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Novel conformationaly constrained 1,6- and 2,6-macrocyclic HCV NS5b polymerase inhibitors, in which
either the nitrogen or the phenyl ring in the C2 position of the central indole core is tethered to an acy-
lsulfamide acid bioisostere, have been designed and tested for their anti-HCV potency. This transforma-
tional route toward non-zwitterionic finger loop-directed inhibitors led to the discovery of derivatives
with improved cell potency and pharmacokinetic profile.

� 2012 Elsevier Ltd. All rights reserved.
One hundred and seventy million people worldwide are cur-
rently infected with hepatitis C virus (HCV).1 Chronic infection is
the leading cause of liver disease, the largest indication for trans-
plantation in Europe and the United States, eventually leading to
liver cirrhosis.2 Hepatocellular carcinoma (HCC) related to HCV
infection has become the fastest growing cause of cancer-related
death in the US, and the incidence of HCC has tripled over the past
20 years.3 Increased survival rates and improved clinical outcome
may be associated with sustained virologic response (SVR).4 A
higher overall SVR could be achieved when direct anti-virals, re-
cently approved by the FDA,5,6 compliment the precedent standard
of care treatment, that is, using ribavirin and pegylated interferon.7

Novel medicaments like these are especially important for the dif-
ficult to treat population including those with genotype 1 and pa-
tients with liver cirrhosis.5 HCV can develop resistance to anti-viral
monotherapy within a matter of days. Future therapies will evalu-
ate the combination of newly targeted agents, that could be used to
enhance the anti-viral activity and potentially translate into higher
cure rates in shorter time.8 One of these potential targets is the
RNA-dependant RNA-polymerase (NS5b), essential for viral repli-
cation.9 HCV NS5b inhibitors can be divided into two classes;
nucleoside10 and non-nucleoside inhibitors,11 targeting the active
ll rights reserved.
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site or an allosteric site, respectively.12 Allosteric finger loop inhib-
itors based on the 3-cyclohexyl indole structure, or analogs thereof,
that target the Thumb Pocket 1 site of the HCV NS5b polymerase
have been described (Fig. 1).13 The first indole inhibitors suffered
from poor aqueous solubility (e.g., amide analogs of compound
1)14 which hampered their development as drug candidates.

To address this drawback, scientists developed zwitterionic
derivatives exemplified by 2,15 exhibiting improved water solubil-
ity and drug-like properties. However, this series of compounds
has been reported to form glucoronide conjugates on the carbox-
ylic acid, which might eventually be responsible for toxicity linked
to their acylating potential.15 Moreover, zwitterionic drugs are of-
ten absorbed in the GI tract at specific locations (pH driven), which
may lead to higher patient variability. In this context, we envi-
sioned a different strategy dealing with the introduction of an un-
charged polar solubilizing group in a macrocycle, which might
eventually counterbalance the very lipophilic nature of the
3-cyclohexyl-2-phenylindole moiety.

Previously reported X-ray structures with indoles bound to the
HCV polymerase suggest that a solvent exposed tether from the C6
carbonyl to the indole nitrogen or to the C2 aromatic ring would
not hinder the binding affinity of these macrocycles. Indeed, when
the carboxylic acid in C6 is replaced by an acyl sulfamide bioisoste-
re,16 (e.g., 3, Fig. 1) the key interaction with Arg-50317 is main-
tained, resulting in NS5b inhibition. Furthermore, a tether to the
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Figure. 1. Indole based finger loop inhibitors of NS5b polymerase.14–16
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C2 aromatic ring would increase the affinity by holding the 46o

dihedral angle between the phenyl and indole moiety as previously
reported.13c

The synthesis of the macrocyclic indole derivatives 11a–d, via
ring closing metathesis (RCM), started with the 2-bromoindole
derivative 414,18 following the five step procedure outlined in
Scheme 1. Aryl bromide 4 reacted with 3-furanboronic acid under
standard Suzuki–Miyaura conditions in ethanol/toluene to give
intermediate 5 in 90% yield. Subsequent alkylation of 514 with bro-
momethylacetate with NaH in DMF led to acetate 6 in 90% yield.
Regioselective ester cleavage of intermediate 6 at 0 �C in THF/
methanol and aqueous LiOH, was followed by standard aminoacid
coupling with the alkenylamines 7a,b (Table 1, in blue) using HATU
in DMF afforded amides 8a,b. Basic hydrolysis of the second ester
group and subsequent coupling of the alkenes 9a–c (Table 1, in
red) using standard aminoacid coupling conditions in DMF pro-
vided dialkenes 10a–d in good yields (>80%). Final ring closing
metathesis using Hoveyda–Grubbs 1st generation catalyst
(5 mol %) in dichloroethane at 80 �C for 15 h, afforded macrocyclic
products 11a–d in 20–30% yield. The saturated macrocycle targets
12a (IC50 = 9.5 lM), and 12b were reached by catalytic hydrogena-
tion of 11a (IC50 = 2.2 lM) and 11d, respectively (Table 1).

The cell-based activity was measured as the inhibition of HCV
RNA replication in Huh-7 cells, based on a bicistronic expression
construct.19 Inhibition was calculated as the concentration of
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Scheme 1. Synthesis of macrocyclic indoles. Reagents and conditions: (i) 3-furanylbo
bromoacetate, DMF, 0 �C; (iii) (a) LiOH, water/THF/methanol, 0 �C, 15 h, (b) 7a,b, HATU, D
DMF; for 9c: EDC, DMAP, DMF, rt, 24 h; (v) Hoveyda–Grubbs 1st generation catalyst (5
methanol, 1 atm H2, rt, 6 h.
compound that caused a 50% reduction in signal as compared to
the control. Enzymatic activity (IC50) was measured against puri-
fied HCV NS5b D21C isolate.20 The open amide intermediates
10a and 10b (Table 1) displayed, relatively low activity in the
HCV replicon (EC50 = 14 lM and 10 lM, respectively). Subsequent
ring-closed products 11a and 11b, displayed activities that in-
creased by fourfold (EC50 = 3.4 lM and 2.6 lM, respectively)
potentially as a result of the entropic gain in macrocyclization. Acyl
sulfonamide 11c exhibits decreased cell potency for a comparable
ring size, attributed to its poor permeability, measured in CACO-2
cells (Papp <1 � 10�6 cm/s), and a high efflux ratio >25.21 In con-
trast, a marked increase in cell potency was observed with the acy-
lsulfamide derivative 11d, which was found to be 10 times more
potent than 11c (EC50 = 0.72 lM, and 7.5 lM, respectively). 11c,d
and 12b displayed moderate metabolism in liver microsomes
(e.g., 12b: 63% rat, 67% human),22 in contrast to the rapid metabo-
lism seen for the macrocyclic diamides 11a–b, and 12a (>95%
metabolized in both rat and human liver microsomes).22

With these encouraging results in hand, we embarked on the
synthesis of additional macrocyclic indole derivatives incorporat-
ing the acyl sulfamide via the five step protocol outlined in
Scheme 2. The indole nitrogen of 514 and 1323 were then alkylated
with
t-butyl bromoacetate using sodium hydride in DMF at room tem-
perature. Regioselective unmasking of the t-butylesters 14a,b via
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ronic acid, Pd(PPh3)4, Na2CO3, LiCl, ethanol/toluene, 80 �C, 3.5 h; (ii) NaH, methyl
MF, rt, 6 h; (iv) (a) NaOH, water/THF/methanol, rt, 24 h, (b) for 9a,b: HATU, DIPEA,

mol %), DCE, 80 �C, 15 h. Subsequent hydrogenation of the double bond: 10% Pd/C,



Table 1
1,6-macrocylic indoles via ring closing metathesis

Alkenylamine Alkene Open analog RCM product Macrocycle structure REP Huh-7 EC50 (lM)
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Scheme 2. Synthesis of 1,6-macrocyclic indoles. Reagents and conditions: (i) 1 M aq Na2CO3, R1-B(OH)2, LiCl, EtOH/toluene, Pd(PPh3)4, 80 �C, 12 h; (ii) NaH, t-butyl
bromoacetate, DMF, rt; (iii) (1) TFA, DCM, rt, (2) HATU, 15a–d, DCM, DIPEA, rt; (iv) (1) TFA,DCM, 15 h, rt, (2) Sulfamide, dioxane 100 �C, 40 min; (v) (1) aq NaOH, methanol,
THF, (2) CDI, CH3CN, rt, then DBU, CH3CN, rt.
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TFA in dichloromethane, and subsequent reaction with mono-boc
protected diamines (15a–d) under standard aminoacid coupling
conditions afforded 16a–e. Acid mediated deprotection of the
boc-protected linkers in TFA/DCM, formation of the free base, then
subsequent heating with excess sulfamide in dioxane at 100 �C af-
fords 17a–e in yields above 50%. Methyl ester hydrolysis proceeded



Table 2
HCV inhibition of the 1,6-macrocyclic indole series

Compd R1 Linker IC50 (lM) REP Huh-7 EC50 (lM)

18a 3-Furan

N
H

N
0.11 1.58

18b 4-
CH3OPh

0.18 1.76

18c
4-
CH3OPh N

H
N

H
N 0.44 3.47

18d
4-
CH3OPh

N
N

N
NA 3.5

18e
4-
CH3OPh N

H
N 0.19 0.35

18f 4-ClPh 0.19 0.59
18g Ph NA 0.43

18h 4-ClPh N
N 0.44 0.53

NA = not available.

Table 3
HCV inhibition and metabolic stability of compounds in the 2,6-macrocyclic indole series
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in good yield (>90%) to afford the corresponding acid
intermediates, which were then treated with carbonyl diimidazole
(CDI) to form an acyl imidazole intermediate purified by flash chro-
matography. Following isolation, the compound was reconstituted
in acetonitrile, then DBU was added to effect macrocyclization at
room temperature giving rise to products 18a–e (Table 2). Com-
pounds 18f–h (Table 2) have been synthesized from 2-(4-chloro-
phenyl)-3-cyclopentyl-6-carboxylic acid methyl ester (18f and
18h) following a similar pathway as reported for the synthesis of
12a,b (Scheme 1). The dehalogenated 18g was obtained as a side
product of 18f during the final hydrogenation over 10% Pd/C in
methanol at room temperature.

The 16-membered ring compound 18e displayed more favor-
able replicon inhibition over the 15-membered ring analog 18b.
Introduction of a basic nitrogen in the linker (18c, 18d) decreased
potency by 10-fold versus the carbon chain linker of the same
length (18e) (EC50 = 3.47 lM, 3.5 lM, 0.35 lM, respectively).
Moreover, the potency is maintained when the phenyl ring is
substituted with a chlorine (18f, 18h) or unsubstituted (18g).
C50 (lM) REP Huh-7 EC50 lM RLM22 HLM22

.9 7.56 — —

.097 0.31 60 92

.054 0.17 64 96

.033 0.18 44 71

.088 0.68 56 59

.110 0.46 58 81

.056 0.15 52 69

.11 0.19 50 65

.66 11.9 35 64

.49 15.7 40 74

.14 0.24 35 56
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e (I-R1), NaH, THF, rt; (ii) 2-hydroxyphenyl-(R2,R3)-boronic acid, Pd(PPh3)4, K2CO3,
HF/methanol, (3) amine, HATU, DIPEA, THF. For 22d–e; Ns deprotection via Cs2CO3,
I, CH3CN then DBU.



Table 4
Pharmacokinetic profile of compounds 12b, 25b and 25h in rata

Compd CLb (L/h/kg) Vdss
c (L/kg) T1/2

d (h) Fe (%)

12b 7.4 2.4 0.4 40
25b 7.7 2.6 0.3 9
25h 6.9 7.0 1 14

a Administration: iv 2 mg/kg in PEG400/saline (70:30); po 10 mg/kg PEG400/2%
Vitamin E TPGS.

b Clearance from plasma.
c Volume of distribution.
d Half-life.
e Oral bioavailability.
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Attention then turned to installing the linker between the C2
aromatic, holding the aryl group in its preferred conformation,
and the acid bioisostere, described in Scheme 3. Basic hydrolysis
of methyl ester 4, followed by reaction with dimethylformamide
di-t-butylacetal (DMF-DBA) afforded the indole t-butylester 19.
Alkylation of 19 over sodium hydride in the presence of alkyl
iodide in DMF gave rise to 20a–c (R1 = methyl, isopropyl,
cyclopentyl in yields of 90%, 60%, and 20%, respectively). Typical
Suzuki–Miyaura conditions were used in the coupling of
2-bromoindoles 20a–c with boronic acids to afford intermediates
21a–f. The phenol oxygen was alkylated with methyl bromoace-
tate in DMF over potassium carbonate. Subsequent regioselective
deprotection of the intermediate methyl esters was carried out in
basic media, followed by standard aminoacid coupling conditions
in DMF, employing linkers 22a–e, (the nitrogen of the newly
formed bond is shown in bold, Scheme 3, Table 3), allowed the for-
mation of the corresponding amide intermediates 23a–k in 70–
90% yield. Formation of the sulfamides 24a–k, and subsequent ring
closure was effected as in Scheme 2 to give the 2,6-indole macro-
cycles 25a–k (3).

Alkylation of the indole nitrogen proved detrimental to activity
(e.g., 25i, EC50 = 11.9 lM, IC50 = 1.66 lM), the augmented alkyl size
potentially displaces the linker to clash with the protein, or alter-
natively, alters the dihedral angle of the 2-aryl group. Contrary to
the 1,6-macrocyclic indoles, this series tolerated a tether contain-
ing a basic amine (25k, EC50 = 0.24 lM, IC50 = 0.14 lM).

The potent macrocyclic indoles 12b, 25b and 25h were studied
for their pharmacokinetic properties in Sprague–Dawley rats, and
the data is summarized in Table 4. Plasma kinetics were deter-
mined after a single iv administration of 2 mg/kg compound in
PEG400/saline (70:30) as a vehicle. These data were compared
to the oral dose at 10 mg/kg in PEG400 containing 2% Vitamin E
TPGS. Systemic exposure was attainable, albeit with low to mod-
erate bioavailability ranging from 9% to 40%. High clearance from
plasma and half-lives of 1 h or less were observed. HCV replica-
tion is known to occur in the liver,24 thus the high drug concen-
trations observed in the target organ 7 h post dosing (12b, 25b,
25h = 3743, 1524, 1717 ng/g, respectively), corresponding to
favorable liver to plasma ratios (150, 99, and 64 for 12b, 25b
and 25h, respectively), were encouraging results. No formation
of glutathione conjugates was observed after incubation of 25h
with human liver microsomes, fortified with glutathione
(GSH),25 bolstering the development potential of these macrocy-
clic compounds.

In summary, we have described two series of macrocyclic in-
doles where a tether connects a carboxylic acid bioisostere in the
6-position to either the indole nitrogen or 2-aryl position. Optimi-
zation afforded potent allosteric inhibitors of the HCV NS5b
enzyme, reduction of subgenomic HCV RNA replication in Huh-7
cells, and bioavailability in rats. These findings contribute to
further modifications that will be described in Part 2.
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