	2.34	2.38	-	-	-			
3	2.41(2)	2.44(2)	2.43(2)	2.52(2)	-			
d _{M…M} (Å)	Cu1-Cu2	Cu2-Cu3	Cu3-Cu4	Cu4-Cu1	Cu2-Cu5			
1	3.064(3)	3.253(3)	3.067(3)	3.343(3)	9.082(3)			
2	3.067(9)	3.213(9)	-	-	-			

^a Dihedral angle between phenolic and pyridine aromatic rings.

^b Torsion angle involving the CH₂ spacer group between the imine function and the pyridine ring.

^c Concerns either L2Ha, L2b, L2c and L2Hd.

 $P\bar{1}$ symmetry, has been crystallised with a right hand helicate (Δ enantiomer) or a left hand helicate (Λ enantiomer) (Fig. 4) [32]. This situation results from the large twist of **L1** (see torsion angles in Table 1). A dense supramolecular network is also revealed based on 14 inter-molecular H-bonds, one N-H··· π and two C-H··· π interactions (Table S1).

5.2.2. Crystal structure of 2

Complex **2** crystallizes in the orthorhombic space group *Pbcn* and contains a Cu(II) tetranuclear unit, made with **L1**, that forms a $[2 \times 2]$ grid-like arrangement with Cu \cdots Cu distances of 3.067(9) Å and 3.213(9) Å (Fig. 5). Two different coordination spheres are identified. Cu1 presents a square pyramidal geometry ($\tau = 0.40$) made of a monodentate nitrato anion (O202) in apical position, two oxygen atoms originating from alkoxo groups of **L1a** (O15) and **L1b** (O115), a nitrogen N1 of the pyridine of **L1a** and a nitrogen N107 of the imine function of **L1b**. Cu2 which is also pentacoordinated presents a similar coordination sphere ($\tau = 0.01$) with a hydroxide (O20) in apical position, two oxygen atoms from alkoxo functions of **L1a**

(O15) and **L1b** (O115), a nitrogen N101 of the pyridine of **L1b** and a nitrogen N7 of the imine function of **L1a**. The bridge between Cu ions is ensured, like in **1**, by two alkoxo groups in one direction and by an imine and a pyridine group (N–C–N bridge) in the other direction. Even if only two Cu ions are present in the asymmetric part of the unit cell, the grid-like complex is generated by symmetry. Each ligand **L1** is coordinated to three Cu ions. Interestingly, the coordination involves a large dihedral angle Φ between aromatic rings of **L1** ($\Phi_a = 35(1)^\circ$ and $\Phi_b = 40(1)^\circ$) (Table 1). Because of this angle, as in **1**, a quadruple helicate is formed within this chiral tetranuclear unit. The two enantiomers, that crystallize in a racemic mixture, are generated by symmetry in the *Pbcn* group.

The $[2 \times 2]$ grid unit also co-crystallizes with a hydroxide ion, a methanol and a 2-aminopyridinium cation. The electro-neutrality is reached between positive charges (copper ions and pyridinium moiety) and negative charges (L1, coordinated nitrates and hydroxide, free hydroxide). The structure shows a few supramolecular interactions that ensure the cohesion between building blocks. Indeed, three intramolecular and three inter-molecular H-bonds in addition to two intramolecular and three inter-molecular π - π interactions are found (Table S1).

5.2.3. Crystal structure of 3

The asymmetric part of the unit cell of **3**, which crystallizes in the triclinic space group $P\overline{1}$, contains a Ni^{II} dinuclear complex (Fig. 6). Each nickel ion sits in a distorted octahedral coordination sphere (distortion parameter [33], Σ_{Ni1} = 72°, Σ_{Ni2} = 60°) built from a methanol molecule, a linear isothiocyanato anion, a pyridine group originating from a terminal **L2H** as well as a pyridine, a μ-alkoxo and an imino group belonging to two different bridging L2 ligands (Table 3). Two disordered methanol solvent molecules are also found in the crystal lattice. L2 ligands are structurally different. Indeed, large differences are observed in the dihedral angle, between phenoxide and pyridine aromatic rings, as well as in the C7-N8-C9-C10 torsion angle allowed by the presence of the flexible methyl group (Table 1). Terminal L2H (L2Ha and L2Hd) are similar with dihedral angles of $60(1)^\circ$ and $69(1)^\circ$ and torsion angles of 125(1)° and 126(1)° although bridging L2 (L2b and L2c) have dihedral angles of $76(1)^{\circ}$ and $90(1)^{\circ}$ and torsion angles of $97(1)^{\circ}$

Table 3

(a) Selected bond lengths (Å) and bond angles (°) for 1-3.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1						2			3		
Cu1-016 2.267(3) Cu3-015 1.978(3) Cu1-0202 2.218(1) N11-N2 2.140(3) Cu1-N107 2.005(3) Cu4-0216 2.211(3) Cu1-N107 2.007(7) N11-N108 2.082(3) Cu1-0115 1.941(3) Cu4-W1 1.0215(3) Cu1-0115 1.945(3) N11-N22 2.132(2) Cu2-0116 2.341(5) Cu4-0315 2.003(3) Cu2-V01 2.047(3) N11-N12 2.038(2) Cu2-0119 2.738(3) Cu4-0315 2.003(3) Cu2-V01 2.048(6) N12-N12 2.132(2) Cu2-N301 2.011(3) Cu5-0415 1.988(3) Cu2-V101 2.048(6) N12-N12 2.132(2) Cu2-0115 1.988(3) Cu2-0115 1.988(6) N12-N12 2.132(2) Cu2-0123 Cu3-N207 2.021(3) Cu5-0516 2.001(3) Cu2-V15 1.988(6) N12-N12 2.021(2) Cu3-N207 2.021(3) Cu5-0516 2.010(3) Cu2-V16 9.27(3) M00-N1- N10 N10 N10 N10 </td <td>(a)</td> <td></td>	(a)											
$ \begin{array}{c c1-N10} \ & 2.026(3) \\ \ Cu1-N107 & 2.005(3) \\ \ Cu1-015 & 1.941(3) \\ \ Cu1-N107 & 2.005(3) \\ \ Cu1-015 & 1.941(3) \\ \ Cu1-N11 & 2.015(3) \\ \ Cu1-015 & 1.945(5) \\ \ Cu1-015 & 1.945(5) \\ \ Cu1-015 & 1.941(3) \\ \ Cu2-0116 & 2.341(5) \\ \ Cu2-0116 & 2.341(5) \\ \ Cu2-0115 & 1.943(3) \\ \ Cu2-013 & 2.003(3) \\ \ Cu2-0115 & 1.948(6) \\ \ N12-N12 & 2.024(8) \\ \ N12-N20 & 2.024(8) \\ \ N12-N400 & 2.042(3) \\ \ Cu2-0115 & 1.948(6) \\ \ N12-N400 & 2.042(3) \\ \ Cu2-0115 & 1.948(6) \\ \ N12-N400 & 2.048(3) \\ \ Cu2-0115 & 1.948(6) \\ \ N12-N400 & 2.048(3) \\ \ Cu2-0115 & 1.948(6) \\ \ N12-N400 & 2.048(3) \\ \ Cu2-0115 & 1.948(6) \\ \ N12-N400 & 2.048(3) \\ \ Cu2-0115 & 1.948(6) \\ \ N12-N400 & 2.048(3) \\ \ Cu2-0115 & 1.948(6) \\ \ N12-N400 & 2.048(3) \\ \ Cu2-011 & 2.04(1) \\ \ N12-N400 & 2.048(3) \\ \ Cu2-011 & 2.04(1) \\ \ N12-N400 & 2.048(3) \\ \ N12-N40 & 2.048(3) \\ \ N10 & 0.050 & 0.06(3) \\ \ N12-N40 & 0.015 & 0.06(3) \\ \ N10 & 0.050 & 0.06(3) \\ \ N10$	Cu1-016	2.2	67(3)	Cu3-015	1.9	78(3)	Cu1-020	2	2.28(1)	Ni1	-N12	2.140(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cu1-N1	2.0	26(3)	Cu3-0315	1.9	47(3)	Cu1-N1		2.016(8)	Ni1	-N40	2.042(3)
$ \begin{array}{c c1-015} & .1.941(3) & Cu4-N10 & 2.015(3) & Cu1-015 & 1.965(5) & N11-N212 & 2.132(2) \\ Cu1-0215 & 1.981(3) & Cu4-015 & 1.947(3) & Cu1-015 & 1.946(6) & N1-050 & 2.008(2) \\ Cu2-0119 & 2.786(3) & Cu4-015 & 1.948(3) & Cu2-020 & 2.167(7) & N12-N12 & 2.132(2) \\ Cu2-N207 & 2.012(3) & Cu5-0415 & 1.988(3) & Cu2-N10 & 2.004(8) & N12-N208 & 2.068(2) \\ Cu2-0115 & 1.998(3) & Cu5-0416 & 1.988(3) & Cu2-011 & 1.980(6) & N12-N21 & 2.159(2) \\ Cu2-0215 & 1.947(3) & Cu5-0416 & 2.000(3) & Cu2-N10 & 2.004(8) & N12-N20 & 2.068(2) \\ Cu2-0215 & 1.947(3) & Cu5-0416 & 2.088(3) & Cu2-0115 & 1.980(6) & N12-N20 & 2.068(2) \\ Cu2-0215 & 1.947(3) & Cu5-0518 & 2.010(3) & Cu2-015 & 1.980(6) & N12-N400 & 2.040(3) \\ Cu2-0215 & 1.947(3) & Cu5-0518 & 2.010(3) & Cu2-015 & 1.980(6) & N12-N400 & 2.040(3) \\ Cu3-N207 & 2.202(3) & Cu5-0518 & 2.010(3) & Cu2-015 & 1.980(6) & N12-N400 & 2.068(2) \\ Cu3-N207 & 2.02(2) & Cu5-0518 & 2.010(3) & Cu2-015 & N10-00 & N100 & 015 & N100 & N100 & 015 & N100 & N10$	Cu1-N107	2.0	05(3)	Cu4-0216	2.2	11(3)	Cu1-N10	7	2.001(7)	Ni1	-N108	2.082(3)
$ \begin{array}{c} \mathrm{Cu} - \mathrm{Cl} $	Cu1-0115	1.9	41(3)	Cu4-N101	2.0	15(3)	Cu1-015		1.965(5)	Ni1	-N212	2.132(2)
$ \begin{array}{c clcccccccccccccccccccccccccccccccccc$	Cu1-0215	1.9	81(3)	Cu4-N7	1.9	97(3)	Cu1-011	5	1.942(6)	Ni1	-050	2.089(2)
Cu2-0119 2.786(3) Cu4-0315 2.003(3) Cu2-NT 1.997(7) Ni2-N12 2.13(2) Cu2-N301 2.013(3) Cu5-N415 1.898(3) Cu2-015 1.948(6) Ni2-N12 2.15(3) Cu2-015 1.998(6) Ni2-N12 2.15(3) Cu2-015 1.948(6) Ni2-N12 2.15(3) Cu2-015 1.947(3) Cu5-0416 2.258(3) Cu2-015 1.980(6) Ni2-O216 2.00(2) Cu3-N307 1.387(3) Cu5-0518 2.453(3) Cu2-011 Nu Nu<-Nu 2.098(2) Cu3-N307 1.387(3) N301-Cu2- 0.51 2.016-Cu4- 93.5(1) 0.202-Cu1- 84.0(1) Nu0-Ni2- 93.0(1) Nu	Cu2-0116	2.3	41(5)	Cu4-015	1.9	45(3)	Cu2-020		2.167(7)	Ni1	-0116	2.009(2)
Cu2-N301 2.031(3) Cu5-0415 1.893(3) Cu2-N101 2.024(8) N12-N208 2.082(3) Cu2-015 1.998(3) Cu5-0416 1.998(3) Cu2-015 1.980(6) N12-N20 2.092(3) Cu2-0215 1.998(3) Cu5-0516 2.010(3) Cu2-015 1.980(6) N12-N20 2.098(2) Cu3-N201 2.021(3) Cu5-0518 2.453(3) Cu2-015 1.980(6) N12-020 2.098(2) Cu3-N201 2.021(3) Cu5-0518 2.453(3) Cu2-0115 N10 N10-N11- N10-N11- N10-N11- N10-N11- N10-N11- N10 N	Cu2-0119	2.7	86(3)	Cu4-0315	2.0	03(3)	Cu2-N7		1.997(7)	Ni2	-N112	2.132(2)
Cu2-R027 Cu2-Q15 L948(6) N12-N312 L159(2) L159(3) Cu2-O15 L948(6) N12-N312 L159(2) Cu2-O15 1.947(3) Cu5-O418 2.588(3) Cu2-O15 1.948(6) N12-N20 2.021(2) Cu3-A020 2.202(3) Cu5-O516 2.010(3) Cu2-O15 1.980(6) N12-V20 2.028(2) Cu3-A020 2.202(3) Cu5-O516 2.010(3) Cu2-N20 N12-O500 2.098(2) Cu3-A020 2.202(3) Cu5-O516 2.010(3) State N10-N1- N10 N10-N1- N10 N	Cu2-N301	2.0	31(3)	Cu5-0415	1.8	93(3)	Cu2-N10	1	2.024(8)	Ni2	-N208	2.082(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cu2-N207	2.0	12(3)	Cu5-N407	1.9	58(3)	Cu2-015		1.948(6)	Ni2	-N312	2.159(2)
Cu2-0215 Cu3-020 Cu3-020 Cu3-0307 1.947(3) 2.021(3) Cu5-0418 Cu5-0518 2.588(3) 2.453(3) NI2-0216 NI2-0500 2.021(2) NI2-0500 2.021(2) 2.098(2) t t t NI2-0216 2.021(2) Cu3-N307 NI2-0216 2.021(2) 2.098(2) t t t t t NI2-0216 2.021(2) Cu2-050 2.098(2) t	Cu2-0115	1.9	98(3)	Cu5-0416	i 1.9	88(3)	Cu2-011	5	1.980(6)	Ni2	-N400	2.040(3)
Cu3-020 Cu3-N307 2.202(3) 2.023(3) Cu5-0518 2.010(3) 2.433(3) N12-0500 2.098(2) 1 2 2 3 1 2 3 (b) 016-Cu1-N1 015 93.5(1) 0115-Cu2- 0115 0216-Cu4- 015 93.5(1) 015 0202-Cu1- 015 92.7(3) N107 N40-Ni1- N108 94.1(1) N400 N208-Ni2- 93.9(1) 93.9(1) N400-Ni2 93.9(1) N40-Ni1- N10 94.1(1) N400 N208-Ni2- 93.9(1) 93.9(1) 016-Cu1- 015 93.9(1) 0216-Cu4- 0315 91.9(1) 0202-Cu1- 0315 84.4(1) 016-Ni1- 050 84.4(1) 0500-Ni2- 0216 87.3(1) 016-Cu1- 0215 92.9(1) 020-Cu3- 0315 93.9(1) N10-Cu4- 93.4(1) 94.9(1) 0202-Cu1- 0215 12.3(3) 02.1(1) 90.3(1) 0216-Ni2- 90.1(1) 87.3(1) 016 N307 0315 015 N107 N40 N228 87.3(1) N10-Cu1- 9015 98.4(1) 020-Cu2- 015 98.4(1) N12-Ni2- 98.4(1) 90.6(1) N112-Ni2- 90.8(1) 90.0(1) 91.5(1) N107 N40 N208	Cu2-0215	1.9	47(3)	Cu5-0418	2.5	88(3)				Ni2	-0216	2.021(2)
Cu3-N201 Cu3-N207 2.021(3) 1.9873 Cu5-OS18 2.453(3) t 2 3 t 2 3 (b) 016-Cu1-NI 015 0.301-Cu2- 0115 0.94(1) 015 0.216-Cu4- 015 93.5(1) 015 0.202-Cu1- 015 0.44(4) N108 N40-Ni1- N108 94.(1) N400 N208-Ni2- N400 93.9(1) 016-Cu1- N107 0.315 N101 0.202-Cu1- 015 91.9(1) 0.202-Cu1- 016 91.9(1) N408-Ni1- N108 91.1(1) N400-Ni2- N400 93.9(1) 016-Cu1- 015 N201 0216 0315 011 022-Cu1- 015 91.5(3) 050-Ni1- 90.3(1) 91.6(1) N12-Ni2- 91.6(1) 91.6(1) N12-Ni2- N10 N12-Ni2- N10 N12-Ni2- N10 N12-Ni2- N10 N12-Ni2- N10 N12-Ni2- N10	Cu3-020	2.2	02(3)	Cu5-0516	5 2.0	10(3)				Ni2	-0500	2.098(2)
Cu3-N307 1.987(3) 1 I I 2 3 (b) 016-Cu1-N1 93.5(1) 0115 N301-Cu2- 0115 99.4(1) 015 0216-Cu4- 015 93.5(1) N10 N40-Ni1- N10 94.1(1) N400 N208-Ni2- N400 93.9(1) N400 93.9(1) N400 N208-Ni2- N400 93.9(1) N400 N208-Ni2- N216 83.9(1) N216 N208-Ni2- N107 N208- N10 N208- N208 N208- N10 N208-	Cu3-N201	2.0	21(3)	Cu5-0518	2.4	53(3)						
1 2 3 (b) 016-Cu1-N1 93.5(1) 015 N301-Cu2- 0115 99.4(1) 015 O216-Cu4- 015 93.5(1) N1 O202-Cu1- N1 92.7(3) N108 N40-Ni1- N108 94.1(1) N400 N208-Ni2- N400 93.9(1) 016-Cu1- N107 03.5(1) 0115-Cu2- 0215 75.2(1) 0216-Cu4- 0315 91.9(1) 0202-Cu1- 015 84.4(4) N108-Ni1- N107 91.1(1) N400-Ni2- N107 89.3(1) 016-Cu1- 015 92.5(1) 020-Cu3- N201 93.9(1) N7-Cu4- N101 94.9(1) 0202-Cu1- 015 91.5(3) 050-N11- 0216 90.3(1) 0216-N12- 0216 89.5(1) 0216-N12- N107 89.5(1) N10-N1- N107 90.5(1) N101-N1- N107 91.5(1) N11-Cu1- N10 91.5(3) 050-N11- N10 90.3(1) 0216-N12- N10 89.5(1) N10- N10 N40 N208 N107-Cu1- 015 88.6(1) 020-Cu3- 015 90.6(1) N112-N12- N10 91.5(1) N112-N12- N10 91.5(1) N12-N12- N10 90.6(1) N112-N12- N10 91.5(1) N112-N12- N10 90.6(1) N112-N12- N10 91.6(1) 0216-Cu	Cu3-N307	1.9	87(3)									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1						2		3			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-						-		•			
Olf-Cull-NI 93.(1) N301-Cu2- 015 93.(1) Out-Cull- 015 93.(1) Out-Cull- 015 93.(1) Nu Nu <td>(D)</td> <td>02 5(1)</td> <td>N201 C-2</td> <td>00 4(1)</td> <td>0216 6.4</td> <td>02 5(1)</td> <td>0202 6.1</td> <td>02 7(2)</td> <td>N40 N11</td> <td>041(1)</td> <td>N200 N/2</td> <td>02.0(1)</td>	(D)	02 5(1)	N201 C-2	00 4(1)	0216 6.4	02 5(1)	0202 6.1	02 7(2)	N40 N11	041(1)	N200 N/2	02.0(1)
O16-Cu1- N107 N115 (215) O15-Cu2- (215) 75.2(1) (216-Cu1- (215) O216-Cu4- (315) 91.9(1) (202-Cu1- (215) N108-Ni1- (216) 91.1(1) (200-Cu1- (216) N400-Ni2- (216) 89.3(1) (200-Cu1- (216) 016-Cu1- 0115 92.5(1) 020-Cu3- (216) 93.9(1) N7-Cu4- (216) 94.9(1) 0202-Cu1- (215) 122.8(4) 0116-Ni1- (216) 84.4(1) 0500-Ni2- (216) 87.3(1) 016-Cu1- 0215 N201 N101 015 015 050 0216 89.5(1) 017-Cu1- 0215 94.8(1) 020-Cu3- 0315 97.0(1) 0315-Cu4- 0315 75.4(1) N10-Cu1- 015 95.4(3) N12-Ni1- N10 91.6(1) N112-Ni2- N206 93.2(1) N107-Cu1- 0115 84.8(1) 020-Cu3- 0315 90.0(1) 015-Cu4- 015 84.3(1) N12-Ni1- N10 90.6(1) N112-Ni2- N206 93.2(1) 0115 0315 0415 015 0116 0500 0216 0215-Cu1- N1 98.6(1) N307-Cu3- N30 88.9(1) 0415-Cu5- 0416 89.7(1) 020-Cu2- N10 N108 N400 N22-Ni2- N20 <td>016-Cui-Ni</td> <td>93.5(1)</td> <td>N301-Cu2-</td> <td>99.4(1)</td> <td>0216-Cu4-</td> <td>93.5(1)</td> <td>0202-Cu1-</td> <td>92.7(3)</td> <td>N40-N11-</td> <td>94.1(1)</td> <td>N208-N12-</td> <td>93.9(1)</td>	016-Cui-Ni	93.5(1)	N301-Cu2-	99.4(1)	0216-Cu4-	93.5(1)	0202-Cu1-	92.7(3)	N40-N11-	94.1(1)	N208-N12-	93.9(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	016 Cu1	95 2(1)	0115	75 2(1)	015	010(1)	NI 0202 Cu1	94 4(4)	N100 N31	01 1(1)	N400 NG2	90.2(1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N107	00.0(1)	0115-Cu2-	75.2(1)	0210-Cu4- 0215	91.9(1)	0202-Cu1-	04.4(4)	0116	91.1(1)	0500	89.5(1)
O10-Cull S2.5(1) O2-Cul- S3.5(1) OV-Cul- S4.5(1) OUT OIT OT	016 Cu1	025(1)	0215	020(1)	N7 Cu4	04 0(1)	0202 Cu1	122 8(4)	0116 Ni1	QA A(1)	0500 NG2	97 2(1)
0113 119.4(1) 020-Cu3- N307 101.8(1) 101.8(1) 1010-Cu4- N315 98.4(1) 020-Cu1- O215 91.5(3) 050-Ni1- N40 90.3(1) 0216-Ni2- N40 89.5(1) N1-Cu1- N107 94.8(1) 020-Cu3- O15 97.0(1) 0315-Cu4- O15 75.4(1) N10-cu1- N107 95.4(3) N12-Ni1- N107 91.6(1) N112-Ni2- N107 91.6(1) N112-Ni2- N107 93.2(1) 0115 0315 0315 0315 0115 N107 N107 N108 N102-Ni1- N108 90.6(1) N112-Ni2- N10 93.2(1) 93.2(1) 0115 0315 0315 0315 0115 N107 N108 N108 N109 N108 N109 N108 N109 N108 N109 N109 N108 N112-Ni2- 93.2(1) N112-Ni2- 90.8(1) N112-Ni2- <td>010-0115</td> <td>92.3(1)</td> <td>N201</td> <td>95.9(1)</td> <td>N101</td> <td>94.9(1)</td> <td>0202-011-</td> <td>122.0(4)</td> <td>0110-011-</td> <td>04.4(1)</td> <td>0216</td> <td>87.3(1)</td>	010-0115	92.3(1)	N201	95.9(1)	N101	94.9(1)	0202-011-	122.0(4)	0110-011-	04.4(1)	0216	87.3(1)
Oot Curi Nisk(1) Out Curi Sisk(1) Sisk(1) Out Curi Sisk(1) Si	016_011_	1194(1)	020_013_	101 8(1)	N101_Cu4_	98.4(1)	0202_011_	91 5(3)	050_Ni1_	903(1)	0216_Ni2_	89 5(1)
N1-Cu1- N107 94.8(1) 020-Cu3- 015 97.0(1) 0315-Cu4- 015 75.4(1) N1-Cu1- N107 95.4(3) N12-Ni1- N10 91.6(1) N112-Ni2- N208 93.2(1) N107-Cu1- 0115 88.6(1) 020-Cu3- 015 90.0(1) 015-Cu4-N7 88.5(1) N107-Cu1- 0115 89.4(3) N12-Ni1- N108 90.6(1) N112-Ni2- N108 93.2(1) 0115-Cu1- 0215 75.8(1) N201-Cu3- N307 94.5(1) N407-Cu5- 0415 92.8(1) 0115-Cu1- 015 75.4(2) N12-Ni1- N108 86.8(1) N112-Ni2- N10 90.8(1) 0215-Cu1- N1 98.6(1) N307-Cu3- N307 88.9(1) 0415-Cu5- 0416 88.0(1) 015-Cu1- 015 76.0(1) 0416-Cu5- 0516 89.7(1) 020-Cu2-N7 101.1(3) N212-Ni1- N40 88.2(1) N112-Ni2- N208 89.0(1) N312-Ni2- N207 89.0(1) N312-Ni2- N207 89.0(1) 0516-Cu5- N407 91.6(1) 020-Cu2- N407 80.3(3) N212-Ni1- N40 89.4(1) N312-Ni2- N208 89.0(1) N312-Ni2- N208 89.0(1) N312-Ni2- N208 93.6(1) N407 N101 N108 N400 N104 0116-Cu2- 0215 N201 0216-Cu4- N10 <td>0215</td> <td>115.4(1)</td> <td>N307</td> <td>101.0(1)</td> <td>0315</td> <td>50.4(1)</td> <td>0115</td> <td>51.5(5)</td> <td>N40</td> <td>50.5(1)</td> <td>N208</td> <td>05.5(1)</td>	0215	115.4(1)	N307	101.0(1)	0315	50.4(1)	0115	51.5(5)	N40	50.5(1)	N208	05.5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-Cu1-	948(1)	020-013-	97.0(1)	0315-014-	754(1)	N1-Cu1-	95 4(3)	N12-Ni1-	916(1)	N112_Ni2_	916(1)
N107-Cu1- 0115 88.6(1) 0315 020-Cu3- 0315 90.0(1) 0315 015-Cu4-N7 0415 88.5(1) 0115 N107-Cu1- 0115 89.4(3) N108 N12-Ni1- N108 90.6(1) N400 N112-Ni2- 93.2(1) 93.2(1) 0115-Cu1- 0215 75.8(1) N307 N201-Cu3- 94.5(1) 94.5(1) N407-Cu5- 9415 92.8(1) 0115-Cu1- 015 75.4(2) N12-Ni1- N108 86.8(1) N112-Ni2- 90.8(1) 90.8(1) 0215-Cu1- N1 98.6(1) N307-Cu3- 0315 88.9(1) 0415-Cu5- 0416 88.0(1) 015-Cu1-N1 98.5(3) N12-Ni1- 050 88.2(1) N112-Ni2- 0216 87.3(1) 0116-Cu2- N301 89.4(1) 0315-Cu3- 0315 76.0(1) 0416-Cu5- 0516 89.7(1) 020-Cu2-N7 101.1(3) N212-Ni1- N40 89.4(1) N312-Ni2- N20 89.0(1) 0116-Cu2- N207 123.2(1) 015-Cu3- N201 99.2(1) 0516-Cu5- 0516 91.6(1) 020-Cu2- N101 96.8(3) N212-Ni1- N108 89.4(1) N312-Ni2- N400 89.6(1) 0216 0116-Cu2- N207 87.2(1) 0216-Cu4- N407 99.6(1) 0518-Cu5- 015 57.0(1) 020-Cu2- N101 101.7(3) N212-Ni1- N400 89.1(1) N312-Ni2- N31	N107	5 1.0(1)	015	57.0(1)	015	/3.1(1)	N107	55.1(5)	N40	51.0(1)	N208	51.0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N107-Cu1-	88 6(1)	020-013-	90.0(1)	015-Cu4-N7	88 5(1)	N107-Cu1-	89 4(3)	N12-Ni1-	90.6(1)	N112-Ni2-	932(1)
OTIC 75.8(1) N201-Cu3- N307 94.5(1) N407-Cu5- O415 92.8(1) OTIS-Cu1- O15 75.4(2) N12-Ni1- O16 86.8(1) N112-Ni2- O500 90.8(1) O215-Cu1- N1 98.6(1) N307-Cu3- O315 88.9(1) O415-Cu5- O416 88.0(1) O15-Cu1-N1 98.5(3) N12-Ni1- O50 88.2(1) N112-Ni2- O216 87.3(1) O116-Cu2- N301 89.4(1) O315-Cu3- O15 76.0(1) O416-Cu5- O516 89.7(1) O20-Cu2-N7 101.1(3) N212-Ni1- N40 92.6(1) N312-Ni2- N208 89.0(1) O116-Cu2- N201 123.2(1) O15-Cu3- N201 99.2(1) O516-Cu5- N407 91.6(1) O20-Cu2- N101 96.8(3) N212-Ni1- N108 89.4(1) N312-Ni2- N208 89.0(1) O116-Cu2- N201 87.2(1) O216-Cu4- N407 122.7(1) O418-Cu5- O416 54.6(1) O20-Cu2- N101 89.3(3) N212-Ni1- N108 89.4(1) N312-Ni2- N400 85.8(1) O116-Cu2- O115 93.1(1) O216-Cu4- N101 89.6(1) O518-Cu5- O516 57.0(1) O20-Cu2- O15 101.7(3) N212-Ni1- S42 89.1(1) N312-Ni2- S403 88.2(1) N207-Cu2- O215	0115	0010(1)	0315	0000(1)	010 001 10	00.0(1)	0115	0011(0)	N108	0010(1)	N400	00.2(1)
O 2015 N307 O415 O116 O15 O116 O500 O301 O215-Cu1- N1 98.6(1) N307-Cu3- O315 88.9(1) O415-Cu5- O416 88.0(1) O15-Cu1-N1 98.5(3) N12-Ni1- O50 88.2(1) N112-Ni2- O50 87.3(1) O116-Cu2- N301 89.4(1) O315-Cu3- O15 76.0(1) O416-Cu5- O516 89.7(1) O20-Cu2-N7 101.1(3) N212-Ni1- N40 92.6(1) N312-Ni2- N208 89.0(1) N302-Ni2- N40 89.0(1) N312-Ni2- N40 89.0(1) N312-Ni2- N40 93.6(1) N312-Ni2- N40 93.6(1) N312-Ni2- N40 93.6(1) N312-Ni2- N40 93.6(1) N312-Ni2- N40 93.6(1) N312-Ni2- N40 85.8(1) N400 N40 N400 N40 N40 N	0115-Cu1-	758(1)	N201-Cu3-	94 5(1)	N407-Cu5-	92.8(1)	0115-Cu1-	754(2)	N12-Ni1-	868(1)	N112-Ni2-	90.8(1)
0215-Cu1- N1 98.6(1) N307-Cu3- 0315 88.9(1) 0415-Cu5- 0416 88.0(1) 015-Cu1-N1 98.5(3) N12-Ni1- 050 88.2(1) N112-Ni2- 0216 87.3(1) 0116-Cu2- N301 89.4(1) 0315-Cu3- 015 76.0(1) 0416-Cu5- 0516 89.7(1) 020-Cu2-N7 101.1(3) N212-Ni1- N40 92.6(1) N312-Ni2- N208 89.0(1) N307-Cu3- N208 99.2(1) 0516-Cu5- N407 91.6(1) 020-Cu2- N407 96.8(3) N212-Ni1- N40 89.4(1) N312-Ni2- N208 89.0(1) N302-Ni2- N407 89.4(1) N312-Ni2- N407 89.4(1) N312-Ni2- N407 93.6(1) 0116-Cu2- N207 87.2(1) 0216-Cu4- N201 122.7(1) 0418-Cu5- O416 54.6(1) 020-Cu2- O15 89.3(3) N212-Ni1- N101 91.5(1) N312-Ni2- N300 85.8(1) 0116-Cu2- 0215 93.1(1) 0216-Cu4- N101 89.6(1) 0518-Cu5- O516 57.0(1) 020-Cu2- O15 101.7(3) N212-Ni1- S42 89.1(1) N312-Ni2- S403 88.2(1) 0215 N101 0516 0516 0115 0116 0500 0216 0500 N207-Cu2- N301 94.7(1) N101	0215	/010(1)	N307	0 110(1)	0415	02.0(1)	015	/011(2)	0116	00.0(1)	0500	0010(1)
N1 0315 0416 050 0216 0216 0116-Cu2- N301 89.4(1) 0315-Cu3- 015 76.0(1) 0416-Cu5- 0516 89.7(1) 020-Cu2-N7 101.1(3) N212-Ni1- N40 92.6(1) N312-Ni2- N208 89.0(1) 0116-Cu2- N207 123.2(1) 015-Cu3- N201 99.2(1) 0516-Cu5- N407 91.6(1) 020-Cu2- N101 96.8(3) N212-Ni1- N108 89.4(1) N312-Ni2- N400 93.6(1) 0116-Cu2- 0115 87.2(1) 0216-Cu4- 0216 122.7(1) 0418-Cu5- 0416 54.6(1) 020-Cu2- 015 89.3(3) N212-Ni1- N108 89.4(1) N312-Ni2- N400 85.8(1) 0116-Cu2- 0215 93.1(1) 0216-Cu4- N101 89.6(1) 0518-Cu5- 0516 57.0(1) 020-Cu2- N7-Cu2- 95.7(3) 101.7(3) N212-Ni1- N10 89.1(1) N312-Ni2- N32-Ni2- 016 88.2(1) 0215 N101 0516 0115 0116 0500 0216 N207-Cu2- 94.7(1) N101 0516 0115 0116 0500 171.4(1) N301 V V V V V V 171.4(1) 179.2(1)	0215-Cu1-	98.6(1)	N307-Cu3-	88.9(1)	0415-Cu5-	88.0(1)	015-Cu1-N1	98.5(3)	N12-Ni1-	88.2(1)	N112-Ni2-	87.3(1)
0116-Cu2- N301 89.4(1) 0315-Cu3- 015 76.0(1) 0416-Cu5- 0516 89.7(1) 020-Cu2-N7 101.1(3) N212-Ni1- N40 92.6(1) N312-Ni2- N208 89.0(1) 0116-Cu2- N207 123.2(1) 015-Cu3- N201 99.2(1) 0516-Cu5- N407 91.6(1) 020-Cu2- N407 96.8(3) N212-Ni1- N108 89.4(1) N312-Ni2- N400 93.6(1) 93.6(1) 0116-Cu2- 0115 87.2(1) 0216-Cu4- N7 122.7(1) 0418-Cu5- 0416 54.6(1) 020-Cu2- 015 89.3(3) N212-Ni1- N108 91.5(1) N312-Ni2- N400 85.8(1) 0116-Cu2- 0215 93.1(1) 0216-Cu4- N101 89.6(1) 0518-Cu5- 0516 57.0(1) 020-Cu2- N15 101.7(3) N212-Ni1- N16 89.1(1) N312-Ni2- N16 88.2(1) N207-Cu2- 0215 94.7(1) N101 0516 0115 0116 0500 0116 0500 171.4(1) N301 N301 N101 0516 0115 N101-N10 542 5403 171.4(1) N301 V V V V	N1	(-)	0315	(-)	0416	(-)		(-)	050	(-)	0216	
N301 O15 O516 N40 N208 0116-Cu2- 123.2(1) 015-Cu3- 99.2(1) 0516-Cu5- 91.6(1) 020-Cu2- 96.8(3) N212-Ni1- 89.4(1) N312-Ni2- 93.6(1) N207 N201 0216-Cu4- 122.7(1) 0418-Cu5- 54.6(1) 020-Cu2- 89.3(3) N212-Ni1- 91.5(1) N312-Ni2- 85.8(1) 0115 N7 0416 015 050 0216 0216 0116-Cu2- 93.1(1) 0216-Cu4- 89.6(1) 0518-Cu5- 57.0(1) 020-Cu2- 101.7(3) N212-Ni1- 99.1(1) N312-Ni2- 85.8(1) 0215 N101 0516 015 050 0216 016 050 0216 N207-Cu2- 94.7(1) N101 0516 0115 0116 0500 171.4(1) N301 V312 V312<	0116-Cu2-	89.4(1)	0315-Cu3-	76.0(1)	0416-Cu5-	89.7(1)	020-Cu2-N7	101.1(3)	N212-Ni1-	92.6(1)	N312-Ni2-	89.0(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N301		015		0516				N40	. ,	N208	
N207 N201 N407 N101 N108 N400 0116-Cu2- 0115 87.2(1) 0216-Cu4- N7 122.7(1) 0418-Cu5- 0416 54.6(1) 020-Cu2- 015 89.3(3) N212-Ni1- 050 91.5(1) N312-Ni2- 0216 85.8(1) 0116-Cu2- 0215 93.1(1) 0216-Cu4- N101 89.6(1) 0518-Cu5- 0516 57.0(1) 020-Cu2- 0115 101.7(3) N212-Ni1- 0116 89.1(1) N312-Ni2- 0216 88.2(1) N207-Cu2- N301 94.7(1) N101 0516 0115 0116 0116 0500 171.4(1) N301 V V V V V 95.7(3) N10-N40-C41 175.7(1) Ni2-N400- C401 171.4(1) N301 V <td>0116-Cu2-</td> <td>123.2(1)</td> <td>015-Cu3-</td> <td>99.2(1)</td> <td>0516-Cu5-</td> <td>91.6(1)</td> <td>020-Cu2-</td> <td>96.8(3)</td> <td>N212-Ni1-</td> <td>89.4(1)</td> <td>N312-Ni2-</td> <td>93.6(1)</td>	0116-Cu2-	123.2(1)	015-Cu3-	99.2(1)	0516-Cu5-	91.6(1)	020-Cu2-	96.8(3)	N212-Ni1-	89.4(1)	N312-Ni2-	93.6(1)
0116-Cu2- 0115 87.2(1) 0216-Cu4- N7 122.7(1) 0418-Cu5- 0416 54.6(1) 020-Cu2- 015 89.3(3) N212-Ni1- 050 91.5(1) N312-Ni2- 0216 85.8(1) 0116-Cu2- 0215 93.1(1) 0216-Cu4- N101 89.6(1) 0518-Cu5- 0516 57.0(1) 020-Cu2- 0115 101.7(3) N212-Ni1- 0116 89.1(1) N312-Ni2- 0500 88.2(1) N207-Cu2- N301 94.7(1) N101 0516 0115 0116 0500 171.4(1) N301 V V V V N20-Cu2- N101 97.9(3) N40-C41- S42 178.1(1) N400-C401- N400-C401- 179.2(1) 0115 0115 0115 S42 S403 0115 0115 0115 0115 0115 0115 0115 179.2(1) 0115 015 0115 015 0115	N207		N201		N407		N101	. ,	N108	. ,	N400	
0115 N7 0416 015 050 0216 0116-Cu2- 93.1(1) 0216-Cu4- 89.6(1) 0518-Cu5- 57.0(1) 020-Cu2- 101.7(3) N212-Ni1- 89.1(1) N312-Ni2- 88.2(1) 0215 N101 0516 0115 0116 0500 0500 N207-Cu2- 94.7(1) N101 N7-Cu2- 95.7(3) Ni1-N40-C41 175.7(1) Ni2-N400- 171.4(1) N301 N101 N101 N101 C401 C401 179.2(1) N15 0115 0115 S42 S403 179.2(1) 0115 015-Cu2- 74.9(2) 015 015-Cu2-N7 89.0(3) 179.2(1)	0116-Cu2-	87.2(1)	0216-Cu4-	122.7(1)	0418-Cu5-	54.6(1)	020-Cu2-	89.3(3)	N212-Ni1-	91.5(1)	N312-Ni2-	85.8(1)
0116-Cu2- 0215 93.1(1) 0216-Cu4- N101 89.6(1) 0518-Cu5- 0516 57.0(1) 020-Cu2- 0115 101.7(3) N212-Ni1- 0116 89.1(1) N312-Ni2- 0500 88.2(1) N207-Cu2- N301 94.7(1) - - - 95.7(3) Ni1-N40-C41 175.7(1) Ni2-N400- C401 171.4(1) N301 - - - 97.9(3) N40-C41- 178.1(1) N400-C401- 179.2(1) 0115 - 97.9(3) N40-C41- 178.1(1) N400-C401- 179.2(1) 0115 - - - 542 5403 5403 0115 - 015 - 74.9(2) -	0115		N7		0416		015	. ,	050	. ,	0216	
O215 N101 O516 O115 O116 O500 N207-Cu2- 94.7(1) N7-Cu2- 95.7(3) Ni1-N40-C41 175.7(1) Ni2-N400- 171.4(1) N301 N101 74.9(2) 74.9(2) 5403 5403 015 015-Cu2- 74.9(2) 015 016 0500	0116-Cu2-	93.1(1)	0216-Cu4-	89.6(1)	0518-Cu5-	57.0(1)	020-Cu2-	101.7(3)	N212-Ni1-	89.1(1)	N312-Ni2-	88.2(1)
N207-Cu2- 94.7(1) Ni2-N400- 171.4(1) N301 N101 C401 N101-Cu2- 97.9(3) N40-C41- 178.1(1) N400-C401- 179.2(1) 0115 S42 S403 0115-Cu2- 74.9(2) 015 015 015-Cu2-N7 89.0(3)	0215		N101		0516		0115		0116	. ,	0500	
N301 N101 N101-Cu2- 97.9(3) N40-C41- 178.1(1) N400-C401- 179.2(1) 0115 S42 0115-Cu2- 74.9(2) 015 015-Cu2-N7 89.0(3)	N207-Cu2-	94.7(1)					N7-Cu2-	95.7(3)	Ni1-N40-C41	175.7(1)	Ni2-N400-	171.4(1)
N101-Cu2- 97.9(3) N40-C41- 178.1(1) N400-C401- 179.2(1) 0115 S42 S403 0115-Cu2- 74.9(2) 015 015-Cu2-N7 89.0(3)	N301						N101				C401	
0115 S42 S403 0115-Cu2- 74.9(2) 015 015-Cu2-N7 89.0(3)							N101-Cu2-	97.9(3)	N40-C41-	178.1(1)	N400-C401-	179.2(1)
0115-Cu2- 74.9(2) 015 015-Cu2-N7 89.0(3)							0115		S42	. ,	S403	
015 015-Cu2-N7 89.0(3)							0115-Cu2-	74.9(2)				
O15-Cu2-N7 89.0(3)							015					
							015-Cu2-N7	89.0(3)				

Fig. 2. View of the coordination spheres in the tetranuclear unit of 1.

and $109(1)^\circ$. A larger metal distance (6.758(3) Å) is observed compared to the ones found for **1** and **2** (Table 2). This difference orig-

inates from the presence of a methyl group spacer in the related donor ligand **L2H**. The dinuclear motif is slightly asymmetric as confirmed by the bond lengths differences noted in the coordination spheres of Ni1 and Ni2 (Table 3) and presents a helicate geometry provided by the **L2** torsion angle. A racemic mixture of left (Λ) and right hand (Δ) enantiomers that are generated by symmetry within the centrosymmetric $P\bar{1}$ space group. The structure is also characterised by a supramolecular interactions network. Indeed, three intramolecular H-bonds and one intramolecular π - π stacking interaction ensure the stability and the geometry of the supramolecular architecture. In addition to the intramolecular interactions, the cohesion between the dinuclear units and between complexes and guest molecules is obtained by three inter-molecular H-bonds and three π - π stacking interactions (Table S1).

5.3. Magnetic properties

The magnetic properties of a polycrystalline sample of **1** were measured over the 1.8–300 K range, with an applied magnetic field

Fig. 3. View of the magnetic pathways in **1**, between the magnetic dinuclear units (Cu1, Cu2) and (Cu3, Cu4).

Fig. 4. View of the tetranuclear core of **1** revealing a right hand quadruple helicate structure thanks to the torsion of four **L1** ligands. The arrows indicate the clockwise rotation, e.g. from Cu1 (top) to Cu3 (bottom) following the labeled sequence. A similar view can be depicted for **2**.

of 1000 Oe. At room temperature, χT was 0.63 cm³ K mol⁻¹ that is far from the theoretical value of 1.875 cm³ K mol⁻¹, which is expected for five isolated paramagnetic Cu(II) ions (d⁹, *S* = 1/2) with *g* = 2. This behaviour indicates that dominant anti-ferromagnetic (AF) exchange interactions exist between the Cu(II) ions which are confirmed on cooling by the continuous decrease of the χT product that reaches a value around 0.40 cm³ K mol⁻¹ below 100 K. This value is in good agreement with the residual magnetism coming from the mononuclear Cu(II) *S* = 1/2 unit. As shown in the crystal analysis, complex **1** can be topologically viewed as two dinuclear moieties composed of two *S* = 1/2 Cu(II) ions (Fig. 3) [34]. The magnetic data have been thus approximately modeled using an isotropic Heisenberg *S* = 1/2 dimer model and the following Hamiltonian:

Fig. 5. ORTEP view of the tetranuclear unit (violet square) in **2**, showing 50% probability displacement ellipsoids. H atoms and guest molecules were omitted for clarity.

 $H = -2J(S_{CuA} \cdot S_{CuB})$

where *J* is the average exchange interaction within dinuclear Cu units: Cu1–Cu2 and Cu3–Cu4 that are considered identical in this simplified approach; *S_i* the spin operators for each centres. The application of the van Vleck equation [35a] to the Kambe's vector coupling scheme [35b], allows a determination of the low field analytical expression of the magnetic susceptibility [35c] taking into account the presence of the residual S = 1/2 mononuclear unit:

$$\chi T = \frac{4Ng^{2}\mu_{\rm B}^{2}}{k_{\rm B}} \frac{1}{3 + \exp\left(\frac{-2l}{k_{\rm B}T}\right)} + \frac{Ng^{2}\mu_{\rm B}^{2}}{4k_{\rm B}}$$

This approximated model reproduces rather well the experimental results over the 1.5–300 K range as shown in Fig. 7. The best set of parameters are g = 2.06(3) and $J/k_B = -489(3)$ K (J = -340(2) cm⁻¹). The sign of the magnetic interaction implies that these copper binuclear units and thus the tetramer complex possesses a $S_T = 0$ ground state.

It is worth mentioning that two other analyses of the magnetic data have been attempted: (i) considering two different dinuclear moieties with two independent magnetic interactions and (ii) considering identical dinuclear units that possess inter-dimer magnetic interactions through the N-C-N bridges. While the first approach leads to identical magnetic intra-dimer interactions and thus the same result displayed in Fig. 7, the second model converges to an unphysically large value of the inter-dimer interaction (of the order of the intra-dimer interactions). Therefore, we assume that the inter-binuclear magnetic coupling is too weak in comparison to the intra-dimer interactions to be correctly estimated. The magnetic properties of the related grid **4** support an AF exchange interactions between Cu(II) ions [31], but no comparison can be made due to severe uncertainties both in the fit and acquisition of magnetic data (contamination of diamagnetic impurities) in [31].

6. Discussion

Reacting a Cu(II) salt with L1H in methanol afforded tetranuclear $[2 \times 2]$ grid-like complexes (1 and 2). The composition of

Fig. 6. ORTEP view of the asymmetric part of the unit cell for 3, showing 50% probability displacement ellipsoids. The two solvent methanol molecules were omitted for clarity. The inset shows a scheme of the L2H ligand.

Fig. 7. Temperature dependence of χT for **1** at 1000 Oe (with χ defined as M/H). The open dots indicate the experimental data points and the line represents the best fitting curve obtained with the Heisenberg model described in the text.

these complexes is different from the one reported by Hatfield [36] and Drummond [31] which was obtained following a different synthetic method in isopropanol. Indeed, Ref. [31] reports on a highly symmetric tetranuclear complex $[Cu_4(L1)_4(H_2O)_4](NO_3)_4$ (4) (as shown by the $P4_22_12$ space group) where all Cu(II) ions are identical and generated by symmetry). In **1**, three Cu(II) coordination spheres with two distinct geometries around metal ions were identified, whereas two types of coordination spheres and two different **L1** ligands (**L1a–b**) were identified for **2**. Such an asymmetry is not only visible in Cu^{II} coordination spheres (Table 3) but also in ligands, which can be differentiated by their dihedral angles ϕ (Table 1). This structural feature provides chirality to the tetranu-

clear unit thanks to a **L1** torsion angle of approximately 40° (Table 1). The same structural feature is present in **4** but it was not discussed in [31]. In addition to the depicted 'intramolecular asymmetry', the inter-molecular interactions network appears also to be asymmetric in **1**. Such a network is less dense in the centrosymmetric tetranuclear **2**. The difficulty to isolate **2** in large amount compared to **1** may stem from the dense supramolecular network (Table S1), developed in **1**, which strongly stabilizes the structure and thus eases the crystallization. Comparison with the network developed in **4** is not feasible because the deposited CIF file in [31] does not contain any nitrato anions due to disorder [31].

As seen in the crystal structures, the tetranuclear assembly is built by connecting two dinuclear units by a double N-C-N bridge, with short Cu \cdots Cu distances (\sim 3 Å) (Fig. 3) allowing a strong AF coupling as revealed by the study of the magnetic properties $(J = -340(2) \text{ cm}^{-1})$ for **1**. This coupling constant reaches the same order of magnitude than observed for a related $[4 \times 4]$ grid-like complex ($J = -271 \text{ cm}^{-1}$) [37]. Interestingly, the position in the Cu^{II} coordination spheres, occupied by the nitrato anion and methanol molecules in 1 and by methanol and hydroxide molecules in 2, can be considered as labile. It suggests that a large variety of molecules may be formed in solution but that a selective crystallization of more stable complexes has occurred affording 1 and 2. In this scheme, the influence of the synthetic solvent could explain the large composition and structural differences with respect to 4 [31]. Interestingly, an intermediate mononuclear compound was also isolated in the crystal lattice of 1. Because of the apparent complexity of the crystal structures of 1 and 2, we have investigated the coordination chemistry with another related ligand, L2H, which has a flexible methyl group between aromatic rings, in order to block the formation of tetranuclear units at a lower nuclearity stage. To reach this goal, a nickel ion in combination with a thiocyanato anion were selected and afforded the dinuclear

complex **3**. Even though the systems **1–2** and **3** are quite different, we observe the formation of a similar framework involving all donor atoms present in L1 and L2. Taking into account that both dinuclear units in 1 and 2 are linked by two N–C–N bridges, here the dinuclear moiety 3 is linked by two N-C-C-C-N bridges (Fig. 6). This compound completes the short list of crystal structures of nickel dinuclear complexes with $N-C_x-N$ bridges [38]. Interestingly, this bridging configuration imitates rather well the lateral side of the grid in 1 and 2 (Fig. 3). Bridging ligands L2b and L2c in 3 are indeed similar than L1a and L1b in 1 except that the alkoxo group, that was bidentate, becomes monodentate. The bridge between metal ions is longer in 3 than in 1 and 2 (6.758(3) Å compared to 3.2–3.3 Å – Table 1) because of the methyl spacer group in L2. The fact that a L2H ligand is found in 3 is rather interesting taking into account that *N*-salicylidene aminopyridine complexes have recently shown to present switchable chromic properties [39]. This is for instance the case for the mononuclear complex, $[Ni(CH_3OH)_2(L4H)_2(NCS)_2]$ with L4H = N-salicylidene-3aminopyridine, that presents weak thermochromism on cooling below room temperature [39]. The studies of optical properties of 3, that was beyond the scope of this study, should be considered in the near future.

7. Concluding remarks

We have described a remarkable asymmetric Cu(II) $[2 \times 2]$ gridlike complex (1). This tetranuclear unit, which reveals a strong AF coupling between dinuclear units through a double alkoxo bridge, is embedded in a sophisticated supramolecular network. Complexes 2 and 4 represent other examples of tetranuclear grids formed with the same ligand. The use of such Schiff base ligands thus open perspectives into developing magnetic asymmetric coordination units.

Acknowledgments

This work was partly funded by the Fonds National de la Recherche Scientifique-FNRS (FRFC N°2.4508.08), the Interuniversity attraction pole IAP-VI (P6/17) INANOMAT program, a Concerted Research Action of the "Communauté Française de Belgique" allotted by the Académie Universitaire Louvain, MAG-MANet (NMP3-CT-2005-515767), the University of Bordeaux, the CNRS, the GIS Advanced Materials in Aquitaine (COMET Project) and the Région Aquitaine. We also thank the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture for a doctoral scholarship allocated to F.R.

Appendix A. Supplementary data

CCDC 732107, 749405 and 749404 contain the supplementary crystallographic data for 1, 2 and 3, respectively. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/ retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.poly.2010.06.017.

References

- [1] G.R. Desiraju, Angew. Chem., Int. Ed. 46 (2007) 8342.
- [2] (a) G. Hanan, C. Arana, J.-M. Lehn, D. Fenske, Angew. Chem., Int. Ed. Engl. (1995) 1122:
 - (b) H. Sleiman, P.N.W. Baxter, J.-M. Lehn, K. Rissanen, J. Chem. Soc., Chem. Commun. (1995) 715;
 - (c) H. Sleiman, P.N.W. Baxter, J.-M. Lehn, K. Airola, K. Rissanen, Inorg. Chem. 3 (1997) 4734.

- [3] P.N.W. Baxter, J.-M. Lehn, A. De Cian, J. Fischer, Angew. Chem., Int. Ed. Engl. 32 (1993) 69.
- [4] P.N.W. Baxter, J.-M. Lehn, J. Fischer, M.-T. Youinou, Angew. Chem., Int. Ed. Engl. 33 (1994) 2284
- [5] M. Barboiu, E. Petit, A. van der Lee, G. Vaughan, Inorg. Chem. 45 (2006) 484.
- [6] (a) L.N. Dawe, L.K. Thompson, Angew. Chem., Int. Ed. 46 (2007) 7440;
- (b) L.N. Dawe, K.V. Shuvaev, L.K. Thompson, Inorg. Chem. 48 (2009) 3323. [7] (a) J.I. van der Vlugt, S. Demeshko, S. Dechert, F. Meyer, Inorg. Chem. 47 (2008) 1576:

(b) Y.S. Moroz, K. Kulon, M. Haukka, E. Gumienna-Kontecka, H. Kozłowski, F. Meyer, I.O. Fritsky, Inorg. Chem. 47 (2008) 5656.

- [8] T. Weilandt, R.W. Troff, H. Saxell, K. Rissanen, C.A. Schalley, Inorg. Chem. 47 (2008) 7588.
- [9] K. Yamauchi, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 130 (2008) 5024.
- [10] Z. Ge, J. Hu, F. Huang, S. Liu, Angew. Chem., Int. Ed. 48 (2009) 1798.
- U. Ziener, J.-M. Lehn, A. Mourran, M. Moller, Chem. Eur. J. 8 (2002) 951.
- [12] M. Ruben, J. Rojo, F.J. Romero-Salguero, L.H. Uppadine, Angew. Chem., Int. Ed. 43 (2004) 3644.
- [13] O. Roubeau, R. Clérac, Eur. J. Inorg. Chem. 28 (2008) 4325.
- [14] (a) E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Gütlich, E. Wegelius, K. Rissanen, Angew. Chem., Int. Ed. 39 (2000) 2504; (b) M. Ruben, E. Breuning, J.-M. Lehn, V. Ksenofontov, F. Renz, P. Gütlich, G.B.M. Vaughan, Chem. Eur. J. 9 (2003) 4422; (c) M. Ruben, U. Ziener, J.-M. Lehn, V. Ksenofontov, P. Gütlich, G.B.M. Vaughan, Chem. Eur. J. 11 (2004) 94; (d) M. Ruben, E. Breuning, J.-M. Lehn, V. Ksenofontov, P. Gütlich, G. Vaughan, J.
 - Magn. Magn. Mater. 272-276 (2004) e715; (e) A.R. Stefankiewicz, J.-M. Lehn, Chem. Eur. J. 15 (2009) 2500.
- [15] A.K. Boudalis, C.P. Raptopoulou, V. Psycharis, B. Abarca, R. Ballesteros, Eur. J. Inorg. Chem. 24 (2008) 3796.
- [16] L.K. Thompson, Coord. Chem. Rev. 233-234 (2002) 193.
- (a) B. Graham, M.T.W. Hearn, P.C. Junk, C.M. Kepert, F.E. Mabbs, B. Moubaraki, K.S. Murray, L. Spiccia, Inorg. Chem. 40 (2001) 1536; (b) K.L.V. Mann, E. Psillakis, J.C. Jeffery, L.H. Rees, N.M. Harden, J.A. McCleverty, M.D. Ward, D. Gatteschi, F. Totti, F.E. Mabbs, E.J.L. McInnes, P.C. Riedi, G.M. Smith, J. Chem. Soc., Dalton Trans. (1999) 339.
- [18] R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. 96 (1996) 2239.
 - [19] V. Chandrasekhar, L. Nagarajan, R. Clérac, S. Ghosh, S. Verma, Inorg. Chem. 47 (2008) 1067.
 - [20] G.L.J.A. Rikken, E. Raupauch, Nature 390 (1997) 493.
 - [21] L.D. Barron, Nat. Mater. 7 (2008) 691.
 - [22] A. von Zelewsky, Stereochemistry of Coordination Compounds, John Wiley and Sons, Chichester, 1996.
 - [23] V.I. Sokolov, Chiral and Optical Activity in Organometallic Compounds, Gordon and Breach Science Publishers, New York, 1990.
 - [24] J. Crassous, Chem. Soc. Rev. 38 (2009) 830.
 - [25] A. Fragoso, M.L. Kahn, A. Castiñeiras, J.P. Sutter, O. Kahn, R. Cao, Chem. Commun. (2000) 1547.
 - [26] (a) S.J. Loeb, C.J. Willis, Inorg. Chem. 20 (1981) 2791; (b) A. Burkhardt, E.T. Spielberg, H. Görls, W. Plass, Inorg. Chem. 47 (2008) 2485: (c) L.-L. Fan, F.-S. Guo, L. Yun, Z.-J. Lin, R. Herchel, J.-D. Leng, Y.-C. Ou, M.-L.
 - Tong, Dalton Trans. 39 (2010) 1771.
 - [27] W.E. Hatfield, F.L. Bunger, Inorg. Chem. 8 (1969) 1194.

 - [28] E. Hadjoudis, J. Petrou, J. Xexakis, Mol. Cryst. Liq. Cryst. 93 (1983) 73.
 [29] G.M. Sheldrick, SHELX97: Program System for Crystal Structure Determination, University of Göttingen, Germany, 1997.
 - [30] A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verschoor, Chem. Soc., Dalton Trans. (1984) 1349.
 - [31] J. Drummond, J.S. Wood, J. Chem. Soc., Dalton Trans. 3 (1972) 365.
 - [32] M. Albrecht, Chem. Rev. 101 (2001) 3457.
 - [33] P. Guionneau, M. Marchivie, G. Bravic, J.-F. Létard, D. Chasseau, Top. Curr. Chem. 234 (2004) 97.
 - [34] J.E. Andrew, A.B. Blake, L.R. Fraser, J. Chem. Soc., Dalton Trans. (1976) 477.
 - [35] (a) J.H. van Vleck, in: The Theory of Electric and Magnetic Susceptibility Oxford University Press, 1932.;
 - (b) K.J. Kambe, Phys. Soc. Jpn. 5 (1950) 48;
 - (c) C.J. O'Connor, Prog. Inorg. Chem. 29 (1982) 203.
 - [36] W.E. Hatfield, F.L. Bunger, Inorg. Chem. 8 (1969) 1194.
- [37] S. Gou, M. Qian, Z. Yu, C. Duan, X. Sun, W.J. Huang, J. Chem. Soc., Dalton Trans. (2001) 3232.
- [38] (a) L.-P. Lu, X.-P. Lu, M.-L. Zhu, Acta Crystallogr., Sect. C 63 (2007) m374; A.R. Paital, M. Mikuriya, D. Ray, Eur. J. Inorg. Chem. (2007) 5360; (c) S.V. Larionov, T.E. Kokina, L.A. Glinskaya, R.F. Klevtsova, Coord. Chim. 28

(2002) 597:

(d) A.R. Paital, W.T. Wong, G. Aromi, D. Ray, Inorg. Chem. 46 (2007) 5727;

(e) M. Fondo, N. Ocampo, A.M. Garcia-Deibe, R. Vincente, M. Corbella, M.R. Bermejo, J. Sanmartin, Inorg. Chem. 45 (2006) 255

- (f) C.H. Ng, T.S. Chong, S.G. Teoh, S.W. Ng, J. Coord. Chem. 58 (2005) 1455;
- (g) M. Fondo, A.M. Garcia-Deibe, N. Ocampo, J. Sanmartin, M.R. Bermejo, A.L.
- Llamas-Saiz, Dalton Trans. (2006) 4260; (h) M. Fondo, A.M. Garcia-Deibe, N. Ocampo, J. Sanmartin, M.R. Bermejo, Dalton Trans. (2007) 414.
- [39] F. Robert, A.D. Naik, B. Tinant, R. Robiette, Y. Garcia, Chem. Eur. J. 15 (2009) 4327.